Standard Hilbert modules and the K-homology of algebraic varieties

William Arveson
arveson@math.berkeley.edu
UC Berkeley

Summer 2009

Preview

We give a birds-eye survey of the problem of constructing explicit examples in multivariable operator theory, focusing on unsolved problems and conjectures. For details, see

- TAMS (2007) v. 359, pp. 6027-6055.
> - Review of some background results of Hilbert on what
> might be called multivariable linear algebra.
> - The issue: How should one construct the Hilbert space
> counterparts of projective algebraic varieties and related
> objects (like vector bundles or sheaves over varieties)?
> More precisely, how does one construct the K-homology classes of algebraic varieties?

Preview

We give a birds-eye survey of the problem of constructing explicit examples in multivariable operator theory, focusing on unsolved problems and conjectures. For details, see

- TAMS (2007) v. 359, pp. 6027-6055.
- Review of some background results of Hilbert on what might be called multivariable linear algebra.
- The issue: How should one construct the Hilbert space counterparts of projective algebraic varieties and related objects (like vector bundles or sheaves over varieties)? More precisely, how does one construct the K-homology classes of algebraic varieties?

Preview

We give a birds-eye survey of the problem of constructing explicit examples in multivariable operator theory, focusing on unsolved problems and conjectures. For details, see

- TAMS (2007) v. 359, pp. 6027-6055.
- Review of some background results of Hilbert on what might be called multivariable linear algebra.
- The issue: How should one construct the Hilbert space counterparts of projective algebraic varieties and related objects (like vector bundles or sheaves over varieties)? More precisely, how does one construct the K-homology classes of algebraic varieties?

Multivariable linear algebra

V : complex vector space (typically infinite-dimensional), T_{1}, \ldots, T_{d} commuting linear operators on V.

Regard V as a module over $\mathbb{C}\left[z_{1}, \ldots, z_{d}\right]$:

$$
f \cdot \xi=f\left(T_{1}, \ldots, T_{d}\right) \xi, \quad f \in C\left[z_{1}, \ldots, z_{k}\right], \quad \xi \in V
$$

Finitely generated: there exist $\xi_{1}, \ldots, \xi_{r} \in V$ such that

If we identify r-tuples of polynomials in $\mathbb{C}\left[z_{1}, \ldots, z_{d}\right]$ in the natural way with elements of $C\left[z_{1}, \ldots, z_{d}\right] \otimes \mathbb{C}^{r}$, then we can define a surjective homomorphism of modules

$$
\mathbb{C}\left[z_{1}, \ldots, z_{d}\right] \otimes \mathbb{C}^{r} \rightarrow V \rightarrow 0
$$

by sending an r-tuple of polynomials $\left(f_{1}, \ldots, f_{r}\right)$ to the vector

Multivariable linear algebra

V : complex vector space (typically infinite-dimensional), T_{1}, \ldots, T_{d} commuting linear operators on V.

Regard V as a module over $\mathbb{C}\left[z_{1}, \ldots, z_{d}\right]$:

$$
f \cdot \xi=f\left(T_{1}, \ldots, T_{d}\right) \xi, \quad f \in C\left[z_{1}, \ldots, z_{k}\right], \quad \xi \in V
$$

Finitely generated: there exist $\xi_{1}, \ldots, \xi_{r} \in V$ such that

$$
V=\left\{f_{1} \cdot \xi_{1}+\cdots+f_{r} \cdot \xi_{r}: f_{k} \in \mathbb{C}\left[z_{1}, \ldots, z_{d}\right]\right\}
$$

If we identify r-tuples of polynomials in $\mathbb{C}\left[z_{1}, \ldots, z_{d}\right]$ in the
natural way with elements of $C\left[z_{1}, \ldots, z_{d}\right] \otimes \mathbb{C}^{r}$, then we can define a surjective homomorphism of modules

$$
\mathbb{C}\left[z_{1}, \ldots, z_{d}\right] \otimes \mathbb{C}^{r} \rightarrow V \rightarrow 0
$$

by sending an r-tuple of polynomials $\left(f_{1}, \ldots, f_{r}\right)$ to the vector

Multivariable linear algebra

V : complex vector space (typically infinite-dimensional),
T_{1}, \ldots, T_{d} commuting linear operators on V.
Regard V as a module over $\mathbb{C}\left[z_{1}, \ldots, z_{d}\right]$:

$$
f \cdot \xi=f\left(T_{1}, \ldots, T_{d}\right) \xi, \quad f \in C\left[z_{1}, \ldots, z_{k}\right], \quad \xi \in V
$$

Finitely generated: there exist $\xi_{1}, \ldots, \xi_{r} \in V$ such that

$$
V=\left\{f_{1} \cdot \xi_{1}+\cdots+f_{r} \cdot \xi_{r}: f_{k} \in \mathbb{C}\left[z_{1}, \ldots, z_{d}\right]\right\} .
$$

If we identify r-tuples of polynomials in $\mathbb{C}\left[z_{1}, \ldots, z_{d}\right]$ in the natural way with elements of $C\left[z_{1}, \ldots, z_{d}\right] \otimes \mathbb{C}^{r}$, then we can define a surjective homomorphism of modules

$$
\mathbb{C}\left[z_{1}, \ldots, z_{d}\right] \otimes \mathbb{C}^{r} \rightarrow V \rightarrow 0
$$

by sending an r-tuple of polynomials $\left(f_{1}, \ldots, f_{r}\right)$ to the vector

$$
f_{1} \cdot \xi_{1}+\cdots+f_{r} \cdot \xi_{r}
$$

Typically, this map has nontrivial kernel K

$$
0 \rightarrow K \rightarrow \mathbb{C}\left[z_{1}, \ldots, z_{d}\right] \otimes \mathbb{C}^{r} \rightarrow V \rightarrow 0
$$

However, Hilbert's basis theorem implies that K is finitely generated too. So we can choose $\eta_{1}, \ldots, \eta_{s} \in K$ such that

$$
K=\left\{f_{1} \cdot \eta_{1}+\cdots+f_{s} \cdot \eta_{s}: f_{k} \in \mathbb{C}\left[z_{1}, \ldots, z_{d}\right]\right\}
$$

and repeat the procedure to get a longer exact sequence

$$
\mathbb{C}\left[z_{1}, \ldots, z_{k}\right] \otimes \mathbb{C}^{s} \rightarrow \mathbb{C}\left[z_{1}, \ldots, z_{k}\right] \otimes \mathbb{C}^{r} \rightarrow V \rightarrow 0
$$

If the map on the left has nonzero kernel, we continue (perhaps forever) to obtain a free resolution of V - an exact sequence of finitely generated free modules (i.e., modules of the form $\mathbb{C}\left[z_{1}, \ldots, z_{d}\right] \otimes \mathbb{C}^{k}$) that terminates in the original module V.

Typically, this map has nontrivial kernel K

$$
0 \rightarrow K \rightarrow \mathbb{C}\left[z_{1}, \ldots, z_{d}\right] \otimes \mathbb{C}^{r} \rightarrow V \rightarrow 0
$$

However, Hilbert's basis theorem implies that K is finitely generated too. So we can choose $\eta_{1}, \ldots, \eta_{s} \in K$ such that

$$
K=\left\{f_{1} \cdot \eta_{1}+\cdots+f_{s} \cdot \eta_{s}: f_{k} \in \mathbb{C}\left[z_{1}, \ldots, z_{d}\right]\right\}
$$

and repeat the procedure to get a longer exact sequence

$$
\mathbb{C}\left[z_{1}, \ldots, z_{k}\right] \otimes \mathbb{C}^{s} \rightarrow \mathbb{C}\left[z_{1}, \ldots, z_{k}\right] \otimes \mathbb{C}^{r} \rightarrow V \rightarrow 0
$$

If the map on the left has nonzero kernel, we continue (perhaps forever) to obtain a free resolution of V - an exact sequence of finitely generated free modules (i.e., modules of the form $\left.\mathbb{C}\left[z_{1}, \ldots, z_{d}\right] \otimes \mathbb{C}^{k}\right)$ that terminates in the original module V.

