Standard Hilbert modules and the K-homology of algebraic varieties

William Arveson arveson@math.berkeley.edu

UC Berkeley

Summer 2009

Preview

We give a birds-eye survey of the problem of constructing explicit *examples* in multivariable operator theory, focusing on unsolved problems and conjectures. For details, see

- TAMS (2007) v. 359, pp. 6027–6055.
 - Review of some background results of Hilbert on what might be called *multivariable linear algebra*.
 - ► The issue: How should one construct the Hilbert space counterparts of projective algebraic varieties and related objects (like vector bundles or sheaves over varieties)? More precisely, how does one construct the K-homology classes of algebraic varieties?

Preview

We give a birds-eye survey of the problem of constructing explicit *examples* in multivariable operator theory, focusing on unsolved problems and conjectures. For details, see

- TAMS (2007) v. 359, pp. 6027-6055.
 - Review of some background results of Hilbert on what might be called multivariable linear algebra.
 - ► The issue: How should one construct the Hilbert space counterparts of projective algebraic varieties and related objects (like vector bundles or sheaves over varieties)? More precisely, how does one construct the K-homology classes of algebraic varieties?

Preview

We give a birds-eye survey of the problem of constructing explicit *examples* in multivariable operator theory, focusing on unsolved problems and conjectures. For details, see

- TAMS (2007) v. 359, pp. 6027–6055.
 - Review of some background results of Hilbert on what might be called multivariable linear algebra.
 - ► The issue: How should one construct the Hilbert space counterparts of projective algebraic varieties and related objects (like vector bundles or sheaves over varieties)? More precisely, how does one construct the K-homology classes of algebraic varieties?

Multivariable linear algebra

V: complex vector space (typically infinite-dimensional), T_1, \ldots, T_d commuting linear operators on V.

Regard V as a module over $\mathbb{C}[z_1,\ldots,z_d]$:

$$f \cdot \xi = f(T_1, \dots, T_d)\xi, \qquad f \in C[z_1, \dots, z_k], \quad \xi \in V.$$

Finitely generated: there exist $\xi_1, \ldots, \xi_r \in V$ such that

$$V = \{f_1 \cdot \xi_1 + \dots + f_r \cdot \xi_r : f_k \in \mathbb{C}[z_1, \dots, z_d]\}.$$

If we identify r-tuples of polynomials in $\mathbb{C}[z_1,\ldots,z_d]$ in the natural way with elements of $C[z_1,\ldots,z_d]\otimes\mathbb{C}^r$, then we can define a surjective homomorphism of modules

$$\mathbb{C}[z_1,\ldots,z_d]\otimes\mathbb{C}^r\to V\to 0$$

by sending an r-tuple of polynomials (f_1, \ldots, f_r) to the vector

$$f_1 \cdot \xi_1 + \cdots + f_r \cdot \xi_r$$
.

Multivariable linear algebra

V: complex vector space (typically infinite-dimensional), T_1, \ldots, T_d commuting linear operators on V.

Regard V as a module over $\mathbb{C}[z_1,\ldots,z_d]$:

$$f \cdot \xi = f(T_1, \dots, T_d)\xi, \qquad f \in C[z_1, \dots, z_k], \quad \xi \in V.$$

Finitely generated: there exist $\xi_1, \dots, \xi_r \in V$ such that

$$V = \{f_1 \cdot \xi_1 + \cdots + f_r \cdot \xi_r : f_k \in \mathbb{C}[z_1, \dots, z_d]\}.$$

If we identify r-tuples of polynomials in $\mathbb{C}[z_1,\ldots,z_d]$ in the natural way with elements of $C[z_1,\ldots,z_d]\otimes\mathbb{C}^r$, then we can define a surjective homomorphism of modules

$$\mathbb{C}[z_1,\ldots,z_d]\otimes\mathbb{C}^r\to V\to 0$$

by sending an r-tuple of polynomials (f_1, \ldots, f_r) to the vector

$$f_1 \cdot \xi_1 + \cdots + f_r \cdot \xi_r$$
.

Multivariable linear algebra

V: complex vector space (typically infinite-dimensional), T_1, \ldots, T_d commuting linear operators on V.

Regard V as a module over $\mathbb{C}[z_1,\ldots,z_d]$:

$$f \cdot \xi = f(T_1, \dots, T_d)\xi, \qquad f \in C[z_1, \dots, z_k], \quad \xi \in V.$$

Finitely generated: there exist $\xi_1, \dots, \xi_r \in V$ such that

$$V = \{f_1 \cdot \xi_1 + \cdots + f_r \cdot \xi_r : f_k \in \mathbb{C}[z_1, \dots, z_d]\}.$$

If we identify r-tuples of polynomials in $\mathbb{C}[z_1,\ldots,z_d]$ in the natural way with elements of $C[z_1,\ldots,z_d]\otimes\mathbb{C}^r$, then we can define a surjective homomorphism of modules

$$\mathbb{C}[z_1,\ldots,z_d]\otimes\mathbb{C}^r\to V\to 0$$

by sending an r-tuple of polynomials (f_1, \ldots, f_r) to the vector

$$f_1 \cdot \xi_1 + \cdots + f_r \cdot \xi_r$$
.

Typically, this map has nontrivial kernel K

$$0 \to K \to \mathbb{C}[z_1, \dots, z_d] \otimes \mathbb{C}^r \to V \to 0.$$

However, Hilbert's basis theorem implies that K is finitely generated too. So we can choose $\eta_1, \ldots, \eta_s \in K$ such that

$$K = \{f_1 \cdot \eta_1 + \dots + f_s \cdot \eta_s : f_k \in \mathbb{C}[z_1, \dots, z_d]\},\$$

and repeat the procedure to get a longer exact sequence

$$\mathbb{C}[z_1,\ldots,z_k]\otimes\mathbb{C}^s\to\mathbb{C}[z_1,\ldots,z_k]\otimes\mathbb{C}^r\to V\to 0.$$

If the map on the left has nonzero kernel, we continue (perhaps forever) to obtain a *free resolution* of V – an exact sequence of finitely generated free modules (i.e., modules of the form $\mathbb{C}[z_1,\ldots,z_d]\otimes\mathbb{C}^k$) that terminates in the original module V.

Typically, this map has nontrivial kernel K

$$0 \to K \to \mathbb{C}[z_1, \ldots, z_d] \otimes \mathbb{C}^r \to V \to 0.$$

However, Hilbert's basis theorem implies that K is finitely generated too. So we can choose $\eta_1, \ldots, \eta_s \in K$ such that

$$K = \{f_1 \cdot \eta_1 + \dots + f_s \cdot \eta_s : f_k \in \mathbb{C}[z_1, \dots, z_d]\},\$$

and repeat the procedure to get a longer exact sequence

$$\mathbb{C}[z_1,\ldots,z_k]\otimes\mathbb{C}^s o\mathbb{C}[z_1,\ldots,z_k]\otimes\mathbb{C}^r o V o 0.$$

If the map on the left has nonzero kernel, we continue (perhaps forever) to obtain a *free resolution* of V – an exact sequence of finitely generated free modules (i.e., modules of the form $\mathbb{C}[z_1,\ldots,z_d]\otimes\mathbb{C}^k$) that terminates in the original module V.

