

CCSB @

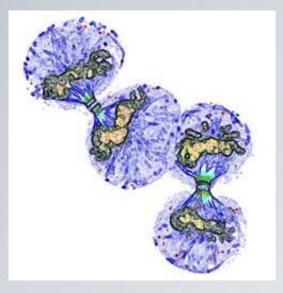
VANDERBILT

AN EMG MODEL OF CELL CYCLETIME VARIABILITY IN CANCER DEVELOPED FROM LARGE DATASETS OF SINGLE-CELL MEASUREMENTS

Darren Tyson Vanderbilt University

Mathematical Oncology Workshop March 18, 2010 Fields Institute, Toronto, ON

Thursday, March 18, 2010



CELL DIVISION



- •The process of cell division has been studied since first described by Rudolf Virchow in 1855, "omnis cellula e cellula" ~ all cells come from cells
- Cancer is a disease of uncontrolled cell division
- •Much is known about signaling pathways controlling cell division, especially due to the advent of "omics" technology coupled to mathematical models

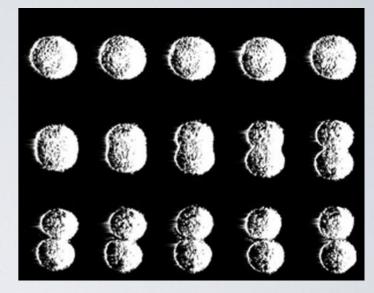
OUR CHALLENGE AS CANCER CELL BIOLOGISTS

•How can we link signaling network dynamics or states to the decision of single cells to divide?

• First, it requires sufficiently large datasets of quantified cell cycle times

TIME LAPSE LIVE-CELL IMAGING

- Used for decades to study cell division
- Direct measurement of individual cells in a population (no need to model or estimate single-cell behavior!)

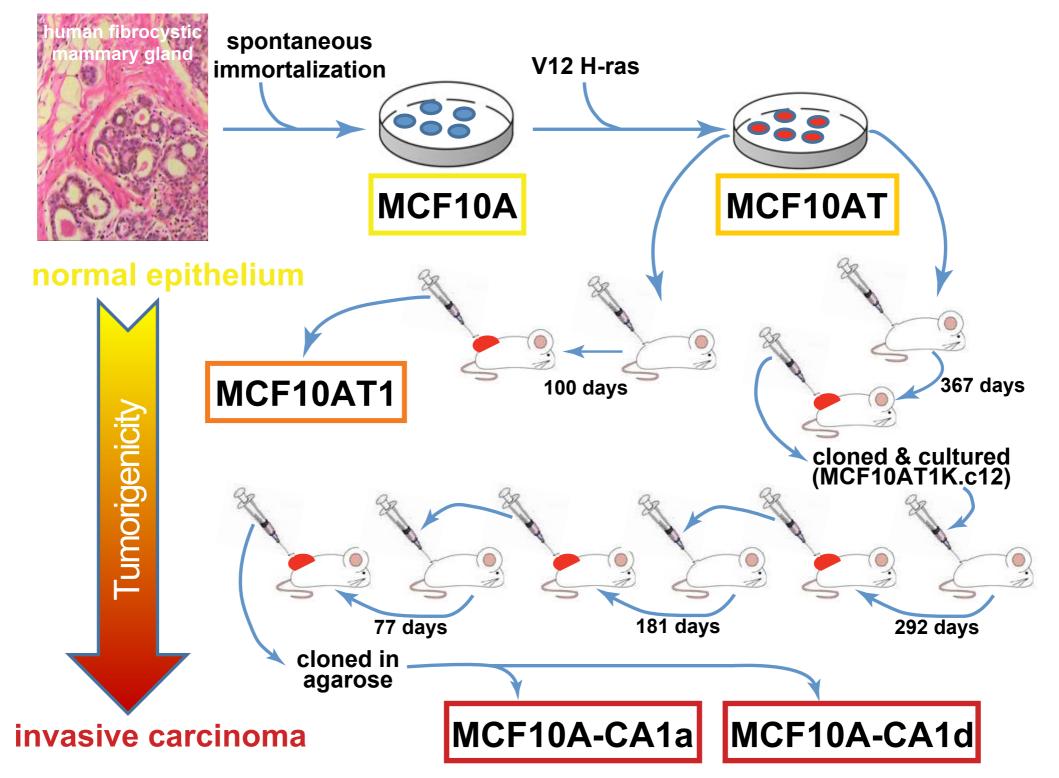


- Throughput limited by laborious manual tracking and challenges of automatic identification of cells in images from transmitted light microscopy
- Limitations alleviated by new instruments and computational tools

IMAGE ACQUISITION

- High-content imager (BD Pathway 855)
- H2BmRFP-expressing cells in complete culture medium
- Cells are washed with serum-free medium and medium is replaced with complete or serumfree medium
- Images are acquired every 6 min in confocal mode with 20X objective
- 3 cell lines, 2 conditions, 6 replicates = 36 wells