Hilbert's syzygy theorem

Theorem (Math. Ann. (1893))

Every finitely generated $\mathbb{C}\left[z_{1}, \ldots, z_{d}\right]$-module V has a finite free resolution of length at most d in the sense that there are integers $r_{1}, \ldots, r_{n} \geq 0, n \leq d$, such that

$$
0 \rightarrow \mathbb{C}\left[z_{1}, \ldots, z_{d}\right] \otimes \mathbb{C}^{r_{n}} \rightarrow \cdots \rightarrow \mathbb{C}\left[z_{1}, \ldots, z_{d}\right] \otimes \mathbb{C}^{r_{1}} \rightarrow V \rightarrow 0
$$

is exact.

- Every free resolution can be reduced to a minimal one.
- All minimal free resolutions are isomorphic.
- Application: One can calculate the Fuler characteristic of V by using any free resolution of V :

$$
\chi(V)=r_{1}-r_{2}+r_{3}-r_{4} \pm \cdots+(-1)^{n} r_{n} .
$$

Hilbert's syzygy theorem

Theorem (Math. Ann. (1893))

Every finitely generated $\mathbb{C}\left[z_{1}, \ldots, z_{d}\right]$-module V has a finite free resolution of length at most d in the sense that there are integers $r_{1}, \ldots, r_{n} \geq 0, n \leq d$, such that

$$
0 \rightarrow \mathbb{C}\left[z_{1}, \ldots, z_{d}\right] \otimes \mathbb{C}^{r_{n}} \rightarrow \cdots \rightarrow \mathbb{C}\left[z_{1}, \ldots, z_{d}\right] \otimes \mathbb{C}^{r_{1}} \rightarrow V \rightarrow 0
$$

is exact.

- Every free resolution can be reduced to a minimal one.
- All minimal free resolutions are isomorphic.
- Application: One can calculate the Euler characteristic of V by using any free resolution of V :

$$
\chi(V)=r_{1}-r_{2}+r_{3}-r_{4} \pm \cdots+(-1)^{n} r_{n} .
$$

Hilbert's syzygy theorem

Theorem (Math. Ann. (1893))

Every finitely generated $\mathbb{C}\left[z_{1}, \ldots, z_{d}\right]$-module V has a finite free resolution of length at most d in the sense that there are integers $r_{1}, \ldots, r_{n} \geq 0, n \leq d$, such that

$$
0 \rightarrow \mathbb{C}\left[z_{1}, \ldots, z_{d}\right] \otimes \mathbb{C}^{r_{n}} \rightarrow \cdots \rightarrow \mathbb{C}\left[z_{1}, \ldots, z_{d}\right] \otimes \mathbb{C}^{r_{1}} \rightarrow V \rightarrow 0
$$

is exact.

- Every free resolution can be reduced to a minimal one.
- All minimal free resolutions are isomorphic.
- Application: One can calculate the Euler characteristic of V by using any free resolution of V :

$$
\chi(V)=r_{1}-r_{2}+r_{3}-r_{4} \pm \cdots+(-1)^{n} r_{n} .
$$

Hilbert's syzygy theorem

Theorem (Math. Ann. (1893))

Every finitely generated $\mathbb{C}\left[z_{1}, \ldots, z_{d}\right]$-module V has a finite free resolution of length at most d in the sense that there are integers $r_{1}, \ldots, r_{n} \geq 0, n \leq d$, such that

$$
0 \rightarrow \mathbb{C}\left[z_{1}, \ldots, z_{d}\right] \otimes \mathbb{C}^{r_{n}} \rightarrow \cdots \rightarrow \mathbb{C}\left[z_{1}, \ldots, z_{d}\right] \otimes \mathbb{C}^{r_{1}} \rightarrow V \rightarrow 0
$$

is exact.

- Every free resolution can be reduced to a minimal one.
- All minimal free resolutions are isomorphic.
- Application: One can calculate the Euler characteristic of V by using any free resolution of V :

$$
\chi(V)=r_{1}-r_{2}+r_{3}-r_{4} \pm \cdots+(-1)^{n} r_{n} .
$$

David Hilbert ca 1900

Graded modules over $\mathbb{C}\left[z_{1}, \ldots, z_{d}\right]$

The polynomials form a graded algebra,

$$
\mathbb{C}\left[z_{1}, \ldots, z_{d}\right]=\mathcal{P}_{0}+\mathcal{P}_{1} \dot{+} \mathcal{P}_{2} \dot{+} \cdots
$$

where $\mathcal{P}_{n}=$ homogeneous polynomials of degree n, and one has $\mathcal{P}_{m} \cdot \mathcal{P}_{n} \subseteq \mathcal{P}_{m+n}$.
$\mathbb{C}\left[z_{1}, \ldots, z_{d}\right]$, or simply \mathcal{A} when the dimension d is understood.
An \mathcal{A}-module V is said to be graded when

$$
V=V_{0}+V_{1} \div V_{2} \div
$$

where $z_{j} V_{k} \subseteq V_{k+1}$ for all $1 \leq k \leq d, k=0,1,2$,
Example: The free module of rank r, namely $\mathcal{A} \otimes \mathbb{C}^{r}$, "is" the space of vector-valued polynomials (taking values in \mathbb{C}^{r})

$$
A \otimes \mathbb{C}^{r}=F_{0}+F_{1}+F_{2} \dot{+} \cdots
$$

where F_{n} denoting all homogeneous polynomials of degree n.

Graded modules over $\mathbb{C}\left[z_{1}, \ldots, z_{d}\right]$

The polynomials form a graded algebra,

$$
\mathbb{C}\left[z_{1}, \ldots, z_{d}\right]=\mathcal{P}_{0}+\mathcal{P}_{1} \dot{+} \mathcal{P}_{2} \dot{+} \cdots
$$

where $\mathcal{P}_{n}=$ homogeneous polynomials of degree n, and one has $\mathcal{P}_{m} \cdot \mathcal{P}_{n} \subseteq \mathcal{P}_{m+n}$. To lighten notation, we write \mathcal{A}_{d} instead of $\mathbb{C}\left[z_{1}, \ldots, z_{d}\right]$, or simply \mathcal{A} when the dimension d is understood.

An \mathcal{A}-module V is said to be graded when

where $z_{j} V_{k} \subseteq V_{k+1}$ for all $1 \leq k \leq d, k=0,1,2$,
Example: The free module of rank r, namely $\mathcal{A} \otimes \mathbb{C}^{r}$, "is" the space of vector-valued polynomials (taking values in \mathbb{C}^{r})

$$
A \otimes \mathbb{C}^{r}=F_{0}+F_{1} \dot{+} F_{2} \dot{+} \cdots
$$

Graded modules over $\mathbb{C}\left[z_{1}, \ldots, z_{d}\right]$

The polynomials form a graded algebra,

$$
\mathbb{C}\left[z_{1}, \ldots, z_{d}\right]=\mathcal{P}_{0}+\mathcal{P}_{1} \dot{+} \mathcal{P}_{2} \dot{+} \cdots
$$

where $\mathcal{P}_{n}=$ homogeneous polynomials of degree n, and one has $\mathcal{P}_{m} \cdot \mathcal{P}_{n} \subseteq \mathcal{P}_{m+n}$. To lighten notation, we write \mathcal{A}_{d} instead of $\mathbb{C}\left[z_{1}, \ldots, z_{d}\right]$, or simply \mathcal{A} when the dimension d is understood.

