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Preview

We give a birds-eye survey of the problem of constructing
explicit examples in multivariable operator theory, focusing on
unsolved problems and conjectures. For details, see

• TAMS (2007) v. 359, pp. 6027–6055.

I Review of some background results of Hilbert on what
might be called multivariable linear algebra.

I The issue: How should one construct the Hilbert space
counterparts of projective algebraic varieties and related
objects (like vector bundles or sheaves over varieties)?
More precisely, how does one construct the K -homology
classes of algebraic varieties?
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Multivariable linear algebra
V : complex vector space (typically infinite-dimensional),
T1, . . . , Td commuting linear operators on V .

Regard V as a module over C[z1, . . . , zd ]:

f · ξ = f (T1, . . . , Td)ξ, f ∈ C[z1, . . . , zk ], ξ ∈ V .

Finitely generated: there exist ξ1, . . . , ξr ∈ V such that

V = {f1 · ξ1 + · · ·+ fr · ξr : fk ∈ C[z1, . . . , zd ]}.

If we identify r -tuples of polynomials in C[z1, . . . , zd ] in the
natural way with elements of C[z1, . . . , zd ]⊗ Cr , then we can
define a surjective homomorphism of modules

C[z1, . . . , zd ]⊗ Cr → V → 0

by sending an r -tuple of polynomials (f1, . . . , fr ) to the vector

f1 · ξ1 + · · ·+ fr · ξr .
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Typically, this map has nontrivial kernel K

0 → K → C[z1, . . . , zd ]⊗ Cr → V → 0.

However, Hilbert’s basis theorem implies that K is finitely
generated too. So we can choose η1, . . . , ηs ∈ K such that

K = {f1 · η1 + · · ·+ fs · ηs : fk ∈ C[z1, . . . , zd ]},

and repeat the procedure to get a longer exact sequence

C[z1, . . . , zk ]⊗ Cs → C[z1, . . . , zk ]⊗ Cr → V → 0.

If the map on the left has nonzero kernel, we continue (perhaps
forever) to obtain a free resolution of V – an exact sequence of
finitely generated free modules (i.e., modules of the form
C[z1, . . . , zd ]⊗ Ck ) that terminates in the original module V .
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Hilbert’s syzygy theorem

Theorem (Math. Ann. (1893))
Every finitely generated C[z1, . . . , zd ]-module V has a finite free
resolution of length at most d in the sense that there are
integers r1, . . . , rn ≥ 0, n ≤ d, such that

0 → C[z1, . . . , zd ]⊗ Crn → · · · → C[z1, . . . , zd ]⊗ Cr1 → V → 0

is exact.

I Every free resolution can be reduced to a minimal one.
I All minimal free resolutions are isomorphic.

• Application: One can calculate the Euler characteristic of V
by using any free resolution of V :

χ(V ) = r1 − r2 + r3 − r4 ± · · ·+ (−1)nrn.
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David Hilbert ca 1900



Graded modules over C[z1, . . . , zd ]
The polynomials form a graded algebra,

C[z1, . . . , zd ] = P0 u P1 u P2 u · · ·

where Pn = homogeneous polynomials of degree n, and one
has Pm · Pn ⊆ Pm+n. To lighten notation, we write Ad instead of
C[z1, . . . , zd ], or simply A when the dimension d is understood.

An A-module V is said to be graded when

V = V0 u V1 u V2 u · · ·

where zjVk ⊆ Vk+1 for all 1 ≤ k ≤ d , k = 0, 1, 2, . . . .
Example: The free module of rank r , namely A⊗ Cr , “is" the
space of vector-valued polynomials (taking values in Cr )

A⊗ Cr = F0 u F1 u F2 u · · ·

where Fn denoting all homogeneous polynomials of degree n.
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Graded A-modules (cont.)

There is a fairly obvious “graded" variant of the syzygy theorem.

In particular, the most general finitely generated graded module
V over Ad can be constructed by a two-step procedure:

• Step 1: Choose a graded submodule
M = M0 u M1 u M2 u · · · of the graded free module of rank r

F = Ad ⊗ Cr = F0 u F1 u F2 u · · ·

• Step 2: Form the graded quotient module

V = F/M = (F0/M0) u (F1/M1) u · · · .

Such modules can represent (the algebras of polynomials on)
projective algebraic varieties, or (the sections of) vector bundles
or sheaves over projective algebraic varieties.
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Can we do this in Hilbert space?

In more concrete terms, this algebraic construction gives rise to
d-tuples of commuting operators T1, . . . , Td that satisfy systems
of equations of the form

fk (T1, . . . , Td) = 0, k = 1, . . . , s,

where f1, . . . , fs is a finite set of homogeneous polynomials
(perhaps of different degrees).