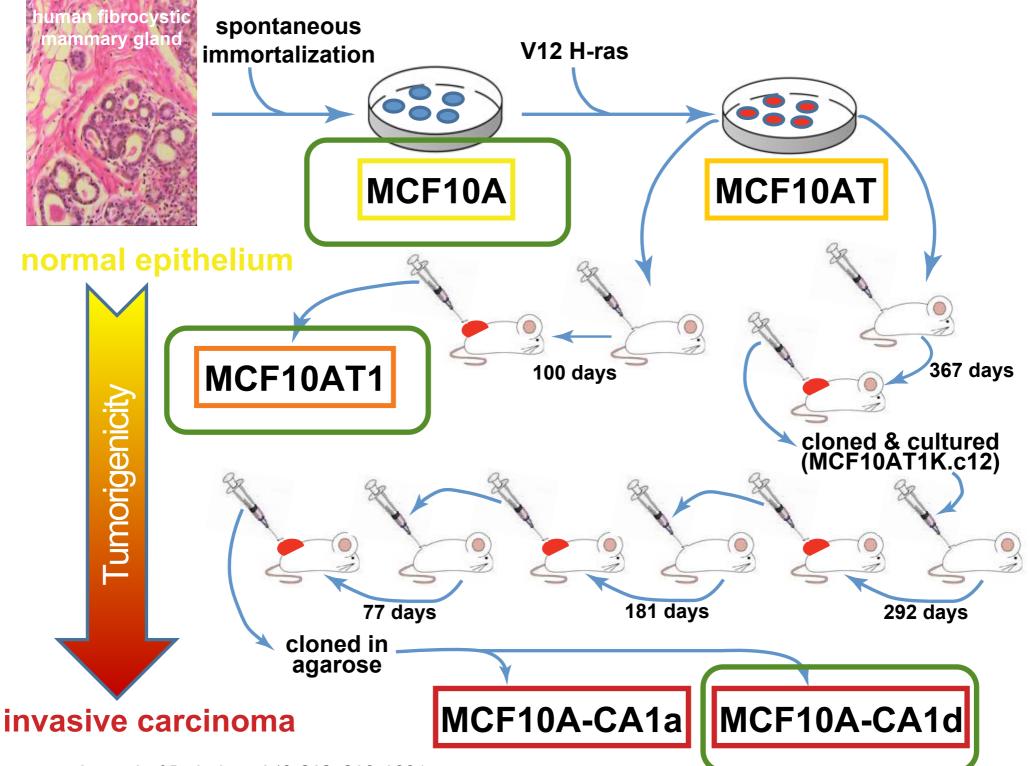
MODEL SYSTEM



Dawson et al., American Journal of Pathology 148:313–319, 1996

Santner et al., Breast Cancer Research and Treatment 65: 101-110, 2001

MODEL SYSTEM



Dawson et al., American Journal of Pathology 148:313–319, 1996

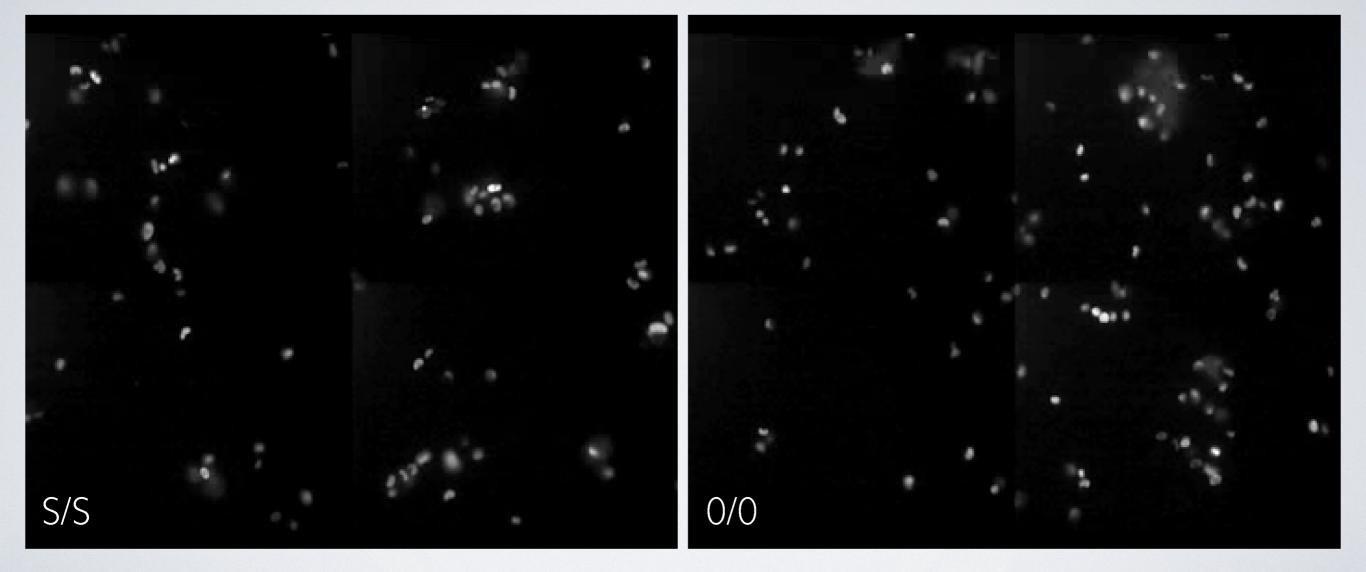
Santner et al., Breast Cancer Research and Treatment 65: 101-110, 2001