Theorem (Math. Ann. (1893))

Every finitely generated $\mathbb{C}[z_1,\ldots,z_d]$ -module V has a finite free resolution of length at most d in the sense that there are integers $r_1,\ldots,r_n\geq 0$, $n\leq d$, such that

$$0 \to \mathbb{C}[z_1, \dots, z_d] \otimes \mathbb{C}^{r_n} \to \dots \to \mathbb{C}[z_1, \dots, z_d] \otimes \mathbb{C}^{r_1} \to V \to 0$$

- ▶ Every free resolution can be reduced to a *minimal* one.
- ▶ All minimal free resolutions are isomorphic.
- Application: One can calculate the *Euler characteristic* of *V* by using *any* free resolution of *V*:

$$\chi(V) = r_1 - r_2 + r_3 - r_4 \pm \cdots + (-1)^n r_n.$$

Theorem (Math. Ann. (1893))

Every finitely generated $\mathbb{C}[z_1,\ldots,z_d]$ -module V has a finite free resolution of length at most d in the sense that there are integers $r_1,\ldots,r_n\geq 0$, $n\leq d$, such that

$$0 \to \mathbb{C}[z_1, \dots, z_d] \otimes \mathbb{C}^{r_n} \to \dots \to \mathbb{C}[z_1, \dots, z_d] \otimes \mathbb{C}^{r_1} \to V \to 0$$

- ► Every free resolution can be reduced to a *minimal* one.
- ▶ All minimal free resolutions are isomorphic.
- Application: One can calculate the Euler characteristic of V by using any free resolution of V:

$$\chi(V) = r_1 - r_2 + r_3 - r_4 \pm \cdots + (-1)^n r_n.$$

Theorem (Math. Ann. (1893))

Every finitely generated $\mathbb{C}[z_1,\ldots,z_d]$ -module V has a finite free resolution of length at most d in the sense that there are integers $r_1,\ldots,r_n\geq 0$, $n\leq d$, such that

$$0 \to \mathbb{C}[z_1, \ldots, z_d] \otimes \mathbb{C}^{r_n} \to \cdots \to \mathbb{C}[z_1, \ldots, z_d] \otimes \mathbb{C}^{r_1} \to V \to 0$$

- ► Every free resolution can be reduced to a *minimal* one.
- ▶ All minimal free resolutions are isomorphic.
- Application: One can calculate the Euler characteristic of V by using any free resolution of V:

$$\chi(V) = r_1 - r_2 + r_3 - r_4 \pm \cdots + (-1)^n r_n.$$

Theorem (Math. Ann. (1893))

Every finitely generated $\mathbb{C}[z_1,\ldots,z_d]$ -module V has a finite free resolution of length at most d in the sense that there are integers $r_1,\ldots,r_n\geq 0$, $n\leq d$, such that

$$0 \to \mathbb{C}[z_1, \ldots, z_d] \otimes \mathbb{C}^{r_n} \to \cdots \to \mathbb{C}[z_1, \ldots, z_d] \otimes \mathbb{C}^{r_1} \to V \to 0$$

- ▶ Every free resolution can be reduced to a *minimal* one.
- ▶ All minimal free resolutions are isomorphic.
- Application: One can calculate the Euler characteristic of V by using any free resolution of V:

$$\chi(V) = r_1 - r_2 + r_3 - r_4 \pm \cdots + (-1)^n r_n.$$

David Hilbert ca 1900

The polynomials form a graded algebra,

$$\mathbb{C}[z_1,\ldots,z_d] = \mathcal{P}_0 \dotplus \mathcal{P}_1 \dotplus \mathcal{P}_2 \dotplus \cdots$$

where $\mathcal{P}_n =$ homogeneous polynomials of degree n, and one has $\mathcal{P}_m \cdot \mathcal{P}_n \subseteq \mathcal{P}_{m+n}$. To lighten notation, we write \mathcal{A}_d instead of $\mathbb{C}[z_1, \ldots, z_d]$, or simply \mathcal{A} when the dimension d is understood.

An A-module V is said to be graded when

$$V = V_0 \dotplus V_1 \dotplus V_2 \dotplus \cdots$$

where $z_j V_k \subseteq V_{k+1}$ for all $1 \le k \le d$, k = 0, 1, 2, ...Example: The free module of rank r, namely $\mathcal{A} \otimes \mathbb{C}^r$, "is" the space of vector-valued polynomials (taking values in \mathbb{C}^r)

$$A\otimes \mathbb{C}^r = F_0\dotplus F_1\dotplus F_2\dotplus \cdots$$

The polynomials form a graded algebra,

$$\mathbb{C}[z_1,\ldots,z_d] = \mathcal{P}_0 \dotplus \mathcal{P}_1 \dotplus \mathcal{P}_2 \dotplus \cdots$$

where $\mathcal{P}_n =$ homogeneous polynomials of degree n, and one has $\mathcal{P}_m \cdot \mathcal{P}_n \subseteq \mathcal{P}_{m+n}$. To lighten notation, we write \mathcal{A}_d instead of $\mathbb{C}[z_1,\ldots,z_d]$, or simply \mathcal{A} when the dimension d is understood.

An A-module V is said to be *graded* when

$$V = V_0 \dotplus V_1 \dotplus V_2 \dotplus \cdots$$

where $z_j V_k \subseteq V_{k+1}$ for all $1 \le k \le d$, k = 0, 1, 2, ...Example: The free module of rank r, namely $\mathcal{A} \otimes \mathbb{C}^r$, "is" the space of vector-valued polynomials (taking values in \mathbb{C}^r)

$$A\otimes \mathbb{C}^r = F_0\dotplus F_1\dotplus F_2\dotplus \cdots$$

The polynomials form a graded algebra,

$$\mathbb{C}[z_1,\ldots,z_d] = \mathcal{P}_0 \dotplus \mathcal{P}_1 \dotplus \mathcal{P}_2 \dotplus \cdots$$

where $\mathcal{P}_n =$ homogeneous polynomials of degree n, and one has $\mathcal{P}_m \cdot \mathcal{P}_n \subseteq \mathcal{P}_{m+n}$. To lighten notation, we write \mathcal{A}_d instead of $\mathbb{C}[z_1,\ldots,z_d]$, or simply \mathcal{A} when the dimension d is understood.