An \mathcal{A}-module V is said to be graded when

$$
V=V_{0} \dot{+} V_{1} \dot{+} V_{2} \dot{+} \cdots
$$

where $z_{j} V_{k} \subseteq V_{k+1}$ for all $1 \leq k \leq d, k=0,1,2, \ldots$.
Example: The free module of rank r, namely $\mathcal{A} \otimes \mathbb{C}^{r}$, "is" the space of vector-valued polynomials (taking values in \mathbb{C}^{r})

$$
A \otimes \mathbb{C}^{r}=F_{0}+F_{1}+F_{2} \dot{+} \cdot \cdots
$$

Graded modules over $\mathbb{C}\left[z_{1}, \ldots, z_{d}\right]$

The polynomials form a graded algebra,

$$
\mathbb{C}\left[z_{1}, \ldots, z_{d}\right]=\mathcal{P}_{0}+\mathcal{P}_{1}+\mathcal{P}_{2} \dot{+} \cdots
$$

where $\mathcal{P}_{n}=$ homogeneous polynomials of degree n, and one has $\mathcal{P}_{m} \cdot \mathcal{P}_{n} \subseteq \mathcal{P}_{m+n}$. To lighten notation, we write \mathcal{A}_{d} instead of $\mathbb{C}\left[z_{1}, \ldots, z_{d}\right]$, or simply \mathcal{A} when the dimension d is understood.

An \mathcal{A}-module V is said to be graded when

$$
V=V_{0} \dot{+} V_{1} \dot{+} V_{2} \dot{+} \cdots
$$

where $z_{j} V_{k} \subseteq V_{k+1}$ for all $1 \leq k \leq d, k=0,1,2, \ldots$.
Example: The free module of rank r, namely $\mathcal{A} \otimes \mathbb{C}^{r}$, "is" the space of vector-valued polynomials (taking values in \mathbb{C}^{r})

$$
A \otimes \mathbb{C}^{r}=F_{0} \dot{+} F_{1}+F_{2} \dot{+} \cdots
$$

where F_{n} denoting all homogeneous polynomials of degree n.

Graded \mathcal{A}-modules (cont.)

There is a fairly obvious "graded" variant of the syzygy theorem.
In particular, the most general finitely generated graded module
V over \mathcal{A}_{d} can be constructed by a two-step procedure:

- Step 1: Choose a graded submodule
$M=M_{0}+M_{1}+M_{2}+\cdots$ of the graded free module of rank r

$$
F=\mathcal{A}_{d} \otimes \mathbb{C}^{r}=F_{0}+F_{1}+F_{2} \dot{+}
$$

- Step 2: Form the graded quotient module

$$
V=F / M=\left(F_{0} / M_{0}\right)+\left(F_{1} / M_{1}\right)
$$

Such modules can represent (the algebras of polynomials on) projective algebraic varieties, or (the sections of) vector bundles or sheaves over projective algebraic varieties.

Graded \mathcal{A}-modules (cont.)

There is a fairly obvious "graded" variant of the syzygy theorem. In particular, the most general finitely generated graded module V over \mathcal{A}_{d} can be constructed by a two-step procedure:

- Step 1: Choose a graded submodule $M=M_{0}+M_{1}+M_{2}+\cdots$ of the graded free module of rank r

$$
F-\Lambda_{d} \otimes \mathbb{C} r-F_{0}+F_{1}+F_{2} i .
$$

- Step 2: Form the graded quotient module

$$
V=F / M=\left(F_{0} / M_{0}\right) \dot{+}\left(F_{1} / M_{1}\right)
$$

Such modules can represent (the algebras of polynomials on) projective algebraic varieties, or (the sections of) vector bundles or sheaves over projective algebraic varieties.

Graded \mathcal{A}-modules (cont.)

There is a fairly obvious "graded" variant of the syzygy theorem. In particular, the most general finitely generated graded module V over \mathcal{A}_{d} can be constructed by a two-step procedure:

- Step 1: Choose a graded submodule
$M=M_{0}+M_{1}+M_{2}+\cdots$ of the graded free module of rank r

$$
F=\mathcal{A}_{d} \otimes \mathbb{C}^{r}=F_{0}+F_{1}+F_{2}+\cdots
$$

- Step 2: Form the graded quotient module

$$
V=F / M=\left(F_{0} / M_{0}\right)+\left(F_{1} / M_{1}\right)+.
$$

Such modules can represent (the algebras of polynomials on) projective algebraic varieties, or (the sections of) vector bundles or sheaves over projective algebraic varieties.

Graded \mathcal{A}-modules (cont.)

There is a fairly obvious "graded" variant of the syzygy theorem. In particular, the most general finitely generated graded module V over \mathcal{A}_{d} can be constructed by a two-step procedure:

- Step 1: Choose a graded submodule
$M=M_{0}+M_{1}+M_{2}+\cdots$ of the graded free module of rank r

$$
F=\mathcal{A}_{d} \otimes \mathbb{C}^{r}=F_{0}+F_{1}+F_{2}+\cdots
$$

- Step 2: Form the graded quotient module

$$
V=F / M=\left(F_{0} / M_{0}\right) \dot{+}\left(F_{1} / M_{1}\right) \dot{+} \cdots .
$$

Such modules can represent (the algebras of polynomials on)
projective algebraic varieties, or (the sections of) vector bundles
or sheaves over projective algebraic varieties.

Graded \mathcal{A}-modules (cont.)

There is a fairly obvious "graded" variant of the syzygy theorem. In particular, the most general finitely generated graded module V over \mathcal{A}_{d} can be constructed by a two-step procedure:

- Step 1: Choose a graded submodule
$M=M_{0}+M_{1}+M_{2} \dot{+} \cdots$ of the graded free module of rank r

$$
F=\mathcal{A}_{d} \otimes \mathbb{C}^{r}=F_{0} \dot{+} F_{1} \dot{+} F_{2} \dot{+} \cdots
$$

- Step 2: Form the graded quotient module

$$
V=F / M=\left(F_{0} / M_{0}\right) \dot{+}\left(F_{1} / M_{1}\right) \dot{+} \cdots .
$$

Such modules can represent (the algebras of polynomials on) projective algebraic varieties, or (the sections of) vector bundles or sheaves over projective algebraic varieties.

Can we do this in Hilbert space?

In more concrete terms, this algebraic construction gives rise to d-tuples of commuting operators T_{1}, \ldots, T_{d} that satisfy systems of equations of the form

$$
f_{k}\left(T_{1}, \ldots, T_{d}\right)=0, \quad k=1, \ldots, s
$$

where f_{1}, \ldots, f_{s} is a finite set of homogeneous polynomials (perhaps of different degrees).

> The set X of common zeros of $\left\{f_{1}, \ldots, f_{k}\right\}$ is a projective algebraic variety.

> We want to construct Hilbert space counterparts of such d-tuples so as to obtain K-homology classes of X in concrete terms (as well as the accompanying index theorems).

Can we do this in Hilbert space?

In more concrete terms, this algebraic construction gives rise to d-tuples of commuting operators T_{1}, \ldots, T_{d} that satisfy systems of equations of the form

$$
f_{k}\left(T_{1}, \ldots, T_{d}\right)=0, \quad k=1, \ldots, s
$$

where f_{1}, \ldots, f_{s} is a finite set of homogeneous polynomials (perhaps of different degrees).

The set X of common zeros of $\left\{f_{1}, \ldots, f_{k}\right\}$ is a projective algebraic variety.

We want to construct Hilbert space counterparts of such
d-tuples so as to obtain K-homology classes of X in concrete terms (as well as the accompanying index theorems).

Can we do this in Hilbert space?

In more concrete terms, this algebraic construction gives rise to d-tuples of commuting operators T_{1}, \ldots, T_{d} that satisfy systems of equations of the form

$$
f_{k}\left(T_{1}, \ldots, T_{d}\right)=0, \quad k=1, \ldots, s
$$

where f_{1}, \ldots, f_{s} is a finite set of homogeneous polynomials (perhaps of different degrees).
The set X of common zeros of $\left\{f_{1}, \ldots, f_{k}\right\}$ is a projective algebraic variety.

We want to construct Hilbert space counterparts of such d-tuples so as to obtain K-homology classes of X in concrete terms (as well as the accompanying index theorems).

What doesn't work, and why not?