H2B-LABELED CELL IMAGING MCFIOA

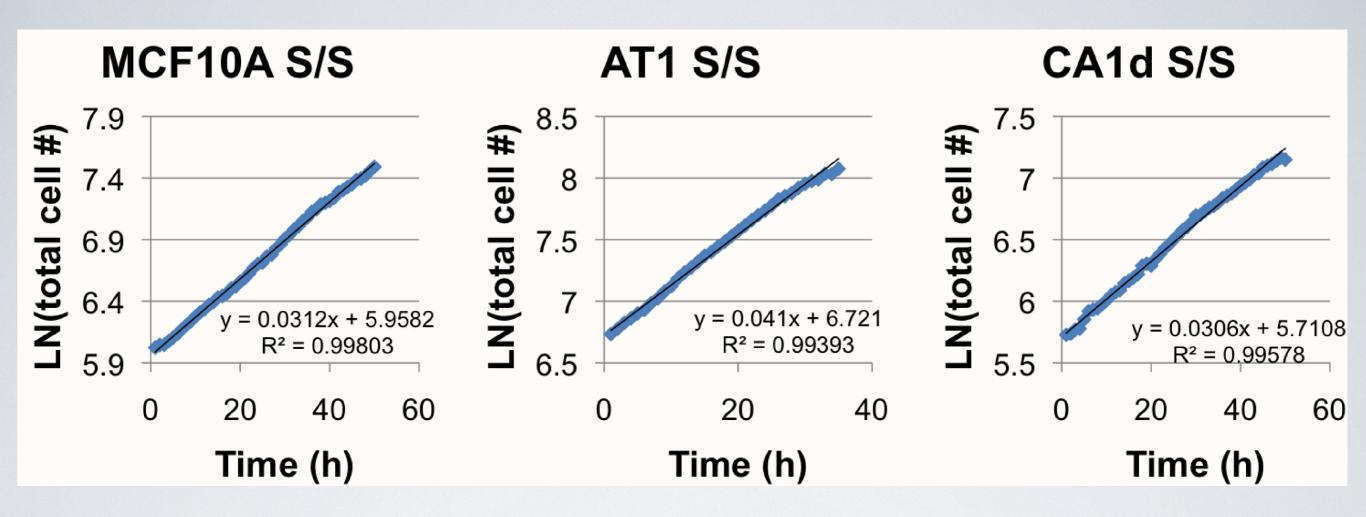
0/0

Thursday, March 18, 2010

H2B-LABELED CELL IMAGING MCFI0A



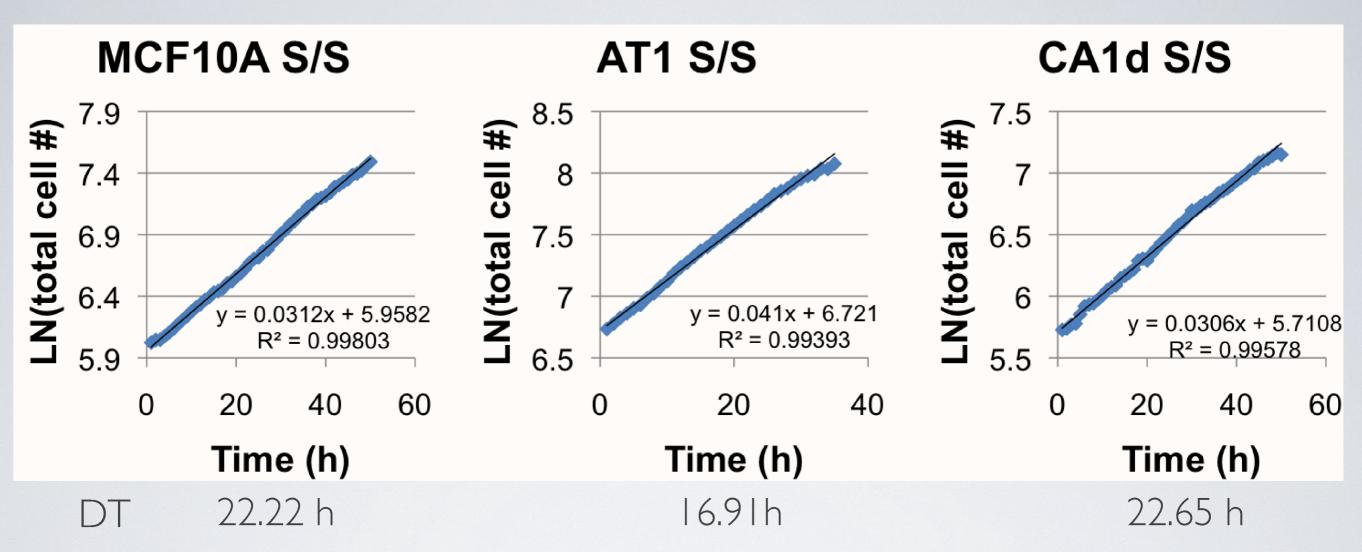
OPTIMAL CONDITIONS



Data obtained by automatically counting nuclei in every 10th frame (1/h) (discarding 90% of images from data set)

An exponential model is sufficient to describe proliferation of cell populations in optimal growth conditions

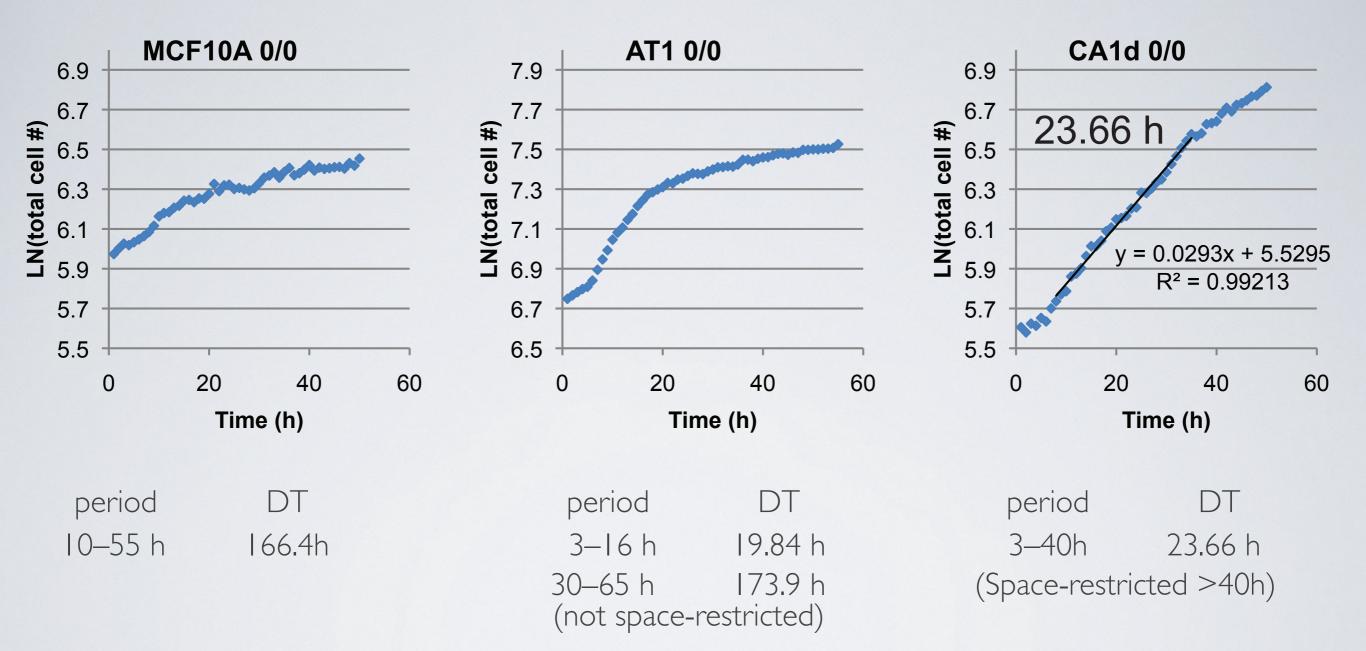
OPTIMAL CONDITIONS



Data obtained by automatically counting nuclei in every 10th frame (1/h) (discarding 90% of images from data set)

An exponential model is sufficient to describe proliferation of cell populations in optimal growth conditions

SERUM-DEPRIVED



Exponential model <u>not</u> sufficient to describe change in MCFIOA and ATI population size over time

QUESTIONS

- •What is the range of cell cycle times of cells comprising the populations of exponentially dividing cells?
 - Are more slowly-dividing cells present?
 - Is the range of cell cycle times different for non-tumorigenic cells vs cancer cells?
- •Exactly how is rate of proliferation changing in response to serum deprivation?
 - Are some cells no longer dividing (accumulation in GI)?
 - Are cell cycles longer in duration?

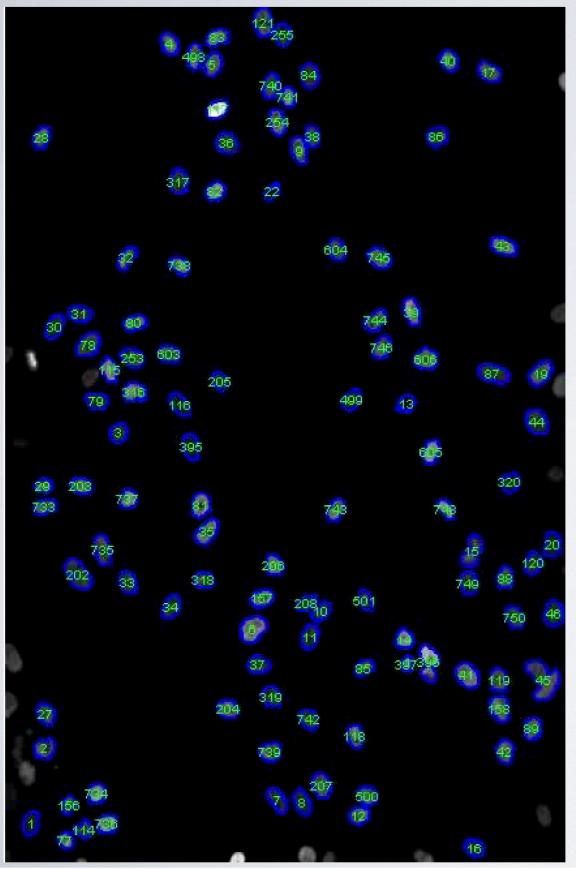
Need single-cell data to answer these questions

AUTOMATED ANALYSIS

I.ID & track individual cells

- 2.Detect mitotic events (using several criteria)
- 3.Assign daughter cells new IDs
- 4.Record ancestry
- 5. Generate image stack for verification (generation indicated by color)