An A-module V is said to be *graded* when

$$V = V_0 \dotplus V_1 \dotplus V_2 \dotplus \cdots$$

where $z_j V_k \subseteq V_{k+1}$ for all $1 \le k \le d$, $k = 0, 1, 2, \ldots$

Example: The free module of rank r, namely $A \otimes \mathbb{C}^r$, "is" the space of vector-valued polynomials (taking values in \mathbb{C}^r)

$$A\otimes \mathbb{C}^r = F_0\dotplus F_1\dotplus F_2\dotplus \cdots$$

The polynomials form a graded algebra,

$$\mathbb{C}[z_1,\ldots,z_d] = \mathcal{P}_0 \dotplus \mathcal{P}_1 \dotplus \mathcal{P}_2 \dotplus \cdots$$

where $\mathcal{P}_n =$ homogeneous polynomials of degree n, and one has $\mathcal{P}_m \cdot \mathcal{P}_n \subseteq \mathcal{P}_{m+n}$. To lighten notation, we write \mathcal{A}_d instead of $\mathbb{C}[z_1,\ldots,z_d]$, or simply \mathcal{A} when the dimension d is understood.

An A-module V is said to be *graded* when

$$V = V_0 \dotplus V_1 \dotplus V_2 \dotplus \cdots$$

where $z_j V_k \subseteq V_{k+1}$ for all $1 \le k \le d$, k = 0, 1, 2, ...Example: The free module of rank r, namely $A \otimes \mathbb{C}^r$, "is" the space of vector-valued polynomials (taking values in \mathbb{C}^r)

$$A\otimes \mathbb{C}^r = F_0\dotplus F_1\dotplus F_2\dotplus \cdots$$

There is a fairly obvious "graded" variant of the syzygy theorem.

In particular, the most general finitely generated graded module V over A_d can be constructed by a two-step procedure:

• Step 1: Choose a graded submodule $M = M_0 \dotplus M_1 \dotplus M_2 \dotplus \cdots$ of the graded free module of rank r

$$F = A_d \otimes \mathbb{C}^r = F_0 \dotplus F_1 \dotplus F_2 \dotplus \cdots$$

• Step 2: Form the graded quotient module

$$V = F/M = (F_0/M_0) \dotplus (F_1/M_1) \dotplus \cdots$$

There is a fairly obvious "graded" variant of the syzygy theorem.

In particular, the most general finitely generated graded module V over \mathcal{A}_d can be constructed by a two-step procedure:

• Step 1: Choose a graded submodule $M = M_0 \dotplus M_1 \dotplus M_2 \dotplus \cdots$ of the graded free module of rank r

$$F = A_d \otimes \mathbb{C}^r = F_0 \dotplus F_1 \dotplus F_2 \dotplus \cdots$$

Step 2: Form the graded quotient module

$$V = F/M = (F_0/M_0) \dotplus (F_1/M_1) \dotplus \cdots$$

There is a fairly obvious "graded" variant of the syzygy theorem.

In particular, the most general finitely generated graded module V over A_d can be constructed by a two-step procedure:

• Step 1: Choose a graded submodule $M = M_0 \dotplus M_1 \dotplus M_2 \dotplus \cdots$ of the graded free module of rank r

$$F = A_d \otimes \mathbb{C}^r = F_0 \dotplus F_1 \dotplus F_2 \dotplus \cdots$$

Step 2: Form the graded quotient module

$$V = F/M = (F_0/M_0) \dotplus (F_1/M_1) \dotplus \cdots$$

There is a fairly obvious "graded" variant of the syzygy theorem.

In particular, the most general finitely generated graded module V over A_d can be constructed by a two-step procedure:

• Step 1: Choose a graded submodule $M=M_0\dotplus M_1\dotplus M_2\dotplus \cdots$ of the graded free module of rank r

$$F = A_d \otimes \mathbb{C}^r = F_0 \dotplus F_1 \dotplus F_2 \dotplus \cdots$$

• Step 2: Form the graded quotient module

$$V = F/M = (F_0/M_0) \dotplus (F_1/M_1) \dotplus \cdots.$$

There is a fairly obvious "graded" variant of the syzygy theorem.

In particular, the most general finitely generated graded module V over A_d can be constructed by a two-step procedure:

• Step 1: Choose a graded submodule $M=M_0\dotplus M_1\dotplus M_2\dotplus \cdots$ of the graded free module of rank r

$$F = A_d \otimes \mathbb{C}^r = F_0 \dotplus F_1 \dotplus F_2 \dotplus \cdots$$

Step 2: Form the graded quotient module

$$V = F/M = (F_0/M_0) \dotplus (F_1/M_1) \dotplus \cdots.$$

Can we do this in Hilbert space?

In more concrete terms, this algebraic construction gives rise to d-tuples of commuting operators T_1, \ldots, T_d that satisfy systems of equations of the form

$$f_k(T_1,\ldots,T_d)=0, \qquad k=1,\ldots,s,$$

where f_1, \ldots, f_s is a finite set of homogeneous polynomials (perhaps of different degrees).

The set X of common zeros of $\{f_1, \ldots, f_k\}$ is a projective algebraic variety.

We want to construct Hilbert space counterparts of such *d*-tuples so as to obtain *K*-homology classes of *X* in concrete terms (as well as the accompanying index theorems).

Can we do this in Hilbert space?

In more concrete terms, this algebraic construction gives rise to d-tuples of commuting operators T_1, \ldots, T_d that satisfy systems of equations of the form

$$f_k(T_1,...,T_d) = 0, \qquad k = 1,...,s,$$

where f_1, \ldots, f_s is a finite set of homogeneous polynomials (perhaps of different degrees).

The set X of common zeros of $\{f_1, \ldots, f_k\}$ is a projective algebraic variety.

We want to construct Hilbert space counterparts of such *d*-tuples so as to obtain *K*-homology classes of *X* in concrete terms (as well as the accompanying index theorems).

Can we do this in Hilbert space?

In more concrete terms, this algebraic construction gives rise to d-tuples of commuting operators T_1, \ldots, T_d that satisfy systems of equations of the form

$$f_k(T_1,\ldots,T_d)=0, \qquad k=1,\ldots,s,$$

where f_1, \ldots, f_s is a finite set of homogeneous polynomials (perhaps of different degrees).

The set X of common zeros of $\{f_1, \ldots, f_k\}$ is a projective algebraic variety.

We want to construct Hilbert space counterparts of such d-tuples so as to obtain K-homology classes of X in concrete terms (as well as the accompanying index theorems).

What doesn't work, and why not?

As a simple example, consider the problem of constructing commuting triples of operators $X, Y, Z \in \mathcal{B}(H)$ that satisfy

$$X^n + Y^n = Z^n$$

for some $n = 2, 3, \ldots$

E.g., one can start with a pair of commuting operators X, Y and look for an n th root Z of $X^n + Y^n$. Unfortunately, many operators don't have n th roots (Example: the unilateral shift).