As a simple example, consider the problem of constructing commuting triples of operators $X, Y, Z \in \mathcal{B}(H)$ that satisfy

$$
X^{n}+Y^{n}=Z^{n}
$$

for some $n=2,3, \ldots$.
E.g., one can start with a pair of commuting operators X, Y and look for an nth root Z of $X^{n}+Y^{n}$. Unfortunately, many operators don't have nth roots (Example: the unilateral shift).

So ad hoc methods fail. Instead, we need to deal directly with quotients of Hilbert modules such as H / M where

- H is a "free" Hilbert module in three variables X, Y, Z, and
- $M=$ the submodule generated by $X^{n}+Y^{n}-Z^{n}$.

What doesn't work, and why not?

As a simple example, consider the problem of constructing commuting triples of operators $X, Y, Z \in \mathcal{B}(H)$ that satisfy

$$
X^{n}+Y^{n}=Z^{n}
$$

for some $n=2,3, \ldots$.
E.g., one can start with a pair of commuting operators X, Y and look for an nth root Z of $X^{n}+Y^{n}$. Unfortunately, many operators don't have nth roots (Example: the unilateral shift).

So ad hoc methods fail. Instead, we need to deal directly with quotients of Hilbert modules such as H / M where

- H is a "free" Hilbert module in three variables X, Y, Z, and
- $M=$ the submodule generated by $X^{n}+Y^{n}-Z^{n}$

What doesn't work, and why not?

As a simple example, consider the problem of constructing commuting triples of operators $X, Y, Z \in \mathcal{B}(H)$ that satisfy

$$
X^{n}+Y^{n}=Z^{n}
$$

for some $n=2,3, \ldots$.
E.g., one can start with a pair of commuting operators X, Y and look for an nth root Z of $X^{n}+Y^{n}$. Unfortunately, many operators don't have nth roots (Example: the unilateral shift).

So ad hoc methods fail. Instead, we need to deal directly with quotients of Hilbert modules such as H / M where

- H is a "free" Hilbert module in three variables X, Y, Z, and
- $M=$ the submodule generated by $X^{n}+Y^{n}-Z^{n}$.

Some terminology

- Hilbert module over \mathcal{A}_{d} : A Hilbert space H endowed with commuting operators $T_{1}, \ldots, T_{d} \in \mathcal{B}(H)$ for which

$$
f \cdot \xi=f\left(T_{1}, \ldots, T_{d}\right) \xi, \quad f \in \mathcal{A}_{d}, \quad \xi \in H
$$

- Obvious meaning of finitely generated Hilbert module.
- The C^{*}-algehra of a Hilbert module H over $\mathcal{A}_{d^{*}}$: The unital C^{*}-algebra generated by the "coordinate" operators T_{1}, \ldots, T_{d}

$$
C^{*}(H)=C^{*}\left\{1, T_{1}, \ldots, T_{d}\right\} .
$$

- H is said to be essentially normal if $C^{*}(H)$ is commutative modulo compacts. H is p-essentially normal (for $1 \leq p \leq \infty$) if the cross commutators $T_{j}^{*} T_{k}-T_{k} T_{j}^{*}$ all belong to \mathcal{L}^{p}.

Some terminology

- Hilbert module over \mathcal{A}_{d} : A Hilbert space H endowed with commuting operators $T_{1}, \ldots, T_{d} \in \mathcal{B}(H)$ for which

$$
f \cdot \xi=f\left(T_{1}, \ldots, T_{d}\right) \xi, \quad f \in \mathcal{A}_{d}, \quad \xi \in H
$$

- Grading of $H:$ An \perp decomposition $H=H_{0} \oplus H_{1} \oplus H_{2} \oplus \cdots$ for which $T_{j} H_{k} \subseteq H_{k+1}$ for all $1 \leq j \leq d, k=0,1,2, \ldots$.
- Obvious meaning of finitely generated Hilbert module.
- The C^{*}-algebra of a Hilbert module H over \mathcal{A}_{d} : The unital C^{*}-algebra generated by the "coordinate" operators T_{1}, \ldots, T_{d}

$$
C^{*}(H)=C^{*}\left\{\mathbf{1}, T_{1}, \ldots, T_{d}\right\} .
$$

- H is said to be essentially normal if $C^{*}(H)$ is commutative modulo compacts. H is p-essentially normal (for $1 \leq p \leq \infty$) if the cross commutators $T_{j}^{*} T_{k}-T_{k} T_{j}^{*}$ all belong to \mathcal{L}^{p}.

Some terminology

- Hilbert module over \mathcal{A}_{d} : A Hilbert space H endowed with commuting operators $T_{1}, \ldots, T_{d} \in \mathcal{B}(H)$ for which

$$
f \cdot \xi=f\left(T_{1}, \ldots, T_{d}\right) \xi, \quad f \in \mathcal{A}_{d}, \quad \xi \in H
$$

- Grading of $H:$ An \perp decomposition $H=H_{0} \oplus H_{1} \oplus H_{2} \oplus \cdots$ for which $T_{j} H_{k} \subseteq H_{k+1}$ for all $1 \leq j \leq d, k=0,1,2, \ldots$.
- Obvious meaning of finitely generated Hilbert module.
- The C^{*}-algebra of a Hilbert module H over \mathcal{A}_{d} : The unital C^{*}-algebra generated by the "coordinate" operators T_{1}, \ldots, T_{d}

$$
C^{*}(H)=C^{*}\left\{1, T_{1}, \ldots, T_{d}\right\}
$$

- H is said to be essentially normal if $C^{*}(H)$ is commutative modulo compacts. H is p-essentially normal (for $1 \leq p \leq \infty$) if the cross commutators $T_{j}^{*} T_{k}-T_{k} T_{j}^{*}$ all belong to \mathcal{L}^{p}.

Some terminology

- Hilbert module over \mathcal{A}_{d} : A Hilbert space H endowed with commuting operators $T_{1}, \ldots, T_{d} \in \mathcal{B}(H)$ for which

$$
f \cdot \xi=f\left(T_{1}, \ldots, T_{d}\right) \xi, \quad f \in \mathcal{A}_{d}, \quad \xi \in H
$$

- Grading of H : An \perp decomposition $H=H_{0} \oplus H_{1} \oplus H_{2} \oplus \cdots$ for which $T_{j} H_{k} \subseteq H_{k+1}$ for all $1 \leq j \leq d, k=0,1,2, \ldots$.
- Obvious meaning of finitely generated Hilbert module.
- The C^{*}-algebra of a Hilbert module H over \mathcal{A}_{d} : The unital C^{*}-algebra generated by the "coordinate" operators T_{1}, \ldots, T_{d}

$$
C^{*}(H)=C^{*}\left\{\mathbf{1}, T_{1}, \ldots, T_{d}\right\}
$$

- H is said to be essentially normal if $C^{*}(H)$ is commutative
modulo compacts. H is p-essentially normal (for $1 \leq p \leq \infty$) if the cross commutators $T_{j}^{*} T_{k}-T_{k} T_{j}^{*}$ all belong to \mathcal{L}^{p}.

Some terminology

- Hilbert module over \mathcal{A}_{d} : A Hilbert space H endowed with commuting operators $T_{1}, \ldots, T_{d} \in \mathcal{B}(H)$ for which

$$
f \cdot \xi=f\left(T_{1}, \ldots, T_{d}\right) \xi, \quad f \in \mathcal{A}_{d}, \quad \xi \in H
$$

- Grading of H : An \perp decomposition $H=H_{0} \oplus H_{1} \oplus H_{2} \oplus \cdots$ for which $T_{j} H_{k} \subseteq H_{k+1}$ for all $1 \leq j \leq d, k=0,1,2, \ldots$.
- Obvious meaning of finitely generated Hilbert module.
- The C^{*}-algebra of a Hilbert module H over \mathcal{A}_{d} : The unital C^{*}-algebra generated by the "coordinate" operators T_{1}, \ldots, T_{d}

$$
C^{*}(H)=C^{*}\left\{\mathbf{1}, T_{1}, \ldots, T_{d}\right\}
$$

- H is said to be essentially normal if $C^{*}(H)$ is commutative modulo compacts.