AUTOMATED ANALYSIS



I.ID & track individual cells

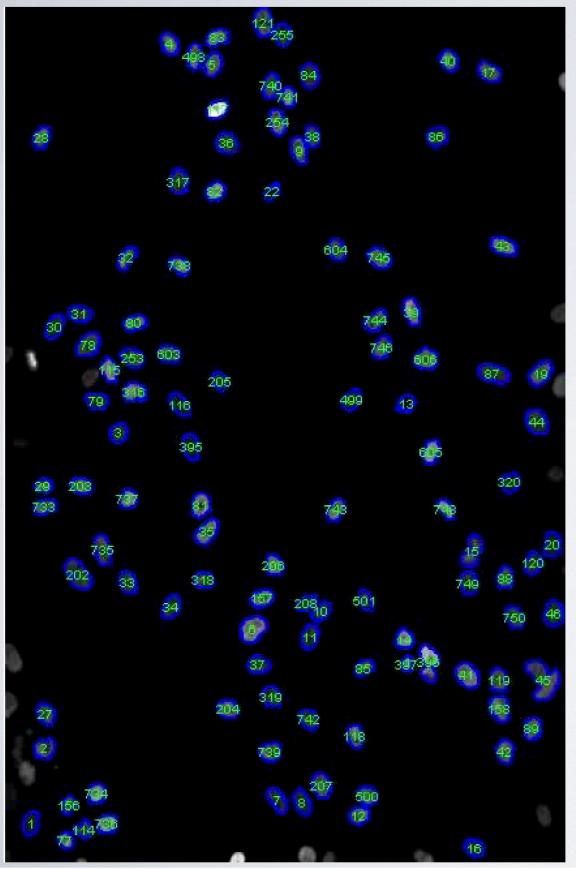
- 2.Detect mitotic events (using several criteria)
- 3. Assign daughter cells new IDs
- 4. Record ancestry

5. Generate image stack for verification (generation indicated by color)

W. Georgescu

Thursday, March 18, 2010

AUTOMATED ANALYSIS



I.ID & track individual cells

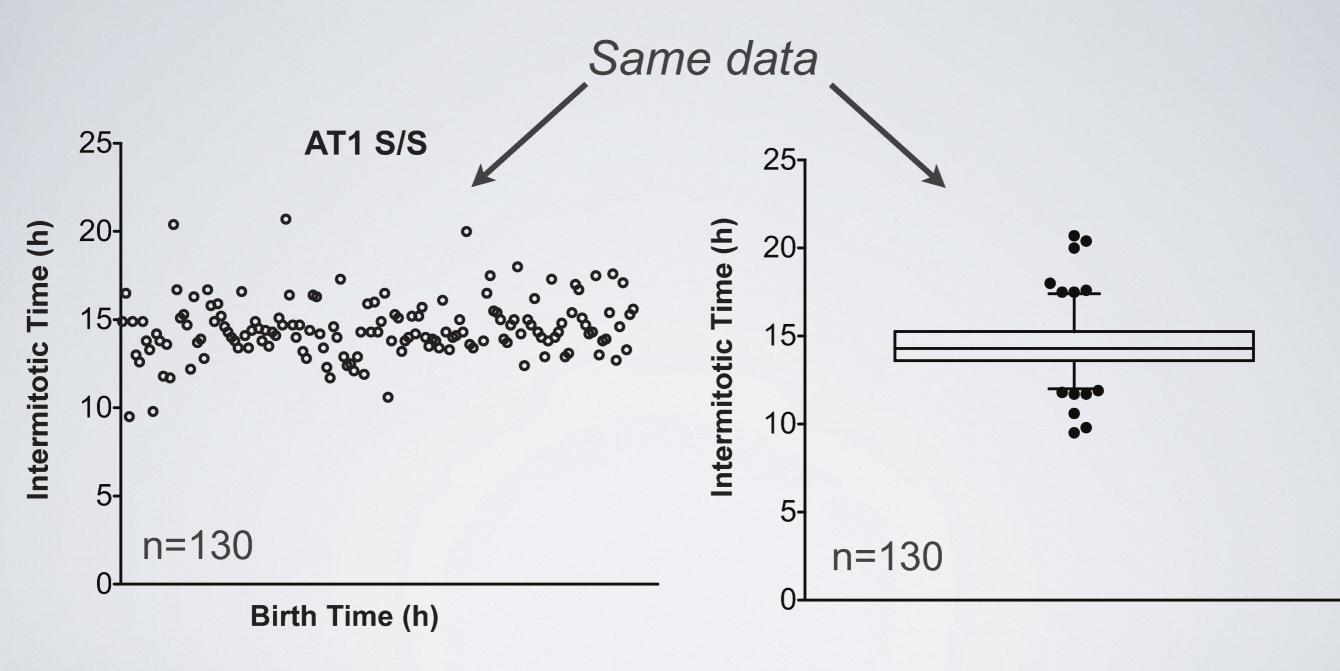
- 2.Detect mitotic events (using several criteria)
- 3. Assign daughter cells new IDs
- 4. Record ancestry