So ad hoc methods fail. Instead, we need to deal directly with quotients of Hilbert modules such as H/M where

- H is a "free" Hilbert module in three variables X, Y, Z, and
- M = the submodule generated by $X^n + Y^n Z^n$.

What doesn't work, and why not?

As a simple example, consider the problem of constructing commuting triples of operators X, Y, $Z \in \mathcal{B}(H)$ that satisfy

$$X^n + Y^n = Z^n$$

for some $n = 2, 3, \ldots$

E.g., one can start with a pair of commuting operators X, Y and look for an n th root Z of $X^n + Y^n$. Unfortunately, many operators don't have n th roots (Example: the unilateral shift).

So ad hoc methods fail. Instead, we need to deal directly with quotients of Hilbert modules such as H/M where

- H is a "free" Hilbert module in three variables X, Y, Z, and
- M = the submodule generated by $X^n + Y^n Z^n$.

What doesn't work, and why not?

As a simple example, consider the problem of constructing commuting triples of operators X, Y, $Z \in \mathcal{B}(H)$ that satisfy

$$X^n + Y^n = Z^n$$

for some $n = 2, 3, \ldots$

E.g., one can start with a pair of commuting operators X, Y and look for an n th root Z of $X^n + Y^n$. Unfortunately, many operators don't have n th roots (Example: the unilateral shift).

So ad hoc methods fail. Instead, we need to deal directly with quotients of Hilbert modules such as H/M where

- H is a "free" Hilbert module in three variables X, Y, Z, and
- M = the submodule generated by $X^n + Y^n Z^n$.

• Hilbert module over A_d : A Hilbert space H endowed with commuting operators $T_1, \ldots, T_d \in \mathcal{B}(H)$ for which

$$f \cdot \xi = f(T_1, \dots, T_d)\xi, \qquad f \in \mathcal{A}_d, \quad \xi \in H.$$

- Grading of H: An \bot decomposition $H = H_0 \oplus H_1 \oplus H_2 \oplus \cdots$ for which $T_iH_k \subseteq H_{k+1}$ for all $1 \le j \le d$, $k = 0, 1, 2, \ldots$
- Obvious meaning of finitely generated Hilbert module.
- The C^* -algebra of a Hilbert module H over \mathcal{A}_d : The unital C^* -algebra generated by the "coordinate" operators $\mathcal{T}_1, \ldots, \mathcal{T}_d$

$$C^*(H) = C^*\{1, T_1, \dots, T_d\}.$$

• Hilbert module over A_d : A Hilbert space H endowed with commuting operators $T_1, \ldots, T_d \in \mathcal{B}(H)$ for which

$$f \cdot \xi = f(T_1, \dots, T_d)\xi, \qquad f \in \mathcal{A}_d, \quad \xi \in H.$$

- Grading of H: An \bot decomposition $H = H_0 \oplus H_1 \oplus H_2 \oplus \cdots$ for which $T_jH_k \subseteq H_{k+1}$ for all $1 \le j \le d$, $k = 0, 1, 2, \ldots$
- Obvious meaning of finitely generated Hilbert module.
- The C^* -algebra of a Hilbert module H over \mathcal{A}_d : The unital C^* -algebra generated by the "coordinate" operators $\mathcal{T}_1, \ldots, \mathcal{T}_d$

$$C^*(H) = C^*\{1, T_1, \dots, T_d\}.$$

• Hilbert module over A_d : A Hilbert space H endowed with commuting operators $T_1, \ldots, T_d \in \mathcal{B}(H)$ for which

$$f \cdot \xi = f(T_1, \dots, T_d)\xi, \qquad f \in \mathcal{A}_d, \quad \xi \in H.$$

- Grading of H: An \bot decomposition $H = H_0 \oplus H_1 \oplus H_2 \oplus \cdots$ for which $T_jH_k \subseteq H_{k+1}$ for all $1 \le j \le d$, $k = 0, 1, 2, \ldots$
- Obvious meaning of finitely generated Hilbert module.
- The C^* -algebra of a Hilbert module H over A_d : The unital C^* -algebra generated by the "coordinate" operators T_1, \ldots, T_d

$$C^*(H) = C^*\{1, T_1, \dots, T_d\}.$$

• Hilbert module over A_d : A Hilbert space H endowed with commuting operators $T_1, \ldots, T_d \in \mathcal{B}(H)$ for which

$$f \cdot \xi = f(T_1, \dots, T_d)\xi, \qquad f \in \mathcal{A}_d, \quad \xi \in H.$$

- Grading of H: An \bot decomposition $H = H_0 \oplus H_1 \oplus H_2 \oplus \cdots$ for which $T_iH_k \subseteq H_{k+1}$ for all $1 \le j \le d$, $k = 0, 1, 2, \ldots$
- Obvious meaning of finitely generated Hilbert module.
- The C^* -algebra of a Hilbert module H over \mathcal{A}_d : The unital C^* -algebra generated by the "coordinate" operators T_1, \ldots, T_d

$$C^*(H) = C^*\{1, T_1, \dots, T_d\}.$$

• Hilbert module over A_d : A Hilbert space H endowed with commuting operators $T_1, \ldots, T_d \in \mathcal{B}(H)$ for which

$$f \cdot \xi = f(T_1, \dots, T_d)\xi, \qquad f \in \mathcal{A}_d, \quad \xi \in H.$$

- Grading of H: An \bot decomposition $H = H_0 \oplus H_1 \oplus H_2 \oplus \cdots$ for which $T_jH_k \subseteq H_{k+1}$ for all $1 \le j \le d$, $k = 0, 1, 2, \ldots$
- Obvious meaning of finitely generated Hilbert module.
- The C^* -algebra of a Hilbert module H over \mathcal{A}_d : The unital C^* -algebra generated by the "coordinate" operators T_1, \ldots, T_d

$$C^*(H) = C^*\{1, T_1, \dots, T_d\}.$$

• Hilbert module over A_d : A Hilbert space H endowed with commuting operators $T_1, \ldots, T_d \in \mathcal{B}(H)$ for which

$$f \cdot \xi = f(T_1, \dots, T_d)\xi, \qquad f \in \mathcal{A}_d, \quad \xi \in H.$$

- Grading of H: An \bot decomposition $H = H_0 \oplus H_1 \oplus H_2 \oplus \cdots$ for which $T_jH_k \subseteq H_{k+1}$ for all $1 \le j \le d$, $k = 0, 1, 2, \ldots$
- Obvious meaning of finitely generated Hilbert module.
- The C^* -algebra of a Hilbert module H over \mathcal{A}_d : The unital C^* -algebra generated by the "coordinate" operators T_1, \ldots, T_d

$$C^*(H) = C^*\{1, T_1, \dots, T_d\}.$$

What are free Hilbert modules?