Some terminology

- Hilbert module over \mathcal{A}_{d} : A Hilbert space H endowed with commuting operators $T_{1}, \ldots, T_{d} \in \mathcal{B}(H)$ for which

$$
f \cdot \xi=f\left(T_{1}, \ldots, T_{d}\right) \xi, \quad f \in \mathcal{A}_{d}, \quad \xi \in H
$$

- Grading of H : An \perp decomposition $H=H_{0} \oplus H_{1} \oplus H_{2} \oplus \cdots$ for which $T_{j} H_{k} \subseteq H_{k+1}$ for all $1 \leq j \leq d, k=0,1,2, \ldots$.
- Obvious meaning of finitely generated Hilbert module.
- The C^{*}-algebra of a Hilbert module H over \mathcal{A}_{d} : The unital C^{*}-algebra generated by the "coordinate" operators T_{1}, \ldots, T_{d}

$$
C^{*}(H)=C^{*}\left\{\mathbf{1}, T_{1}, \ldots, T_{d}\right\} .
$$

- H is said to be essentially normal if $C^{*}(H)$ is commutative modulo compacts. H is p-essentially normal (for $1 \leq p \leq \infty$) if the cross commutators $T_{j}^{*} T_{k}-T_{k} T_{j}^{*}$ all belong to \mathcal{L}^{p}.

What are free Hilbert modules?

To get started, what should be the Hilbert space counterparts of the free module of rank 1

$$
V=\mathbb{C}\left[z_{1}, \ldots, z_{d}\right] ?
$$

These will be called graded completions (of $\mathcal{A}=\mathbb{C}\left[z_{1}, \ldots, z_{d}\right]$), and they are defined as follows....

- A graded inner product is an inner product $\langle\cdot, \cdot\rangle$ on $\mathcal{A}_{d}=\mathcal{P}_{0}+\mathcal{P}_{1}+\mathcal{P}_{2}+$
with the following two properties:
(i): $\mathcal{P}_{m} \perp \mathcal{P}_{n}$ if $m \neq n$.
(ii): The multiplication operators Z_{1}, \ldots, Z_{d} by the generators z_{1}, \ldots, z_{d} are bounded.

What are free Hilbert modules?

To get started, what should be the Hilbert space counterparts of the free module of rank 1

$$
V=\mathbb{C}\left[z_{1}, \ldots, z_{d}\right] ?
$$

These will be called graded completions (of $\mathcal{A}=\mathbb{C}\left[z_{1}, \ldots, z_{d}\right]$), and they are defined as follows....

- A graded inner product is an inner product $\langle\cdot, \cdot\rangle$ on

$$
\mathcal{A}_{d}=\mathcal{P}_{0}+\mathcal{P}_{1}+\mathcal{P}_{2}+\cdots
$$

with the following two properties:
(i): $\mathcal{P}_{m} \perp \mathcal{P}_{n}$ if $m \neq n$.
(ii): The multiplication operators Z_{1}, \ldots, Z_{d} by the generators z_{1}, \ldots, z_{d} are bounded.

Graded completions (of \mathcal{A}_{d})

The completion G of \mathcal{A}_{d} in $\langle\cdot, \cdot\rangle$ is obviously a graded Hilbert module (with a single generator - the constant polynomial 1).
(iii): If, in addition to (i) and (ii), the subspace

is closed, then G is called a graded completion of \mathcal{A}_{d}.

- Something to keep in mind. There is only one free module of rank 1 in d-dimensional linear algebra. But in the category of Hilbert modules, there are uncountably many inequivalent graded completions of \mathcal{A}_{d}, with vastly different properties.
(Examples momentarily)

Graded completions (of \mathcal{A}_{d})

The completion G of \mathcal{A}_{d} in $\langle\cdot, \cdot\rangle$ is obviously a graded Hilbert module (with a single generator - the constant polynomial 1).
(iii): If, in addition to (i) and (ii), the subspace

$$
Z_{1} G+Z_{2} G+\cdots+Z_{d} G
$$

is closed, then G is called a graded completion of \mathcal{A}_{d}.

- Something to keep in mind: There is only one free module of
rank 1 in d-dimensional linear algebra. But in the category of
Hilbert modules, there are uncountably many inequivalent
graded completions of \mathcal{A}_{d}, with vastly different properties.
(Examples momentarily)

Graded completions (of \mathcal{A}_{d})

The completion G of \mathcal{A}_{d} in $\langle\cdot, \cdot\rangle$ is obviously a graded Hilbert module (with a single generator - the constant polynomial 1).
(iii): If, in addition to (i) and (ii), the subspace

$$
Z_{1} G+Z_{2} G+\cdots+Z_{d} G
$$

is closed, then G is called a graded completion of \mathcal{A}_{d}.

- Something to keep in mind: There is only one free module of rank 1 in d-dimensional linear algebra. But in the category of Hilbert modules, there are uncountably many inequivalent graded completions of \mathcal{A}_{d}, with vastly different properties.
(Examples momentarily)

Basic properties of all graded completions

Number operator N : Unbounded positive operator, defined by

$$
N f=n \cdot f, \quad f \in \mathcal{P}_{n}, \quad n=0,1,2, \ldots
$$

It satisfies

$$
\operatorname{trace}\left((1+N)^{-p}\right)<\infty, \quad \forall p>d
$$

Up to unitary equivalence, all graded completions have the "same" number operator.

Thoy also share an irreducibility property:
Proposition: Every graded completion G is irreducible, and in fact $\mathcal{K} \subseteq C^{*}(G)$.

Basic properties of all graded completions

Number operator N : Unbounded positive operator, defined by

$$
N f=n \cdot f, \quad f \in \mathcal{P}_{n}, \quad n=0,1,2, \ldots
$$

It satisfies

$$
\operatorname{trace}\left((\mathbf{1}+N)^{-p}\right)<\infty, \quad \forall p>d
$$

Up to unitary equivalence, all graded completions have the "same" number operator.

They also share an irreducibility property:
Proposition: Every graded completion G is irreducible, and in fact $\mathcal{K} \subseteq C^{*}(G)$.

Basic properties of all graded completions

Number operator N : Unbounded positive operator, defined by

$$
N f=n \cdot f, \quad f \in \mathcal{P}_{n}, \quad n=0,1,2, \ldots
$$

It satisfies

$$
\operatorname{trace}\left((\mathbf{1}+N)^{-p}\right)<\infty, \quad \forall p>d
$$

Up to unitary equivalence, all graded completions have the "same" number operator.

They also share an irreducibility property:
Proposition: Every graded completion G is irreducible, and in fact $\mathcal{K} \subseteq C^{*}(G)$.

Standard Hilbert modules

A standard Hilbert module is finite-multiplicity version of a graded completion G - a Hilbert module of the form $S=G \otimes \mathbb{C}^{r}$

$$
f \cdot(g \otimes \zeta)=(f \cdot g) \otimes \zeta, \quad g \in G, \quad \zeta \in \mathbb{C}^{r}
$$

where $r=1,2, \ldots$.
We focus on graded quotients of standard Hilbert modules: i.e.,

$$
H=S / M
$$

where S is standard and $M \subseteq S$ is a graded submodule.

- Key issue: Is $H=S / M$ essentially normal? Equivalently, do we have an exact sequence of C^{*}-algebras

Standard Hilbert modules

A standard Hilbert module is finite-multiplicity version of a graded completion G - a Hilbert module of the form $S=G \otimes \mathbb{C}^{r}$

$$
f \cdot(g \otimes \zeta)=(f \cdot g) \otimes \zeta, \quad g \in G, \quad \zeta \in \mathbb{C}^{r}
$$

where $r=1,2, \ldots$.
We focus on graded quotients of standard Hilbert modules: i.e.,

$$
H=S / M
$$

where S is standard and $M \subseteq S$ is a graded submodule.