5. Generate image stack for verification (generation indicated by color)

W. Georgescu

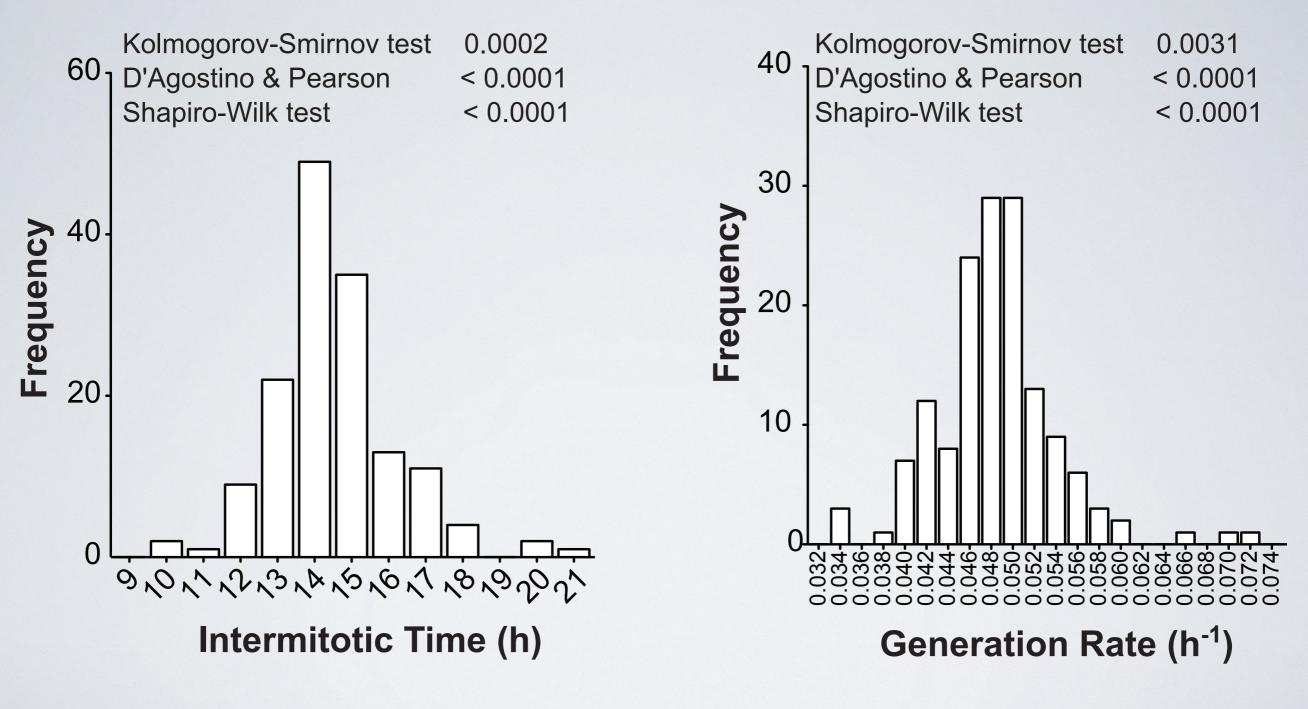
Thursday, March 18, 2010

IMT DISTRIBUTIONS



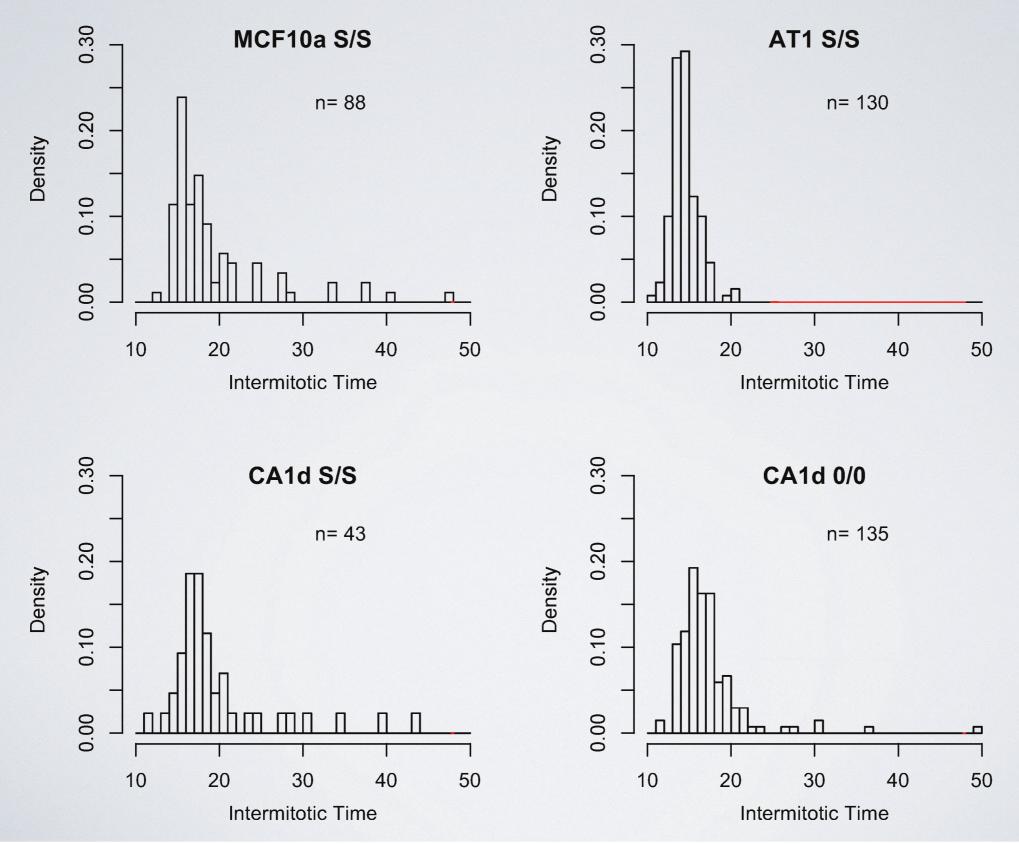
Appears normally distributed...

NON-GAUSSIAN



All normality tests failed

RIGHTWARD SKEW (TAIL)



Thursday, March 18, 2010

IMT DISTRIBUTIONS

- The sum of many random processes would result in a Gaussian distribution (central limit theorum)
- A Gaussian distribution would be expected if the accumulation of one or more proteins are required at a certain level for cell division
- However, a Gaussian process (or inverse Gaussian) is insufficient to fit the distributions of intermitotic times, even those that appear normal
- •Need additional component(s) to explain tails

OTHER DISTRIBUTION MODELS

Models	KS test	parameters
log normal	fail	2
inverse normal	fail	2
gamma	fail	2
exponentially-modified Gaussian	pass	3
gamma-modified Gaussian	pass	4

OTHER DISTRIBUTION MODELS

Models	KS test	parameters
log normal	fail	2
inverse normal	fail	2
gamma	fail	2
exponentially-modified Gaussian	pass	3
gamma-modified Gaussian	pass	4

EXPONENTIALLY-MODIFIED GAUSSIAN (EMG)

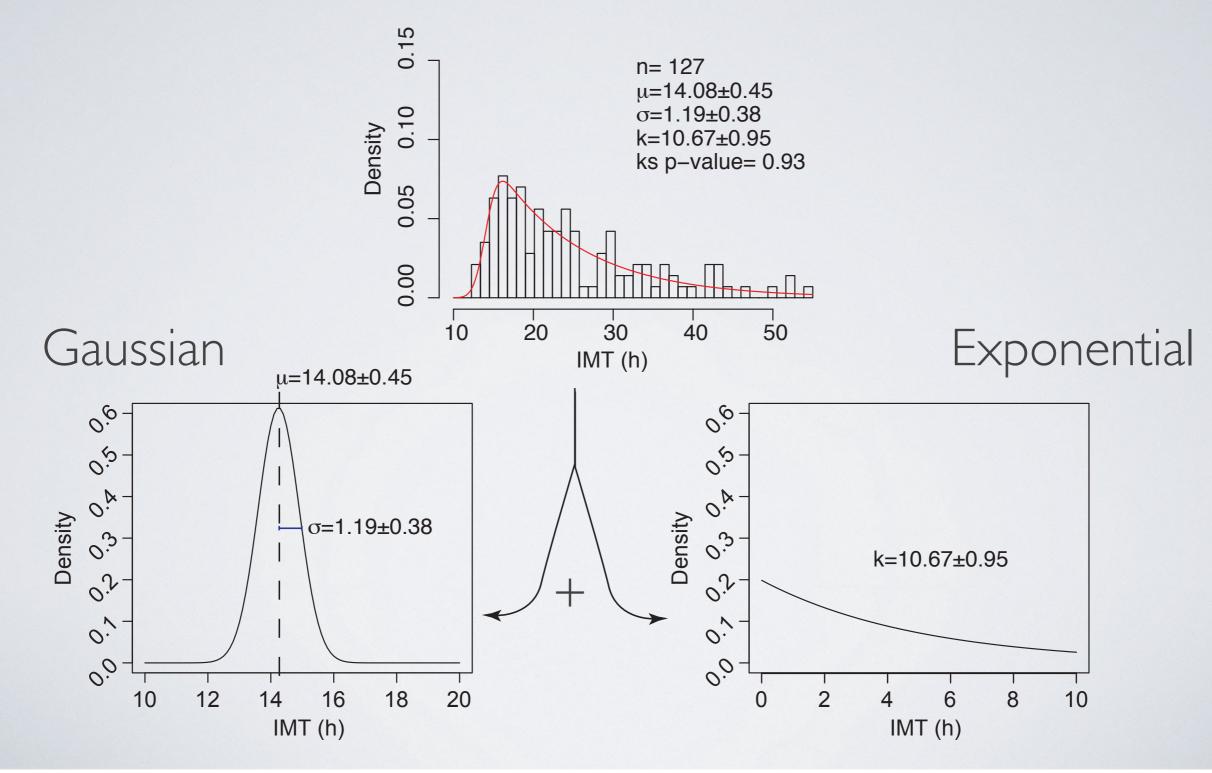
 $f(x|\lambda) = \lambda e^{-\lambda x}$ (exponential distribution)