The set X of common zeros of {f1, . . . , fk} is a projective
algebraic variety.

We want to construct Hilbert space counterparts of such
d-tuples so as to obtain K -homology classes of X in concrete
terms (as well as the accompanying index theorems).
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What doesn’t work, and why not?

As a simple example, consider the problem of constructing
commuting triples of operators X , Y , Z ∈ B(H) that satisfy

X n + Y n = Z n

for some n = 2, 3, . . . .

E.g., one can start with a pair of commuting operators X , Y and
look for an n th root Z of X n + Y n. Unfortunately, many
operators don’t have n th roots (Example: the unilateral shift).

So ad hoc methods fail. Instead, we need to deal directly with
quotients of Hilbert modules such as H/M where

• H is a “free" Hilbert module in three variables X , Y , Z , and
• M = the submodule generated by X n + Y n − Z n.
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Some terminology

• Hilbert module over Ad : A Hilbert space H endowed with
commuting operators T1, . . . , Td ∈ B(H) for which

f · ξ = f (T1, . . . , Td)ξ, f ∈ Ad , ξ ∈ H.

• Grading of H: An ⊥ decomposition H = H0 ⊕ H1 ⊕ H2 ⊕ · · ·
for which TjHk ⊆ Hk+1 for all 1 ≤ j ≤ d , k = 0, 1, 2, . . . .

• Obvious meaning of finitely generated Hilbert module.

• The C∗-algebra of a Hilbert module H over Ad : The unital
C∗-algebra generated by the “coordinate" operators T1, . . . , Td

C∗(H) = C∗{1, T1, . . . , Td}.

• H is said to be essentially normal if C∗(H) is commutative
modulo compacts. H is p-essentially normal (for 1 ≤ p ≤ ∞) if
the cross commutators T ∗

j Tk − TkT ∗
j all belong to Lp.
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What are free Hilbert modules?

To get started, what should be the Hilbert space counterparts
of the free module of rank 1

V = C[z1, . . . , zd ]?

These will be called graded completions (of A = C[z1, . . . , zd ]),
and they are defined as follows....

• A graded inner product is an inner product 〈·, ·〉 on

Ad = P0 u P1 u P2 u · · ·

with the following two properties:

(i): Pm ⊥ Pn if m 6= n.

(ii): The multiplication operators Z1, . . . , Zd by the generators
z1, . . . , zd are bounded.
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Graded completions (of Ad )

The completion G of Ad in 〈·, ·〉 is obviously a graded Hilbert
module (with a single generator - the constant polynomial 1).

(iii): If, in addition to (i) and (ii), the subspace

Z1G + Z2G + · · ·+ ZdG

is closed, then G is called a graded completion of Ad .

• Something to keep in mind: There is only one free module of
rank 1 in d-dimensional linear algebra. But in the category of
Hilbert modules, there are uncountably many inequivalent
graded completions of Ad , with vastly different properties.

(Examples momentarily)
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Hilbert modules, there are uncountably many inequivalent
graded completions of Ad , with vastly different properties.

(Examples momentarily)



Basic properties of all graded completions

Number operator N: Unbounded positive operator, defined by

Nf = n · f , f ∈ Pn, n = 0, 1, 2, . . . .

It satisfies

trace((1 + N)−p) < ∞, ∀p > d .

Up to unitary equivalence, all graded completions have the
“same" number operator.

They also share an irreducibility property:

Proposition: Every graded completion G is irreducible, and in
fact K ⊆ C∗(G).
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Standard Hilbert modules
A standard Hilbert module is finite-multiplicity version of a
graded completion G - a Hilbert module of the form S = G ⊗ Cr

f · (g ⊗ ζ) = (f · g)⊗ ζ, g ∈ G, ζ ∈ Cr ,

where r = 1, 2, . . . .

We focus on graded quotients of standard Hilbert modules: i.e.,

H = S/M

where S is standard and M ⊆ S is a graded submodule.

• Key issue: Is H = S/M essentially normal? Equivalently, do
we have an exact sequence of C∗-algebras

0 −→ K −→ C∗(S/M) +K −→ C(X ) −→ 0

and a K -homology class of its essential Gelfand spectrum X?
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Examples of graded completions: Good ones

• Bosonic Fock space: Realize Ad as the symmetric tensor
algebra over Cd , complete in the Bosonic inner product.

• The Hardy module of the 2d − 1-sphere {z ∈ Cd : |z| = 1}.

• The Bergman module of the unit ball of Cd .

All of these are p-essentially normal for every p > d :

Z ∗
j Zk − ZkZ ∗

j ∈ Lp, ∀p > d .