- Key issue: Is $H=S / M$ essentially normal? Equivalently, do we have an exact sequence of C^{*}-algebras

Standard Hilbert modules

A standard Hilbert module is finite-multiplicity version of a graded completion G - a Hilbert module of the form $S=G \otimes \mathbb{C}^{r}$

$$
f \cdot(g \otimes \zeta)=(f \cdot g) \otimes \zeta, \quad g \in G, \quad \zeta \in \mathbb{C}^{r}
$$

where $r=1,2, \ldots$.
We focus on graded quotients of standard Hilbert modules: i.e.,

$$
H=S / M
$$

where S is standard and $M \subseteq S$ is a graded submodule.

- Key issue: Is $H=S / M$ essentially normal? Equivalently, do we have an exact sequence of C^{*}-algebras

$$
0 \longrightarrow \mathcal{K} \longrightarrow C^{*}(S / M)+\mathcal{K} \longrightarrow C(X) \longrightarrow 0
$$

and a K-homology class of its essential Gelfand spectrum X ?

Examples of graded completions: Good ones

- Bosonic Fock space: Realize \mathcal{A}_{d} as the symmetric tensor algebra over \mathbb{C}^{d}, complete in the Bosonic inner product.
- The Hardy module of the $2 d-1$-sphere $\left\{z \in \mathbb{C}^{d}:|z|=1\right\}$
- The Bergman module of the unit ball of \mathbb{C}^{d}

All of these are n-escentially normal for every $n>d$:

Some other essentially normal graded completions:

- $\Omega \subseteq \mathbb{C}^{d}$ a bounded strongly pseudoconvex domain with
smooth boundary. The Bergman module of Ω is essentially
normal (PDE book of Michael Taylor, v. 2, Prop. 7.3 Chap. 12).

Examples of graded completions: Good ones

- Bosonic Fock space: Realize \mathcal{A}_{d} as the symmetric tensor algebra over \mathbb{C}^{d}, complete in the Bosonic inner product.
- The Hardy module of the $2 d$ - 1 -sphere $\left\{z \in \mathbb{C}^{d}:|z|=1\right\}$.
- The Bergman module of the unit ball of \mathbb{C}^{d}.

All of these are p-essentially normal for every $p>d$:

Some other essentially normal graded completions:

- $\Omega \subseteq \mathbb{C}^{d}$ a bounded strongly pseudoconvex domain with smooth boundary. The Bergman module of Ω is essentially normal (PDE book of Michael Taylor, v. 2, Prop. 7.3 Chap. 12).

Examples of graded completions: Good ones

- Bosonic Fock space: Realize \mathcal{A}_{d} as the symmetric tensor algebra over \mathbb{C}^{d}, complete in the Bosonic inner product.
- The Hardy module of the $2 d-1$-sphere $\left\{z \in \mathbb{C}^{d}:|z|=1\right\}$.
- The Bergman module of the unit ball of \mathbb{C}^{d}.

All of these are p-essentially normal for every $p>d$:

$$
Z_{j}^{*} Z_{k}-Z_{k} Z_{j}^{*} \in \mathcal{L}^{p}, \quad \forall p>d
$$

Some other essentially normal graded completions:

- $\Omega \subseteq \mathbb{C}^{d}$ a bounded strongly pseudoconvex domain with
smooth boundary. The Bergman module of Ω is essentially
normal (PDE book of Michael Taylor, v. 2, Prop. 7.3 Chap. 12).

Examples of graded completions: Good ones

- Bosonic Fock space: Realize \mathcal{A}_{d} as the symmetric tensor algebra over \mathbb{C}^{d}, complete in the Bosonic inner product.
- The Hardy module of the $2 d-1$-sphere $\left\{z \in \mathbb{C}^{d}:|z|=1\right\}$.
- The Bergman module of the unit ball of \mathbb{C}^{d}.

All of these are p-essentially normal for every $p>d$:

$$
Z_{j}^{*} Z_{k}-Z_{k} Z_{j}^{*} \in \mathcal{L}^{p}, \quad \forall p>d
$$

Some other essentially normal graded completions:

- $\Omega \subseteq \mathbb{C}^{d}$ a bounded strongly pseudoconvex domain with smooth boundary. The Bergman module of Ω is essentially normal (PDE book of Michael Taylor, v. 2, Prop. 7.3 Chap. 12).

Vladimir Aleksandrovich Fock 1898-1974

Hardy (ca 1920) and Bergman (ca 1955)

And let's not forget Michael....

Bad ones

- Douglas and Howe observed that, among other things, the Bergman modules of polydisks are not essentially normal.

For the Bergman module H of the bi-disk $D \times D$, $C^{*}(H)=\mathcal{T} \otimes \mathcal{T}$, where $\mathcal{T}=$ Toeplitz C^{*}-algebra

The first ideal is all compact operators on H. A quotient of any two of these but the last two is noncommutative; hence $C^{*}(H) / \mathcal{K}$ is not commutative.

Bad ones

- Douglas and Howe observed that, among other things, the Bergman modules of polydisks are not essentially normal.

For the Bergman module H of the bi-disk $D \times D$,
$C^{*}(H)=\mathcal{T} \otimes \mathcal{T}$, where $\mathcal{T}=$ Toeplitz C^{*}-algebra

$$
\mathcal{K}(H)=\mathcal{K} \otimes \mathcal{K} \subseteq \mathcal{K} \otimes \mathcal{T} \subseteq \mathcal{K} \otimes \mathcal{T}+\mathcal{T} \oplus \mathcal{K} \subseteq C^{*}(H)
$$

The first ideal is all compact operators on H. A quotient of any two of these but the last two is noncommutative; hence $C^{*}(H) / \mathcal{K}$ is not commutative.

Worse ones

- It gets worse: (Upmeier) The modules of many symmetric domains have type I C^{*}-algebras with arbitrarily long Kaplansky composition series.

On the other hand, they are still type I. More importantly, their index theory is nice.

Harald ca. 1977

And still worse

Fix $a, b \in(0,1)$. Curto and Muhly (1985) showed that the C*-algebra of the Bergman module of the "iron cross"

$$
\Omega_{a, b}=\{(z, w):|z|<a,|w|<1\} \cup\{(z, w):|z|<1,|w|<b\}
$$

is type $I \Longleftrightarrow \log a / \log b$ is rational.

Submodules and quotients

Let S be a standard Hilbert module. We are interested in graded quotients of S, especially essentially normal ones.

> Theorem: Let S be an essentially normal standard Hilbert module S and let $M \subseteq S$ be a graded submodule. TFAE: 1. S / M is essentially normal. 2. M is essentially normal. 3. The projection P_{M} commutes with $C^{*}(S)$ modulo \mathcal{K}. - Similar result for p-essentialiy normal quotients, $p>d^{\prime}$.

> So: Given your favorite essentially normal standard Hilbert module S, you need to determine its essentially normal graded submodules. Are they all essentially normal?

> We conclude by discussing this issue.

Submodules and quotients

Let S be a standard Hllbert module. We are interested in graded quotients of S, especially essentially normal ones.

Theorem: Let S be an essentially normal standard Hilbert module S and let $M \subseteq S$ be a graded submodule. TFAE:

1. S / M is essentially normal.
2. M is essentially normal.
3. The projection P_{M} commutes with $C^{*}(S)$ modulo \mathcal{K}.

- Similar result for p-essentially normal quotients, $p>d$.

So: Given your favorite essentially normal standard Hilbert
module S, you need to determine its essentially normal graded submodules. Are they all essentially normal?

We conclude by discussing this issue.

Submodules and quotients

Let S be a standard Hllbert module. We are interested in graded quotients of S, especially essentially normal ones.

Theorem: Let S be an essentially normal standard Hilbert module S and let $M \subseteq S$ be a graded submodule. TFAE:

1. S / M is essentially normal.
2. M is essentially normal.
3. The projection P_{M} commutes with $C^{*}(S)$ modulo \mathcal{K}.

- Similar result for p-essentially normal quotients, $p>d$.

So: Given your favorite essentially normal standard Hilbert
module S, you need to determine its essentially normal graded submodules. Are they all essentially normal?

We conclude by discussing this issue.