$$g(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \quad (normal \ distribution)$$
$$emg(x|\lambda,\mu,\sigma) = \int_0^\infty f(t')g(t-t')dt' \quad (convolution)$$
$$emg(x|\lambda,\mu,\sigma) = \frac{\lambda}{2} e^{\frac{\lambda}{2}(-2x+2\mu+\lambda\sigma^2)} \left[Erfc(\frac{-x+\mu+\lambda\sigma^2}{\sigma\sqrt{2}}) \right]$$

$$\begin{split} \lambda &= \text{exponential component (rate parameter)} \\ k &= 1/\lambda \text{ (mean of exponential)} \\ \mu &= \text{mean of Gaussian} \\ \sigma &= \text{Standard deviation of Gaussian} \end{split}$$

Shawn Garbett

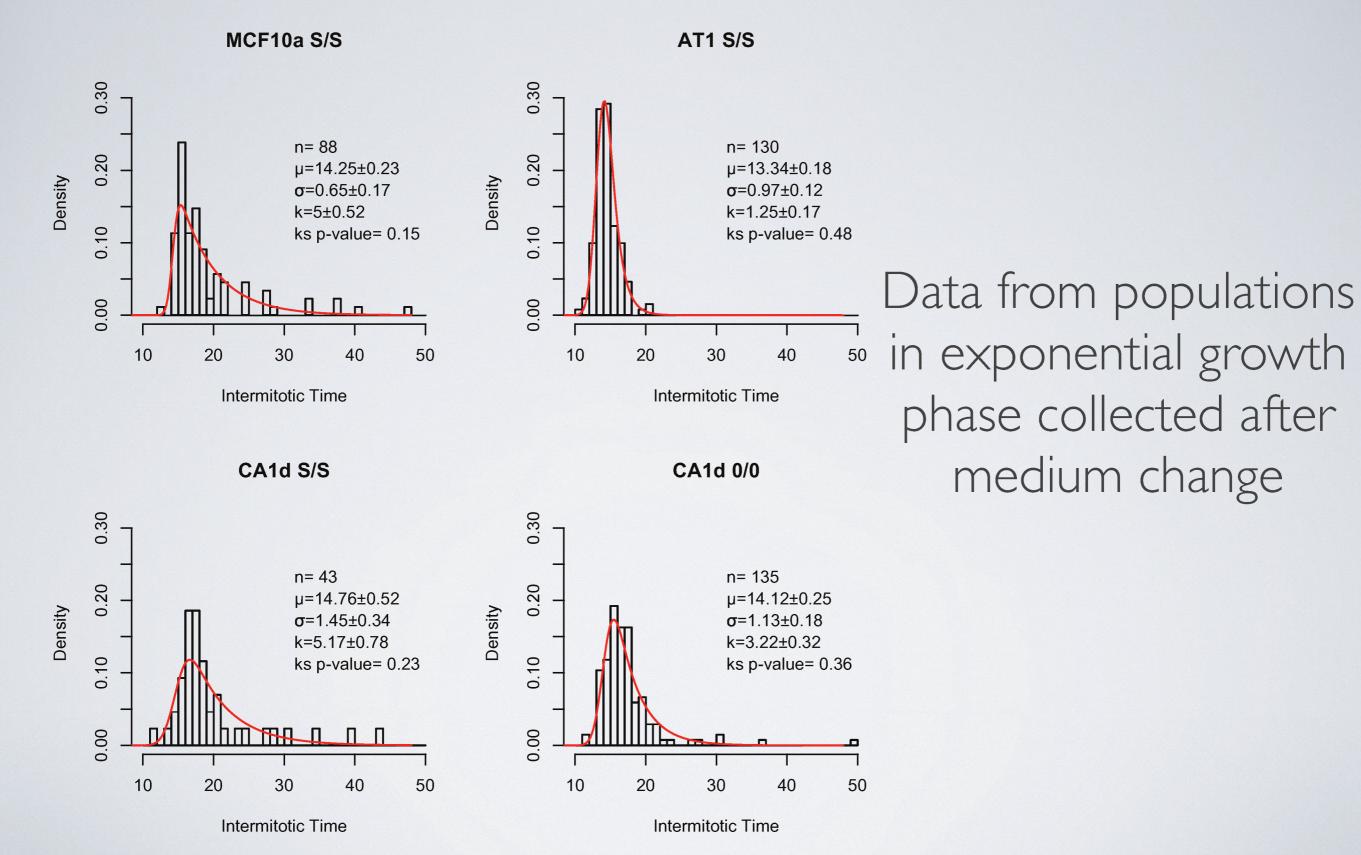
EMG COMPONENTS ARE SEPARABLE MATHEMATICALLY



EMG COMPONENTS HAVE PLAUSIBLE BIOLOGICAL CORRELATES

- Gaussian component could represent cell growth (biomass accumulation)
- Exponential component could represent a checkpoint function (requirements to be met, e.g. mitogens, space, nutrients, etc.)
- Cell cycle times may be determined by a threshold of biomass accumulation and a rate of transition through a checkpoint(s)

EMG MODEL FITS DATA



WASH AFFECTS E > G

AT1 S/S

MCF10a S/S

n= 127

µ=14.08±0.45

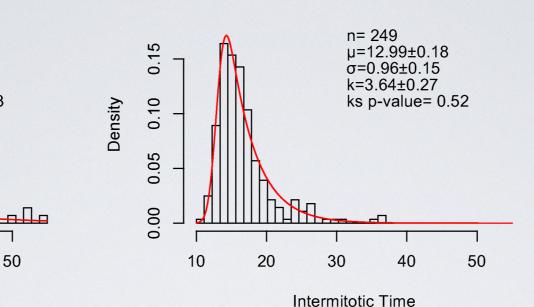
 $\sigma = 1.19 \pm 0.38$

k=10.67±0.95

ks p-value= 0.93

40

50



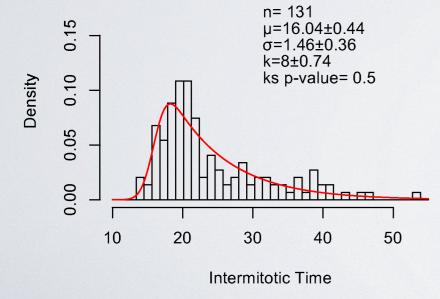
Data collected from 17 h before to 50 h after medium change

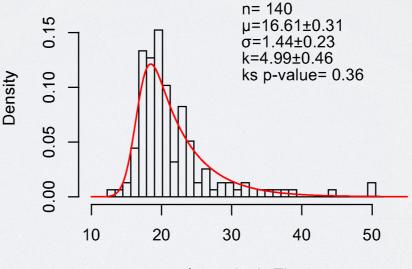
k values higher in each condition compared to previous