Some other essentially normal graded completions:

• Ω ⊆ Cd a bounded strongly pseudoconvex domain with
smooth boundary. The Bergman module of Ω is essentially
normal (PDE book of Michael Taylor, v. 2, Prop. 7.3 Chap. 12).
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Vladimir Aleksandrovich Fock 1898–1974

Hardy (ca 1920) and Bergman (ca 1955)



And let’s not forget Michael....



Bad ones

• Douglas and Howe observed that, among other things, the
Bergman modules of polydisks are not essentially normal.

For the Bergman module H of the bi-disk D × D,
C∗(H) = T ⊗ T , where T = Toeplitz C∗-algebra

K(H) = K ⊗K ⊆ K ⊗ T ⊆ K ⊗ T + T ⊕ K ⊆ C∗(H)

The first ideal is all compact operators on H. A quotient of any
two of these but the last two is noncommutative; hence
C∗(H)/K is not commutative.
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Worse ones

• It gets worse: (Upmeier) The modules of many symmetric
domains have type I C∗-algebras with arbitrarily long Kaplansky
composition series.

On the other hand, they are still type I. More importantly, their
index theory is nice.



Harald ca. 1977



And still worse

Fix a, b ∈ (0, 1). Curto and Muhly (1985) showed that the
C∗-algebra of the Bergman module of the “iron cross"

Ωa,b = {(z, w) : |z| < a, |w | < 1} ∪ {(z, w) : |z| < 1, |w | < b}

is type I ⇐⇒ log a/ log b is rational.





Submodules and quotients

Let S be a standard HIlbert module. We are interested in
graded quotients of S, especially essentially normal ones.

Theorem: Let S be an essentially normal standard Hilbert
module S and let M ⊆ S be a graded submodule. TFAE:

1. S/M is essentially normal.

2. M is essentially normal.

3. The projection PM commutes with C∗(S) modulo K.

• Similar result for p-essentially normal quotients, p > d .

So: Given your favorite essentially normal standard Hilbert
module S, you need to determine its essentially normal graded
submodules. Are they all essentially normal?

We conclude by discussing this issue.



Submodules and quotients

Let S be a standard HIlbert module. We are interested in
graded quotients of S, especially essentially normal ones.

Theorem: Let S be an essentially normal standard Hilbert
module S and let M ⊆ S be a graded submodule. TFAE:

1. S/M is essentially normal.

2. M is essentially normal.

3. The projection PM commutes with C∗(S) modulo K.

• Similar result for p-essentially normal quotients, p > d .

So: Given your favorite essentially normal standard Hilbert
module S, you need to determine its essentially normal graded
submodules. Are they all essentially normal?

We conclude by discussing this issue.



Submodules and quotients

Let S be a standard HIlbert module. We are interested in
graded quotients of S, especially essentially normal ones.

Theorem: Let S be an essentially normal standard Hilbert
module S and let M ⊆ S be a graded submodule. TFAE:

1. S/M is essentially normal.

2. M is essentially normal.

3. The projection PM commutes with C∗(S) modulo K.

• Similar result for p-essentially normal quotients, p > d .

So: Given your favorite essentially normal standard Hilbert
module S, you need to determine its essentially normal graded
submodules. Are they all essentially normal?

We conclude by discussing this issue.



Submodules and quotients

Let S be a standard HIlbert module. We are interested in
graded quotients of S, especially essentially normal ones.

Theorem: Let S be an essentially normal standard Hilbert
module S and let M ⊆ S be a graded submodule. TFAE:

1. S/M is essentially normal.

2. M is essentially normal.

3. The projection PM commutes with C∗(S) modulo K.

• Similar result for p-essentially normal quotients, p > d .

So: Given your favorite essentially normal standard Hilbert
module S, you need to determine its essentially normal graded
submodules. Are they all essentially normal?

We conclude by discussing this issue.



Submodules and quotients

Let S be a standard HIlbert module. We are interested in
graded quotients of S, especially essentially normal ones.

Theorem: Let S be an essentially normal standard Hilbert
module S and let M ⊆ S be a graded submodule. TFAE:

1. S/M is essentially normal.

2. M is essentially normal.

3. The projection PM commutes with C∗(S) modulo K.

• Similar result for p-essentially normal quotients, p > d .

So: Given your favorite essentially normal standard Hilbert
module S, you need to determine its essentially normal graded
submodules. Are they all essentially normal?

We conclude by discussing this issue.



Submodules and quotients

Let S be a standard HIlbert module. We are interested in
graded quotients of S, especially essentially normal ones.

Theorem: Let S be an essentially normal standard Hilbert
module S and let M ⊆ S be a graded submodule. TFAE:

1. S/M is essentially normal.

2. M is essentially normal.

3. The projection PM commutes with C∗(S) modulo K.

• Similar result for p-essentially normal quotients, p > d .