To get started, what should be the Hilbert space counterparts of the free module of rank 1

$$V = \mathbb{C}[z_1, \ldots, z_d]$$
?

These will be called *graded completions* (of $A = \mathbb{C}[z_1, \dots, z_d]$), and they are defined as follows....

• A graded inner product is an inner product $\langle \cdot, \cdot \rangle$ on

$$A_d = \mathcal{P}_0 \dotplus \mathcal{P}_1 \dotplus \mathcal{P}_2 \dotplus \cdots$$

with the following two properties:

- (i): $\mathcal{P}_m \perp \mathcal{P}_n$ if $m \neq n$.
- (ii): The multiplication operators Z_1, \ldots, Z_d by the generators z_1, \ldots, z_d are bounded.

What are free Hilbert modules?

To get started, what should be the Hilbert space counterparts of the free module of rank 1

$$V = \mathbb{C}[z_1, \ldots, z_d]$$
?

These will be called *graded completions* (of $A = \mathbb{C}[z_1, \dots, z_d]$), and they are defined as follows....

ullet A graded inner product is an inner product $\langle \cdot, \cdot \rangle$ on

$$\mathcal{A}_d = \mathcal{P}_0 \dotplus \mathcal{P}_1 \dotplus \mathcal{P}_2 \dotplus \cdots$$

with the following two properties:

- (i): $\mathcal{P}_m \perp \mathcal{P}_n$ if $m \neq n$.
- (ii): The multiplication operators Z_1, \ldots, Z_d by the generators z_1, \ldots, z_d are bounded.

Graded completions (of A_d)

The completion G of \mathcal{A}_d in $\langle \cdot, \cdot \rangle$ is obviously a graded Hilbert module (with a single generator - the constant polynomial 1).

(iii): If, in addition to (i) and (ii), the subspace

$$Z_1G + Z_2G + \cdots + Z_dG$$

is closed, then G is called a graded completion of A_d .

• Something to keep in mind: There is only one free module of rank 1 in d-dimensional linear algebra. But in the category of Hilbert modules, there are uncountably many inequivalent graded completions of \mathcal{A}_d , with vastly different properties.

(Examples momentarily)

Graded completions (of A_d)

The completion G of \mathcal{A}_d in $\langle \cdot, \cdot \rangle$ is obviously a graded Hilbert module (with a single generator - the constant polynomial 1).

(iii): If, in addition to (i) and (ii), the subspace

$$Z_1G + Z_2G + \cdots + Z_dG$$

is closed, then G is called a *graded completion* of A_d .

• Something to keep in mind: There is only one free module of rank 1 in d-dimensional linear algebra. But in the category of Hilbert modules, there are uncountably many inequivalent graded completions of \mathcal{A}_d , with vastly different properties.

(Examples momentarily)

Graded completions (of A_d)

The completion G of \mathcal{A}_d in $\langle \cdot, \cdot \rangle$ is obviously a graded Hilbert module (with a single generator - the constant polynomial 1).

(iii): If, in addition to (i) and (ii), the subspace

$$Z_1G + Z_2G + \cdots + Z_dG$$

is closed, then G is called a *graded completion* of A_d .

• Something to keep in mind: There is only one free module of rank 1 in d-dimensional linear algebra. But in the category of Hilbert modules, there are uncountably many inequivalent graded completions of \mathcal{A}_d , with vastly different properties.

(Examples momentarily)

Basic properties of all graded completions

Number operator N: Unbounded positive operator, defined by

$$Nf = n \cdot f$$
, $f \in \mathcal{P}_n$, $n = 0, 1, 2, \dots$

It satisfies

$$\operatorname{trace}((\mathbf{1}+N)^{-p})<\infty, \quad \forall p>d.$$

Up to unitary equivalence, all graded completions have the "same" number operator.

They also share an irreducibility property:

Proposition: Every graded completion G is irreducible, and in fact $\mathcal{K} \subseteq C^*(G)$.

Basic properties of all graded completions

Number operator *N*: Unbounded positive operator, defined by

$$Nf = n \cdot f$$
, $f \in \mathcal{P}_n$, $n = 0, 1, 2, \dots$

It satisfies

$$\operatorname{trace}((\mathbf{1}+N)^{-p})<\infty, \quad \forall p>d.$$

Up to unitary equivalence, all graded completions have the "same" number operator.

They also share an irreducibility property:

Proposition: Every graded completion G is irreducible, and in fact $\mathcal{K} \subseteq C^*(G)$.

Basic properties of all graded completions

Number operator *N*: Unbounded positive operator, defined by

$$Nf = n \cdot f$$
, $f \in \mathcal{P}_n$, $n = 0, 1, 2, \dots$

It satisfies

$$\operatorname{trace}((\mathbf{1}+N)^{-p})<\infty, \quad \forall p>d.$$

Up to unitary equivalence, all graded completions have the "same" number operator.

They also share an irreducibility property:

Proposition: Every graded completion G is irreducible, and in fact $\mathcal{K} \subseteq C^*(G)$.

Standard Hilbert modules

A standard Hilbert module is finite-multiplicity version of a graded completion G - a Hilbert module of the form $S = G \otimes \mathbb{C}^r$

$$f \cdot (g \otimes \zeta) = (f \cdot g) \otimes \zeta, \qquad g \in G, \quad \zeta \in \mathbb{C}^r,$$

where r = 1, 2,

We focus on graded quotients of standard Hilbert modules: i.e.,

$$H = S/M$$

where S is standard and $M \subseteq S$ is a *graded* submodule.

• Key issue: Is H = S/M essentially normal? Equivalently, do we have an exact sequence of C^* -algebras

$$0 \longrightarrow \mathcal{K} \longrightarrow C^*(S/M) + \mathcal{K} \longrightarrow C(X) \longrightarrow 0$$

and a K-homology class of its essential Gelfand spectrum X?

Standard Hilbert modules

A standard Hilbert module is finite-multiplicity version of a graded completion G - a Hilbert module of the form $S = G \otimes \mathbb{C}^r$

$$f \cdot (g \otimes \zeta) = (f \cdot g) \otimes \zeta, \qquad g \in G, \quad \zeta \in \mathbb{C}^r,$$

where r = 1, 2,

We focus on graded quotients of standard Hilbert modules: i.e.,

$$H = S/M$$

where *S* is standard and $M \subseteq S$ is a *graded* submodule.

• Key issue: Is H = S/M essentially normal? Equivalently, do we have an exact sequence of C^* -algebras

$$0 \longrightarrow \mathcal{K} \longrightarrow C^*(S/M) + \mathcal{K} \longrightarrow C(X) \longrightarrow 0$$

and a K-homology class of its essential Gelfand spectrum X?