µ values are only slightly increased in CAId cells

30

Intermitotic Time





Intermitotic Time

CA1d 0/0

0.15

0.10

0.05

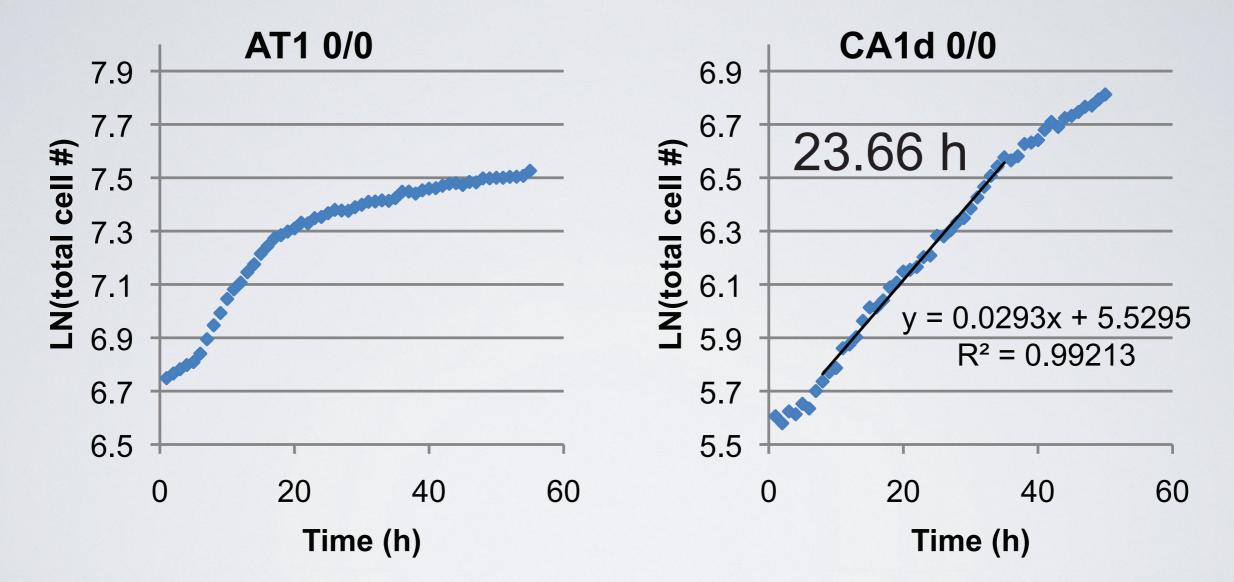
0.00

10

20

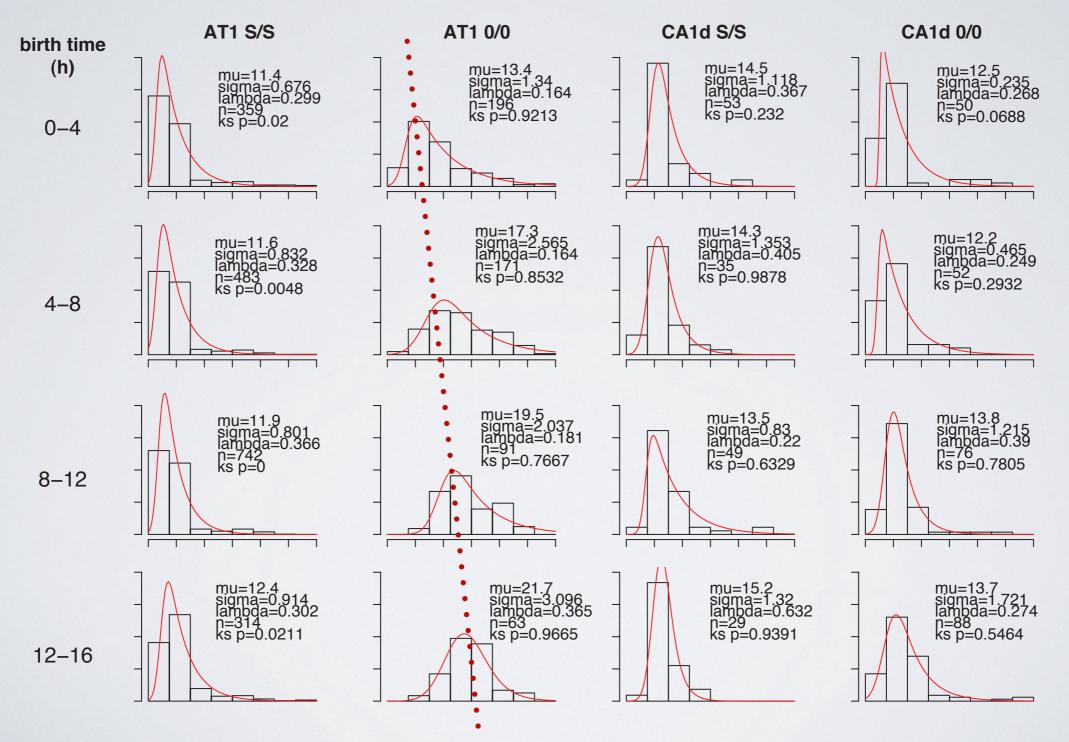
Density

SERUM-DEPRIVED CONDITIONS?