So: Given your favorite essentially normal standard Hilbert
module S, you need to determine its essentially normal graded
submodules. Are they all essentially normal?

We conclude by discussing this issue.



Structure of graded submodules

Fix S = G ⊗ Cr standard Hilbert module over A = Ad ,
assumed to be p-essentially normal for some d < p ≤ ∞.

Fix an integer s ≥ 0 (the degree), and pick a linear space
E ⊆ Ps of homogeneous polynomials of degree s. Then

M = [AE ] = E ⊕ [zjE : 1 ≤ j ≤ d ]⊕ [zizjE : 1 ≤ i , j ≤ d ]⊕ · · ·

is a graded submodule; s is called the degree of M.

Proposition: Every graded submodule of S is a finite rank
perturbation of one of this form, for some s ≥ 0.

• Degree s = 0: All are p-essentially normal!

• Degree s = 1: Not known if all are p-essentially normal.

• Degree s ≥ 2: More complex, involving nonlinear relations.
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A Conjecture

We now restrict attention to standard Hilbert modules
S = G⊗Cr based on the symmetric Fock graded completion G.

• Basic Conjecture: Every graded submodule of such an S is
p-essentially normal for every p > d , that is

T ∗
j Tk − TkT ∗

j ∈ Lp, ∀p > d .

Significant consequences include

• Index formula for the curvature invariant.

• Homotopy invariance of the curvature invariant.

• The Koszul complex of every “universal" d-contraction has
finite dimensional cohomology.

• Explicit construction of the K -homology classes of
projective varieties and their vector bundles/sheaves.
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Positive evidence: special cases

• True if M is generated by monomials (A. JOT 2005). That is, if
M ⊆ G ⊗ Cr is generated by vector-valued polynomials

f (z1, . . . , zd) = zn1
1 zn2

2 · · · znd
d ⊗ ζ

This “monomials" result persists for certain other graded
completions (Douglas, JOT 2005).

• True in a variety of other cases with special features that
make it possible to decide.

• True for all graded submodules of G ⊗ Cr in dimension d = 2
or d = 3 (Guo-Wang, 2008). The 4-variable case remains open!



Positive evidence: special cases

• True if M is generated by monomials (A. JOT 2005). That is, if
M ⊆ G ⊗ Cr is generated by vector-valued polynomials

f (z1, . . . , zd) = zn1
1 zn2

2 · · · znd
d ⊗ ζ

This “monomials" result persists for certain other graded
completions (Douglas, JOT 2005).

• True in a variety of other cases with special features that
make it possible to decide.

• True for all graded submodules of G ⊗ Cr in dimension d = 2
or d = 3 (Guo-Wang, 2008). The 4-variable case remains open!



Positive evidence: special cases

• True if M is generated by monomials (A. JOT 2005). That is, if
M ⊆ G ⊗ Cr is generated by vector-valued polynomials

f (z1, . . . , zd) = zn1
1 zn2

2 · · · znd
d ⊗ ζ

This “monomials" result persists for certain other graded
completions (Douglas, JOT 2005).

• True in a variety of other cases with special features that
make it possible to decide.

• True for all graded submodules of G ⊗ Cr in dimension d = 2
or d = 3 (Guo-Wang, 2008). The 4-variable case remains open!



Positive evidence: special cases

• True if M is generated by monomials (A. JOT 2005). That is, if
M ⊆ G ⊗ Cr is generated by vector-valued polynomials

f (z1, . . . , zd) = zn1
1 zn2

2 · · · znd
d ⊗ ζ

This “monomials" result persists for certain other graded
completions (Douglas, JOT 2005).

• True in a variety of other cases with special features that
make it possible to decide.

• True for all graded submodules of G ⊗ Cr in dimension d = 2
or d = 3 (Guo-Wang, 2008). The 4-variable case remains open!



Kunyu Guo and Shanghai 2008



The case degree = 1 is sufficient

Linearization: (A. 2007) In any dimension d , let S be a
standard Hilbert module based on an arbitrary p-essentially
normal graded completion (for fixed p > d).

• If every degree one graded submodule of S = G ⊗ Cr is
p-essentially normal, then every graded submodule of S is
p-ess. normal.

Note that the degree 1 submodules of G ⊗ Cr are the invariant
subspaces generated by sets of polynomials of the form

f (z1, . . . , zd) = z1ζ1 + z2ζ2 + · · ·+ zdζd

where ζ1, . . . , ζd are vectors in Cr .

• Conclusion: It is not the nonlinearity of the generating
polynomials that makes trouble. All the trouble is caused by
“bad angles" in the space of linear vector-valued polynomials.
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Th - Th - Th - That’s all folks!