Submodules and quotients

Let S be a standard Hilbert module. We are interested in graded quotients of S, especially essentially normal ones.

Theorem: Let S be an essentially normal standard Hilbert module S and let $M \subseteq S$ be a graded submodule. TFAE:

1. S / M is essentially normal.
2. M is essentially normal.
3. The projection P_{M} commutes with $C^{*}(S)$ modulo \mathcal{K}.

- Similar result for p-essentially normal quotients, $p>d$.

So: Given your favorite essentially normal standard Hilbert module S, you need to determine its essentially normal graded submodules. Are they all essentially normal?

We conclude by discussing this issue.

Submodules and quotients

Let S be a standard Hilbert module. We are interested in graded quotients of S, especially essentially normal ones.

Theorem: Let S be an essentially normal standard Hilbert module S and let $M \subseteq S$ be a graded submodule. TFAE:

1. S / M is essentially normal.
2. M is essentially normal.
3. The projection P_{M} commutes with $C^{*}(S)$ modulo \mathcal{K}.

- Similar result for p-essentially normal quotients, $p>d$.

So: Given your favorite essentially normal standard Hilbert module S, you need to determine its essentially normal graded submodules. Are they all essentially normal?

We conclude by discussing this issue.

Submodules and quotients

Let S be a standard Hilbert module. We are interested in graded quotients of S, especially essentially normal ones.

Theorem: Let S be an essentially normal standard Hilbert module S and let $M \subseteq S$ be a graded submodule. TFAE:

1. S / M is essentially normal.
2. M is essentially normal.
3. The projection P_{M} commutes with $C^{*}(S)$ modulo \mathcal{K}.

- Similar result for p-essentially normal quotients, $p>d$.

So: Given your favorite essentially normal standard Hilbert module S, you need to determine its essentially normal graded submodules. Are they all essentially normal?

We conclude by discussing this issue.

Structure of graded submodules

Fix $S=G \otimes \mathbb{C}^{r}$ standard Hilbert module over $\mathcal{A}=\mathcal{A}_{d}$, assumed to be p-essentially normal for some $d<p \leq \infty$.

Fix an integer $s \geq 0$ (the degree), and pick a linear space
$E \subseteq \mathcal{P}_{s}$ of homogeneous polynomials of degree s. Then $M=[A E]=E Q\left[z_{j} E: 1 \leq j \leq d\right] \odot\left[z_{i} z_{j} E: 1 \leq 1, j \leq d\right]$ is a graded submodule; s is called the degree of M.

Droposition: Every graded submodule of S is a finite rank perturbation of one of this form, for some $s \geq 0$.

- Degree $s=0$: All are p-essentially normal!
- Degree $s=1$: Not known if all are p-essentially normal.
- Degree $s \geq 2$: More complex, involving nonlinear relations.

Structure of graded submodules

Fix $S=G \otimes \mathbb{C}^{r}$ standard Hilbert module over $\mathcal{A}=\mathcal{A}_{d}$, assumed to be p-essentially normal for some $d<p \leq \infty$.

Fix an integer $s \geq 0$ (the degree), and pick a linear space $E \subseteq \mathcal{P}_{s}$ of homogeneous polynomials of degree s. Then

$$
M=[\mathcal{A} E]=E \oplus\left[z_{j} E: 1 \leq j \leq d\right] \oplus\left[z_{i} z_{j} E: 1 \leq i, j \leq d\right] \oplus \cdots
$$

is a graded submodule; s is called the degree of M.
Proposition: Every graded submodule of S is a finite rank perturbation of one of this form, for some $s \geq 0$.

- Degree $s=0$: All are p-essentially normal!
- Degree $s=1$: Not known if all are p-essentially normal.
- Degree $s \geq 2$: More complex, involving nonlinear relations.

Structure of graded submodules

Fix $S=G \otimes \mathbb{C}^{r}$ standard Hilbert module over $\mathcal{A}=\mathcal{A}_{d}$, assumed to be p-essentially normal for some $d<p \leq \infty$.

Fix an integer $s \geq 0$ (the degree), and pick a linear space $E \subseteq \mathcal{P}_{s}$ of homogeneous polynomials of degree s. Then

$$
M=[\mathcal{A} E]=E \oplus\left[z_{j} E: 1 \leq j \leq d\right] \oplus\left[z_{i} z_{j} E: 1 \leq i, j \leq d\right] \oplus \cdots
$$

is a graded submodule; s is called the degree of M.
Proposition: Every graded submodule of S is a finite rank perturbation of one of this form, for some $s \geq 0$.

- Degree $s=0$: All are p-essentially normal!
- Degree $s=1$: Not known if all are p-essentially normal.
- Degree $s \geq 2$: More complex, involving nonlinear relations.

Structure of graded submodules

Fix $S=G \otimes \mathbb{C}^{r}$ standard Hilbert module over $\mathcal{A}=\mathcal{A}_{d}$, assumed to be p-essentially normal for some $d<p \leq \infty$.

Fix an integer $s \geq 0$ (the degree), and pick a linear space $E \subseteq \mathcal{P}_{s}$ of homogeneous polynomials of degree s. Then

$$
M=[\mathcal{A} E]=E \oplus\left[z_{j} E: 1 \leq j \leq d\right] \oplus\left[z_{i} z_{j} E: 1 \leq i, j \leq d\right] \oplus \cdots
$$

is a graded submodule; s is called the degree of M.
Proposition: Every graded submodule of S is a finite rank perturbation of one of this form, for some $s \geq 0$.

- Degree $s=0$: All are p-essentially normal!
- Degree $s=1$: Not known if all are p-essentially normal.
- Degree $s \geq 2$: More complex, involving nonlinear relations.

Structure of graded submodules

Fix $S=G \otimes \mathbb{C}^{r}$ standard Hilbert module over $\mathcal{A}=\mathcal{A}_{d}$, assumed to be p-essentially normal for some $d<p \leq \infty$.

Fix an integer $s \geq 0$ (the degree), and pick a linear space $E \subseteq \mathcal{P}_{s}$ of homogeneous polynomials of degree s. Then

$$
M=[\mathcal{A} E]=E \oplus\left[z_{j} E: 1 \leq j \leq d\right] \oplus\left[z_{i} z_{j} E: 1 \leq i, j \leq d\right] \oplus \cdots
$$

is a graded submodule; s is called the degree of M.
Proposition: Every graded submodule of S is a finite rank perturbation of one of this form, for some $s \geq 0$.

- Degree $s=0$: All are p-essentially normal!
- Degree $s=1$: Not known if all are p-essentially normal.
- Degree $s \geq 2$: More complex, involving nonlinear relations.

Structure of graded submodules

Fix $S=G \otimes \mathbb{C}^{r}$ standard Hilbert module over $\mathcal{A}=\mathcal{A}_{d}$, assumed to be p-essentially normal for some $d<p \leq \infty$.

Fix an integer $s \geq 0$ (the degree), and pick a linear space $E \subseteq \mathcal{P}_{s}$ of homogeneous polynomials of degree s. Then

$$
M=[\mathcal{A} E]=E \oplus\left[z_{j} E: 1 \leq j \leq d\right] \oplus\left[z_{i} z_{j} E: 1 \leq i, j \leq d\right] \oplus \cdots
$$

is a graded submodule; s is called the degree of M.
Proposition: Every graded submodule of S is a finite rank perturbation of one of this form, for some $s \geq 0$.

- Degree $s=0$: All are p-essentially normal!
- Degree $s=1$: Not known if all are p-essentially normal.
- Degree $s \geq 2$: More complex, involving nonlinear relations.

A Conjecture

We now restrict attention to standard Hilbert modules
$S=G \otimes \mathbb{C}^{r}$ based on the symmetric Fock graded completion G.

- Basic Conjecture: Every graded submodule of such an S is p-essentially normal for every $p>d$, that is

$$
T_{j}^{*} T_{k}-T_{k} T_{j}^{*} \in \mathcal{L}^{p}, \quad \forall p>d
$$

Significant consequences include

- Index formula for the curvature invariant.
- Homotopy invariance of the curvature invariant.
- The Koszul complex of every "universal" d-contraction has finite dimensional cohomology.
- Explicit construction of the K-homology classes of projective varieties and their vector bundles/sheaves.