Standard Hilbert modules

A standard Hilbert module is finite-multiplicity version of a graded completion G - a Hilbert module of the form $S = G \otimes \mathbb{C}^r$

$$f \cdot (g \otimes \zeta) = (f \cdot g) \otimes \zeta, \qquad g \in G, \quad \zeta \in \mathbb{C}^r,$$

where r = 1, 2,

We focus on graded quotients of standard Hilbert modules: i.e.,

$$H = S/M$$

where *S* is standard and $M \subseteq S$ is a *graded* submodule.

• Key issue: Is H = S/M essentially normal? Equivalently, do we have an exact sequence of C^* -algebras

$$0 \longrightarrow \mathcal{K} \longrightarrow C^*(S/M) + \mathcal{K} \longrightarrow C(X) \longrightarrow 0$$

and a K-homology class of its essential Gelfand spectrum X?

- Bosonic Fock space: Realize A_d as the symmetric tensor algebra over \mathbb{C}^d , complete in the Bosonic inner product.
- The Hardy module of the 2d-1-sphere $\{z\in\mathbb{C}^d:|z|=1\}$.
- The Bergman module of the unit ball of \mathbb{C}^d .

All of these are p-essentially normal for every p > d:

$$Z_i^* Z_k - Z_k Z_i^* \in \mathcal{L}^p, \qquad \forall p > d.$$

Some other essentially normal graded completions:

- Bosonic Fock space: Realize A_d as the symmetric tensor algebra over \mathbb{C}^d , complete in the Bosonic inner product.
- The Hardy module of the 2d-1-sphere $\{z\in\mathbb{C}^d:|z|=1\}$.
- The Bergman module of the unit ball of \mathbb{C}^d .

All of these are p-essentially normal for every p > d:

$$Z_i^* Z_k - Z_k Z_i^* \in \mathcal{L}^p, \qquad \forall p > d.$$

Some other essentially normal graded completions:

- Bosonic Fock space: Realize A_d as the symmetric tensor algebra over \mathbb{C}^d , complete in the Bosonic inner product.
- The Hardy module of the 2d-1-sphere $\{z\in\mathbb{C}^d: |z|=1\}$.
- The Bergman module of the unit ball of \mathbb{C}^d .

All of these are p-essentially normal for every p > d:

$$\label{eq:continuity} \textbf{\textit{Z}}_{j}^{*}\textbf{\textit{Z}}_{k}-\textbf{\textit{Z}}_{k}\textbf{\textit{Z}}_{j}^{*}\in\mathcal{L}^{p}, \qquad \forall p>d.$$

Some other essentially normal graded completions:

- Bosonic Fock space: Realize A_d as the symmetric tensor algebra over \mathbb{C}^d , complete in the Bosonic inner product.
- The Hardy module of the 2d-1-sphere $\{z\in\mathbb{C}^d:|z|=1\}$.
- The Bergman module of the unit ball of \mathbb{C}^d .

All of these are p-essentially normal for every p > d:

$$\label{eq:continuity} \textbf{\textit{Z}}_{j}^{*}\textbf{\textit{Z}}_{k}-\textbf{\textit{Z}}_{k}\textbf{\textit{Z}}_{j}^{*}\in\mathcal{L}^{p}, \qquad \forall p>d.$$

Some other essentially normal graded completions:

Vladimir Aleksandrovich Fock 1898-1974

Hardy (ca 1920) and Bergman (ca 1955)

And let's not forget Michael....

Bad ones

• Douglas and Howe observed that, among other things, the Bergman modules of polydisks are *not* essentially normal.

For the Bergman module H of the bi-disk $D \times D$, $C^*(H) = T \otimes T$, where $T = \text{Toeplitz } C^*\text{-algebra}$

$$\mathcal{K}(H) = \mathcal{K} \otimes \mathcal{K} \subseteq \mathcal{K} \otimes \mathcal{T} \subseteq \mathcal{K} \otimes \mathcal{T} + \mathcal{T} \oplus \mathcal{K} \subseteq \mathbf{C}^*(H)$$

The first ideal is all compact operators on H. A quotient of any two of these but the last two is noncommutative; hence $C^*(H)/\mathcal{K}$ is not commutative.

Bad ones

• Douglas and Howe observed that, among other things, the Bergman modules of polydisks are *not* essentially normal.

For the Bergman module H of the bi-disk $D \times D$, $C^*(H) = \mathcal{T} \otimes \mathcal{T}$, where $\mathcal{T} = \text{Toeplitz } C^*\text{-algebra}$

$$\mathcal{K}(H) = \mathcal{K} \otimes \mathcal{K} \subseteq \mathcal{K} \otimes \mathcal{T} \subseteq \mathcal{K} \otimes \mathcal{T} + \mathcal{T} \oplus \mathcal{K} \subseteq \textbf{C}^*(H)$$

The first ideal is all compact operators on H. A quotient of any two of these but the last two is noncommutative; hence $C^*(H)/\mathcal{K}$ is not commutative.

Worse ones

• It gets worse: (Upmeier) The modules of many symmetric domains have type *I C**-algebras with *arbitrarily long* Kaplansky composition series.

On the other hand, they are still type *I*. More importantly, their index theory is nice.

Harald ca. 1977

And still worse

Fix $a, b \in (0, 1)$. Curto and Muhly (1985) showed that the C^* -algebra of the Bergman module of the "iron cross"

$$\Omega_{a,b} = \{(z,w) : |z| < a, |w| < 1\} \cup \{(z,w) : |z| < 1, |w| < b\}$$

is type $I \iff \log a / \log b$ is rational.

Let S be a standard Hilbert module. We are interested in graded quotients of S, especially essentially normal ones.

Theorem: Let S be an essentially normal standard Hilbert module S and let $M \subseteq S$ be a graded submodule. TFAE:

- **1.** S/M is essentially normal.
- 2. M is essentially normal.
- **3.** The projection P_M commutes with $C^*(S)$ modulo $\mathcal K$.
- Similar result for p-essentially normal quotients, p > d.

So: Given your favorite essentially normal standard Hilbert module *S*, you need to determine its essentially normal *graded* submodules. Are they *all* essentially normal?

Let S be a standard Hilbert module. We are interested in graded quotients of S, especially essentially normal ones.

Theorem: Let S be an essentially normal standard Hilbert module S and let $M \subseteq S$ be a graded submodule. TFAE:

- **1.** S/M is essentially normal.
- **2.** *M* is essentially normal.
- **3.** The projection P_M commutes with $C^*(S)$ modulo \mathcal{K} .
- Similar result for p-essentially normal quotients, p > d.

So: Given your favorite essentially normal standard Hilbert module *S*, you need to determine its essentially normal *graded submodules*. Are they *all* essentially normal?

Let S be a standard Hilbert module. We are interested in graded quotients of S, especially essentially normal ones.