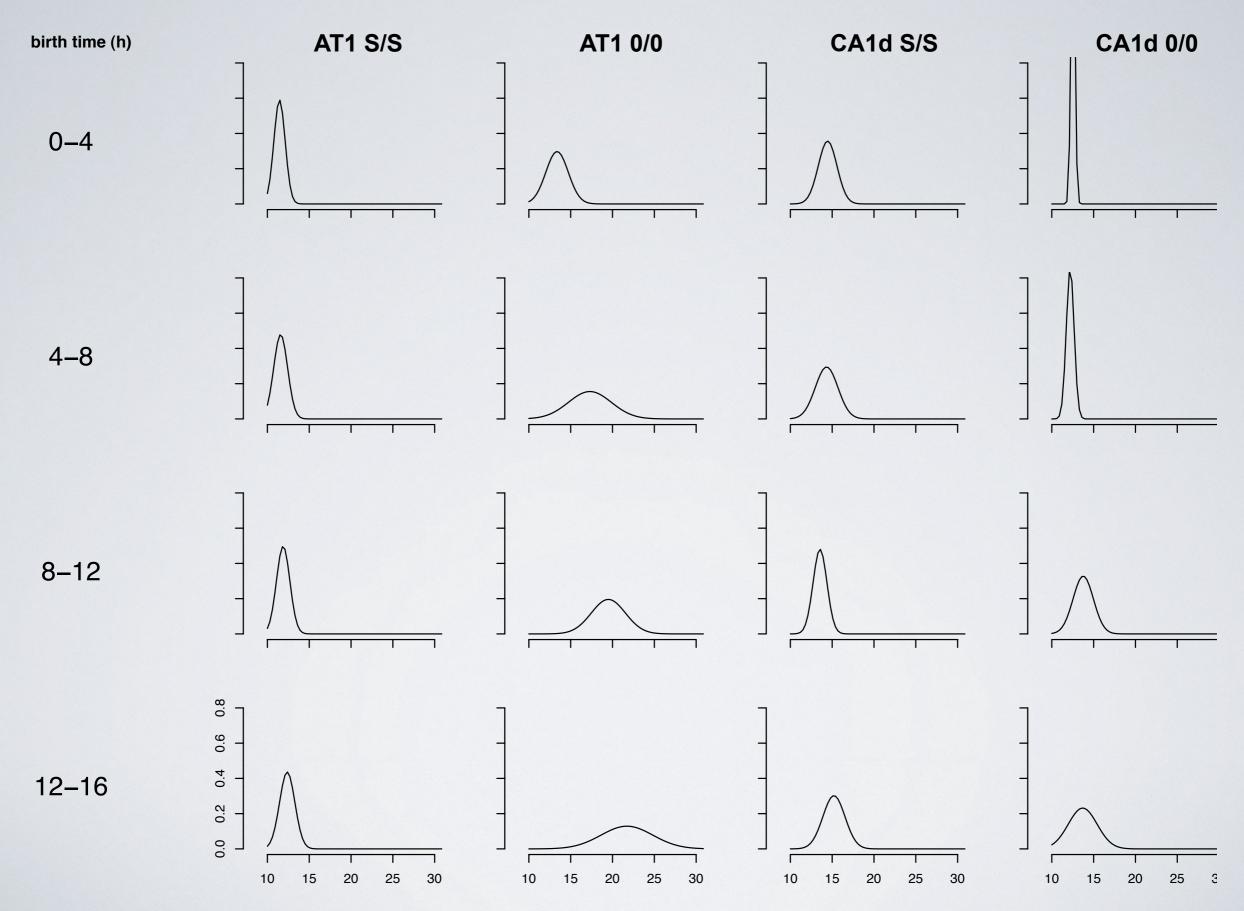


How does EMG fit data obtained during non-exponential growth (ATI 0/0)?

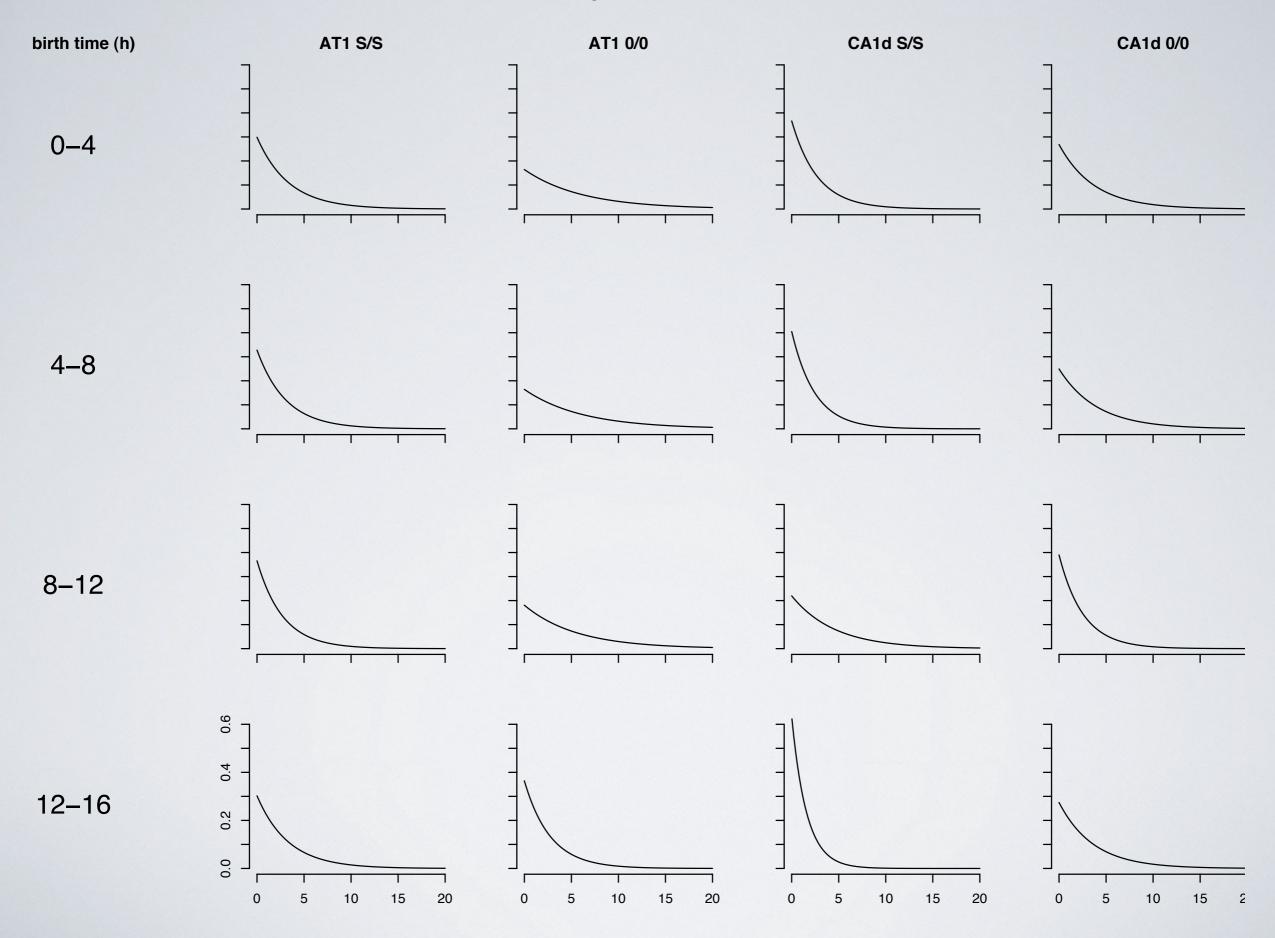
SERUM DEPRIVATION MAINLY AFFECTS G IN AT I CELLS



4/28+5/1 IMT Gaussian of EMG Fit



4/28+5/1 IMT Exponential of EMG Fit



Thursday, March 18, 2010

CONCLUSIONS

- Large datasets of cell division obtained by time lapse fluorescence microscopic imaging provide sufficient power to distinguish among mathematical models
- EMG model can be separated into two components with plausible biological correlates
- EMG model provides a useful tool for dissecting the molecular underpinnings of cell cycle control

FUTURE WORK

- Explore the biological correlates of the exponential and Gaussian components using molecular-targeted drugs that affect signaling pathways altered in cancer
- Attempt to generate stochastic simulations of signaling network models that can explain the single-cell distributions
- Correlate signaling events with cell cycle progression in individual cells

ACKNOWLEDGMENTS

CCSB @Vanderbilt (NCI)

- Vito Quaranta
- Lourdes Estrada
- Shawn Garbett
- Peter Frick
- Walter Georgescu
- Brandy Weidow
- Akshata Udyavar
- Jing Hao
- Jerome Jourquin

<u>OME/OMERO</u>

- Mike McCaughey (Vanderbilt)
- Dave Piston (Vanderbilt)
- Melissa Linkert (LOCI)
- Jason Swedlow (Dundee)

Immunofluorescence (MIT)

Gerry Ostheimer