A Conjecture

We now restrict attention to standard Hilbert modules
$S=G \otimes \mathbb{C}^{r}$ based on the symmetric Fock graded completion G.

- Basic Conjecture: Every graded submodule of such an S is p-essentially normal for every $p>d$, that is

$$
T_{j}^{*} T_{k}-T_{k} T_{j}^{*} \in \mathcal{L}^{p}, \quad \forall p>d
$$

Significant consequences include

- Index formula for the curvature invariant.
- Homotopy invariance of the curvature invariant.
- The Koszul complex of every "universal" d-contraction has finite dimensional cohomology.
- Explicit construction of the K-homology classes of projective varieties and their vector bundles/sheaves.

A Conjecture

We now restrict attention to standard Hilbert modules
$S=G \otimes \mathbb{C}^{r}$ based on the symmetric Fock graded completion G.

- Basic Conjecture: Every graded submodule of such an S is p-essentially normal for every $p>d$, that is

$$
T_{j}^{*} T_{k}-T_{k} T_{j}^{*} \in \mathcal{L}^{p}, \quad \forall p>d
$$

Significant consequences include

- Index formula for the curvature invariant.
- Homotopy invariance of the curvature invariant.
- The Koszul complex of every "universal" d-contraction has finite dimensional cohomology.
- Explicit construction of the K-homology classes of projective varieties and their vector bundles/sheaves.

A Conjecture

We now restrict attention to standard Hilbert modules
$S=G \otimes \mathbb{C}^{r}$ based on the symmetric Fock graded completion G.

- Basic Conjecture: Every graded submodule of such an S is p-essentially normal for every $p>d$, that is

$$
T_{j}^{*} T_{k}-T_{k} T_{j}^{*} \in \mathcal{L}^{p}, \quad \forall p>d
$$

Significant consequences include

- Index formula for the curvature invariant.
- Homotopy invariance of the curvature invariant.
- The Koszul complex of every "universal" d-contraction has finite dimensional cohomology.
- Explicit construction of the K-homology classes of projective varieties and their vector bundles/sheaves.

Positive evidence: special cases

- True if M is generated by monomials (A. JOT 2005). That is, if $M \subseteq G \otimes \mathbb{C}^{r}$ is generated by vector-valued polynomials

$$
f\left(z_{1}, \ldots, z_{d}\right)=z_{1}^{n_{1}} z_{2}^{n_{2}} \cdots z_{d}^{n_{d}} \otimes \zeta
$$

This "monomials" result persists for certain other graded completions (Douglas, JOT 2005).

- True in a variety of other cases with special features that make it possible to decide.
- True for all graded submodules of $G \otimes \mathbb{C}^{r}$ in dimension $d=2$ or $d=3$ (Guo-Wang, 2008). The 4 -variable case remains open!

Positive evidence: special cases

- True if M is generated by monomials (A. JOT 2005). That is, if $M \subseteq G \otimes \mathbb{C}^{r}$ is generated by vector-valued polynomials

$$
f\left(z_{1}, \ldots, z_{d}\right)=z_{1}^{n_{1}} z_{2}^{n_{2}} \cdots z_{d}^{n_{d}} \otimes \zeta
$$

This "monomials" result persists for certain other graded completions (Douglas, JOT 2005).

- True in a variety of other cases with special features that make it possible to decide.
- True for all graded submodules of $G \otimes \mathbb{C} r$ in dimension $d=2$ or $d=3$ (Guo-Wang, 2008). The 4-variable case remains open!

Positive evidence: special cases

- True if M is generated by monomials (A. JOT 2005). That is, if $M \subseteq G \otimes \mathbb{C}^{r}$ is generated by vector-valued polynomials

$$
f\left(z_{1}, \ldots, z_{d}\right)=z_{1}^{n_{1}} z_{2}^{n_{2}} \cdots z_{d}^{n_{d}} \otimes \zeta
$$

This "monomials" result persists for certain other graded completions (Douglas, JOT 2005).

- True in a variety of other cases with special features that make it possible to decide.
- True for all graded submodules of $G \otimes \mathbb{C}^{r}$ in dimension $d=2$
or $d=3$ (Guo-Wang, 2008). The 4 -variable case remains open!

Positive evidence: special cases

- True if M is generated by monomials (A. JOT 2005). That is, if $M \subseteq G \otimes \mathbb{C}^{r}$ is generated by vector-valued polynomials

$$
f\left(z_{1}, \ldots, z_{d}\right)=z_{1}^{n_{1}} z_{2}^{n_{2}} \cdots z_{d}^{n_{d}} \otimes \zeta
$$

This "monomials" result persists for certain other graded completions (Douglas, JOT 2005).

- True in a variety of other cases with special features that make it possible to decide.
- True for all graded submodules of $G \otimes \mathbb{C}^{r}$ in dimension $d=2$ or $d=3$ (Guo-Wang, 2008). The 4-variable case remains open!

Kunyu Guo and Shanghai 2008

The case degree $=1$ is sufficient

Linearization: (A. 2007) In any dimension d, let S be a standard Hilbert module based on an arbitrary p-essentially normal graded completion (for fixed $p>d$).

- If every degree one graded submodule of $S=G \otimes \mathbb{C}^{r}$ is p-essentially normal, then every graded submodule of S is p-ess. normal.

Note that the degree 1 submodules of $G \otimes \mathbb{C}^{r}$ are the invariant subspaces generated by sets of polynomials of the form

$$
f\left(z_{1}, \ldots, z_{d}\right)=z_{1} \zeta_{1}+z_{2} \zeta_{2}+\cdots+z_{d} \zeta_{d}
$$

where $\zeta_{1}, \ldots, \zeta_{d}$ are vectors in \mathbb{C}^{r}.

- Conclusion: It is not the nonlinearity of the generating polynomials that makes trouble. All the trouble is caused by "bad angles" in the space of linear vector-valued polynomials.

The case degree $=1$ is sufficient

Linearization: (A. 2007) In any dimension d, let S be a standard Hilbert module based on an arbitrary p-essentially normal graded completion (for fixed $p>d$).

- If every degree one graded submodule of $S=G \otimes \mathbb{C}^{r}$ is p-essentially normal, then every graded submodule of S is p-ess. normal.

Note that the degree 1 submodules of $G \otimes \mathbb{C}^{r}$ are the invariant subspaces generated by sets of polynomials of the form

$$
f\left(z_{1}, \ldots, z_{d}\right)=z_{1} \zeta_{1}+z_{2} \zeta_{2}+\cdots+z_{d} \zeta_{d}
$$

where $\zeta_{1}, \ldots, \zeta_{d}$ are vectors in \mathbb{C}^{r}.
> - Conclusion: It is not the nonlinearity of the generating polynomials that makes trouble. All the trouble is caused by "bad angles" in the space of linear vector-valued polynomials.

The case degree $=1$ is sufficient

Linearization: (A. 2007) In any dimension d, let S be a standard Hilbert module based on an arbitrary p-essentially normal graded completion (for fixed $p>d$).

- If every degree one graded submodule of $S=G \otimes \mathbb{C}^{r}$ is p-essentially normal, then every graded submodule of S is p-ess. normal.

Note that the degree 1 submodules of $G \otimes \mathbb{C}^{r}$ are the invariant subspaces generated by sets of polynomials of the form

$$
f\left(z_{1}, \ldots, z_{d}\right)=z_{1} \zeta_{1}+z_{2} \zeta_{2}+\cdots+z_{d} \zeta_{d}
$$

where $\zeta_{1}, \ldots, \zeta_{d}$ are vectors in \mathbb{C}^{r}.

- Conclusion: It is not the nonlinearity of the generating polynomials that makes trouble. All the trouble is caused by "bad angles" in the space of linear vector-valued polynomials.

Th - Th - Th - That's all folks!