Theorem: Let S be an essentially normal standard Hilbert module S and let $M \subseteq S$ be a graded submodule. TFAE:

- **1.** S/M is essentially normal.
- **2.** *M* is essentially normal.
- **3.** The projection P_M commutes with $C^*(S)$ modulo \mathcal{K} .
- Similar result for p-essentially normal quotients, p > d.

So: Given your favorite essentially normal standard Hilbert module *S*, you need to determine its essentially normal *graded submodules*. Are they *all* essentially normal?

Let S be a standard Hilbert module. We are interested in graded quotients of S, especially essentially normal ones.

Theorem: Let S be an essentially normal standard Hilbert module S and let $M \subseteq S$ be a graded submodule. TFAE:

- **1.** S/M is essentially normal.
- **2.** *M* is essentially normal.
- **3.** The projection P_M commutes with $C^*(S)$ modulo \mathcal{K} .
- Similar result for p-essentially normal quotients, p > d.

So: Given your favorite essentially normal standard Hilbert module S, you need to determine its essentially normal *graded* submodules. Are they *all* essentially normal?

Let S be a standard Hilbert module. We are interested in graded quotients of S, especially essentially normal ones.

Theorem: Let S be an essentially normal standard Hilbert module S and let $M \subseteq S$ be a graded submodule. TFAE:

- **1.** S/M is essentially normal.
- **2.** *M* is essentially normal.
- **3.** The projection P_M commutes with $C^*(S)$ modulo \mathcal{K} .
- Similar result for p-essentially normal quotients, p > d.

So: Given your favorite essentially normal standard Hilbert module S, you need to determine its essentially normal *graded submodules*. Are they *all* essentially normal?

Let S be a standard Hilbert module. We are interested in graded quotients of S, especially essentially normal ones.

Theorem: Let S be an essentially normal standard Hilbert module S and let $M \subseteq S$ be a graded submodule. TFAE:

- **1.** S/M is essentially normal.
- **2.** *M* is essentially normal.
- **3.** The projection P_M commutes with $C^*(S)$ modulo \mathcal{K} .
- Similar result for p-essentially normal quotients, p > d.

So: Given your favorite essentially normal standard Hilbert module S, you need to determine its essentially normal *graded* submodules. Are they *all* essentially normal?

Fix $S = G \otimes \mathbb{C}^r$ standard Hilbert module over $A = A_d$, assumed to be p-essentially normal for some d .

Fix an integer $s \ge 0$ (the degree), and pick a linear space $E \subseteq \mathcal{P}_s$ of homogeneous polynomials of degree s. Then

$$M = [AE] = E \oplus [z_jE : 1 \le j \le d] \oplus [z_iz_jE : 1 \le i, j \le d] \oplus \cdots$$

is a graded submodule; s is called the degree of M.

- Degree s = 0: All are p-essentially normal!
- Degree s = 1: Not known if all are p-essentially normal.
- Degree $s \ge 2$: More complex, involving nonlinear relations.

Fix $S = G \otimes \mathbb{C}^r$ standard Hilbert module over $A = A_d$, assumed to be p-essentially normal for some d .

Fix an integer $s \ge 0$ (the degree), and pick a linear space $E \subseteq \mathcal{P}_s$ of homogeneous polynomials of degree s. Then

$$M = [AE] = E \oplus [z_jE : 1 \le j \le d] \oplus [z_iz_jE : 1 \le i, j \le d] \oplus \cdots$$

is a graded submodule; s is called the degree of M.

- Degree s = 0: All are p-essentially normal!
- Degree s = 1: Not known if all are p-essentially normal.
- Degree $s \ge 2$: More complex, involving nonlinear relations.

Fix $S = G \otimes \mathbb{C}^r$ standard Hilbert module over $A = A_d$, assumed to be p-essentially normal for some d .

Fix an integer $s \ge 0$ (the degree), and pick a linear space $E \subseteq \mathcal{P}_s$ of homogeneous polynomials of degree s. Then

$$M = [AE] = E \oplus [z_jE : 1 \le j \le d] \oplus [z_iz_jE : 1 \le i, j \le d] \oplus \cdots$$

is a graded submodule; s is called the degree of M.

- Degree s = 0: All are p-essentially normal!
- Degree s = 1: Not known if all are p-essentially normal.
- Degree $s \ge 2$: More complex, involving nonlinear relations.

Fix $S = G \otimes \mathbb{C}^r$ standard Hilbert module over $A = A_d$, assumed to be p-essentially normal for some d .

Fix an integer $s \ge 0$ (the degree), and pick a linear space $E \subseteq \mathcal{P}_s$ of homogeneous polynomials of degree s. Then

$$M = [AE] = E \oplus [z_jE : 1 \le j \le d] \oplus [z_iz_jE : 1 \le i, j \le d] \oplus \cdots$$

is a graded submodule; s is called the degree of M.

- Degree s = 0: All are p-essentially normal!
- Degree s = 1: Not known if all are p-essentially normal.
- Degree $s \ge 2$: More complex, involving nonlinear relations.

Fix $S = G \otimes \mathbb{C}^r$ standard Hilbert module over $A = A_d$, assumed to be p-essentially normal for some d .

Fix an integer $s \ge 0$ (the degree), and pick a linear space $E \subseteq \mathcal{P}_s$ of homogeneous polynomials of degree s. Then

$$M = [AE] = E \oplus [z_jE : 1 \le j \le d] \oplus [z_iz_jE : 1 \le i, j \le d] \oplus \cdots$$

is a graded submodule; s is called the degree of M.

- Degree s = 0: All are p-essentially normal!
- Degree s = 1: Not known if all are p-essentially normal.
- Degree $s \ge 2$: More complex, involving nonlinear relations.

Fix $S = G \otimes \mathbb{C}^r$ standard Hilbert module over $A = A_d$, assumed to be p-essentially normal for some d .

Fix an integer $s \ge 0$ (the degree), and pick a linear space $E \subseteq \mathcal{P}_s$ of homogeneous polynomials of degree s. Then

$$M = [AE] = E \oplus [z_jE : 1 \le j \le d] \oplus [z_iz_jE : 1 \le i, j \le d] \oplus \cdots$$

is a graded submodule; s is called the degree of M.

- Degree s = 0: All are p-essentially normal!
- Degree s = 1: Not known if all are p-essentially normal.
- Degree $s \ge 2$: More complex, involving nonlinear relations.

A Conjecture

We now restrict attention to standard Hilbert modules $S = G \otimes \mathbb{C}^r$ based on the symmetric Fock graded completion G.

• Basic Conjecture: Every graded submodule of such an S is p-essentially normal for every p > d, that is

$$T_j^*T_k-T_kT_j^*\in\mathcal{L}^p, \qquad \forall p>d.$$

Significant consequences include

- Index formula for the curvature invariant.
- Homotopy invariance of the curvature invariant.
- The Koszul complex of every "universal" d-contraction has finite dimensional cohomology.
- Explicit construction of the K-homology classes of projective varieties and their vector bundles/sheaves

A Conjecture

We now restrict attention to standard Hilbert modules $S = G \otimes \mathbb{C}^r$ based on the symmetric Fock graded completion G.

• Basic Conjecture: Every graded submodule of such an S is p-essentially normal for every p > d, that is

$$T_j^*T_k-T_kT_j^*\in\mathcal{L}^p, \qquad \forall p>d.$$

Significant consequences include

- Index formula for the curvature invariant.
- Homotopy invariance of the curvature invariant.
- The Koszul complex of every "universal" d-contraction has finite dimensional cohomology.
- Explicit construction of the K-homology classes of projective varieties and their vector bundles/sheaves

A Conjecture

We now restrict attention to standard Hilbert modules $S = G \otimes \mathbb{C}^r$ based on the symmetric Fock graded completion G.

• Basic Conjecture: Every graded submodule of such an S is p-essentially normal for every p > d, that is

$$T_j^*T_k-T_kT_j^*\in\mathcal{L}^p, \qquad \forall p>d.$$

Significant consequences include

- Index formula for the curvature invariant.
- Homotopy invariance of the curvature invariant.
- The Koszul complex of every "universal" d-contraction has finite dimensional cohomology.
- Explicit construction of the K-homology classes of projective varieties and their vector bundles/sheaves

A Conjecture

We now restrict attention to standard Hilbert modules $S = G \otimes \mathbb{C}^r$ based on the symmetric Fock graded completion G.

• Basic Conjecture: Every graded submodule of such an S is p-essentially normal for every p > d, that is

$$T_j^*T_k-T_kT_j^*\in\mathcal{L}^p, \qquad \forall p>d.$$

Significant consequences include

- Index formula for the curvature invariant.
- Homotopy invariance of the curvature invariant.
- The Koszul complex of every "universal" d-contraction has finite dimensional cohomology.
- Explicit construction of the K-homology classes of projective varieties and their vector bundles/sheaves.

• True if M is generated by *monomials* (A. JOT 2005). That is, if $M \subseteq G \otimes \mathbb{C}^r$ is generated by vector-valued polynomials

$$f(z_1,\ldots,z_d)=z_1^{n_1}z_2^{n_2}\cdots z_d^{n_d}\otimes \zeta$$

- True in a variety of other cases with special features that make it possible to decide.
- True for *all* graded submodules of $G \otimes \mathbb{C}^r$ in dimension d = 2 or d = 3 (Guo-Wang, 2008). The 4-variable case remains open!

• True if M is generated by *monomials* (A. JOT 2005). That is, if $M \subseteq G \otimes \mathbb{C}^r$ is generated by vector-valued polynomials

$$f(z_1,\ldots,z_d)=z_1^{n_1}z_2^{n_2}\cdots z_d^{n_d}\otimes \zeta$$

- True in a variety of other cases with special features that make it possible to decide.
- True for *all* graded submodules of $G \otimes \mathbb{C}^r$ in dimension d = 2 or d = 3 (Guo-Wang, 2008). The 4-variable case remains open!

• True if M is generated by *monomials* (A. JOT 2005). That is, if $M \subseteq G \otimes \mathbb{C}^r$ is generated by vector-valued polynomials

$$f(z_1,\ldots,z_d)=z_1^{n_1}z_2^{n_2}\cdots z_d^{n_d}\otimes \zeta$$

- True in a variety of other cases with special features that make it possible to decide.
- True for *all* graded submodules of $G \otimes \mathbb{C}^r$ in dimension d = 2 or d = 3 (Guo-Wang, 2008). The 4-variable case remains open!

• True if M is generated by *monomials* (A. JOT 2005). That is, if $M \subseteq G \otimes \mathbb{C}^r$ is generated by vector-valued polynomials

$$f(z_1,\ldots,z_d)=z_1^{n_1}z_2^{n_2}\cdots z_d^{n_d}\otimes \zeta$$

- True in a variety of other cases with special features that make it possible to decide.
- True for *all* graded submodules of $G \otimes \mathbb{C}^r$ in dimension d = 2 or d = 3 (Guo-Wang, 2008). The 4-variable case remains open!

Kunyu Guo and Shanghai 2008

The case degree = 1 is sufficient

Linearization: (A. 2007) In any dimension d, let S be a standard Hilbert module based on an arbitrary p-essentially normal graded completion (for fixed p > d).

• If every *degree one* graded submodule of $S = G \otimes \mathbb{C}^r$ is p-essentially normal, then every graded submodule of S is p-ess. normal.

Note that the degree 1 submodules of $G \otimes \mathbb{C}^r$ are the invariant subspaces generated by sets of polynomials of the form

$$f(z_1,\ldots,z_d)=z_1\zeta_1+z_2\zeta_2+\cdots+z_d\zeta_d$$

where ζ_1, \ldots, ζ_d are vectors in \mathbb{C}^r .

• **Conclusion:** It is not the *nonlinearity* of the generating polynomials that makes trouble. All the trouble is caused by "bad angles" in the space of *linear vector-valued polynomials*.

The case degree = 1 is sufficient

Linearization: (A. 2007) In any dimension d, let S be a standard Hilbert module based on an arbitrary p-essentially normal graded completion (for fixed p > d).

• If every *degree one* graded submodule of $S = G \otimes \mathbb{C}^r$ is p-essentially normal, then every graded submodule of S is p-ess. normal.

Note that the degree 1 submodules of $G \otimes \mathbb{C}^r$ are the invariant subspaces generated by sets of polynomials of the form

$$f(z_1,\ldots,z_d)=z_1\zeta_1+z_2\zeta_2+\cdots+z_d\zeta_d$$

where ζ_1, \ldots, ζ_d are vectors in \mathbb{C}^r .

• **Conclusion:** It is not the *nonlinearity* of the generating polynomials that makes trouble. All the trouble is caused by "bad angles" in the space of *linear vector-valued polynomials*.

The case degree = 1 is sufficient

Linearization: (A. 2007) In any dimension d, let S be a standard Hilbert module based on an arbitrary p-essentially normal graded completion (for fixed p > d).

• If every *degree one* graded submodule of $S = G \otimes \mathbb{C}^r$ is p-essentially normal, then every graded submodule of S is p-ess. normal.

Note that the degree 1 submodules of $G \otimes \mathbb{C}^r$ are the invariant subspaces generated by sets of polynomials of the form

$$f(z_1,\ldots,z_d)=z_1\zeta_1+z_2\zeta_2+\cdots+z_d\zeta_d$$

where ζ_1, \ldots, ζ_d are vectors in \mathbb{C}^r .

• **Conclusion:** It is not the *nonlinearity* of the generating polynomials that makes trouble. All the trouble is caused by "bad angles" in the space of *linear vector-valued polynomials*.

Th - Th - Th - That's all folks!