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CELL DIVISION

•The process of cell division has been studied since 
first described by Rudolf  Virchow in 1855, “omnis 
cellula e cellula” ~ all cells come from cells

•Cancer is a disease of uncontrolled cell division

•Much is known about signaling pathways controlling 
cell division, especially due to the advent of “omics” 
technology coupled to mathematical models
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OUR CHALLENGE AS CANCER 
CELL BIOLOGISTS

•How can we link signaling network dynamics or 
states to the decision of single cells to divide? 

•First, it requires sufficiently large datasets of 
quantified cell cycle times
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TIME LAPSE LIVE-CELL IMAGING

•Used for decades to study cell division

•Direct measurement of individual cells in a 
population (no need to model or estimate 
single-cell behavior!)

•Throughput limited by laborious manual tracking and 
challenges of automatic identification of cells in images from 
transmitted light microscopy 

•Limitations alleviated by new instruments and 
computational tools
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IMAGE ACQUISITION
•High-content imager (BD Pathway 855)

•H2BmRFP-expressing cells in complete culture 
medium

•Cells are washed with serum-free medium and 
medium is replaced with complete or serum-
free medium

• Images are acquired every 6 min in confocal 
mode with 20X objective

•3 cell lines, 2 conditions, 6 replicates = 36 wells 
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MODEL SYSTEM
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H2B-LABELED CELL IMAGING

MCF10A

S/S 0/0
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SERUM-DEPRIVED

Exponential model not sufficient to describe change in 
MCF10A and AT1 population size over time 
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QUESTIONS

•What is the range of cell cycle times of cells comprising 
the populations of exponentially dividing cells?

• Are more slowly-dividing cells present?
• Is the range of cell cycle times different for non-tumorigenic 

cells vs cancer cells?

•Exactly how is rate of proliferation changing in response 
to serum deprivation? 

• Are some cells no longer dividing (accumulation in G1)?
• Are cell cycles longer in duration?

Need single-cell data to answer these questions

Thursday, March 18, 2010



AUTOMATED ANALYSIS

1.ID & track individual cells

2.Detect mitotic events (using several 
criteria)

3.Assign daughter cells new IDs

4.Record ancestry

5.Generate image stack for verification 
(generation indicated by color)

W. Georgescu
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Intermitotic Time (h)
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NON-GAUSSIAN

Kolmogorov-Smirnov test 0.0002

D'Agostino & Pearson < 0.0001

< 0.0001Shapiro-Wilk test

Kolmogorov-Smirnov test 0.0031

D'Agostino & Pearson < 0.0001

< 0.0001Shapiro-Wilk test

All normality tests failed
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IMT DISTRIBUTIONS

•The sum of many random processes would result in a 
Gaussian distribution (central limit theorum)

•A Gaussian distribution would be expected if the 
accumulation of one or more proteins are required at a 
certain level for cell division

•However, a Gaussian process (or inverse Gaussian) is 
insufficient to fit the distributions of intermitotic times, even 
those that appear normal

•Need additional component(s) to explain tails
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OTHER DISTRIBUTION 
MODELS

Models KS test parameters

log normal fail 2

inverse normal fail 2

gamma fail 2

exponentially-modified Gaussian pass 3

gamma-modified Gaussian pass 4
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EXPONENTIALLY-MODIFIED 
GAUSSIAN (EMG)

f(x|λ) = λe−λx (exponential distribution)

g(x|µ, σ) =
1

σ
√

2π)
e−

(x−µ)2

2σ2 (normal distribution)

emg(x|λ, µ, σ) =

∫

∞

0

f(t′)g(t − t′)dt′ (convolution)

emg(x|λ, µ, σ) =
λ

2
e

λ
2
(−2x+2µ+λσ2)

[

Erfc(
−x + µ + λσ2

σ
√

2
)

]

Shawn Garbett

! = exponential component (rate parameter)
k = 1/! (mean of exponential)
" = mean of Gaussian
# = Standard deviation of Gaussian
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EMG COMPONENTS ARE 
SEPARABLE MATHEMATICALLY
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EMG COMPONENTS HAVE 
PLAUSIBLE BIOLOGICAL 

CORRELATES
•Gaussian component could represent cell growth 
(biomass accumulation)

•Exponential component could represent a checkpoint 
function (requirements to be met, e.g. mitogens, space, 
nutrients, etc.)

•Cell cycle times may be determined by a threshold of 
biomass accumulation and a rate of transition through a 
checkpoint(s)
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SERUM-DEPRIVED 
CONDITIONS?

How does EMG fit data obtained during 
non-exponential growth (AT1 0/0)?
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birth time

(h)

AT1 S/S AT1 0/0 CA1d S/S CA1d 0/0
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SERUM DEPRIVATION MAINLY 
AFFECTS G IN AT1 CELLS
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birth time (h)
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birth time (h)
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CONCLUSIONS

• Large datasets of cell division obtained by time lapse 
fluorescence microscopic imaging provide sufficient 
power to distinguish among mathematical models

• EMG model can be separated into two components 
with plausible biological correlates 

• EMG model provides a useful tool for dissecting the 
molecular underpinnings of cell cycle control
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FUTURE WORK

•Explore the biological correlates of the exponential 
and Gaussian components using molecular-targeted 
drugs that affect signaling pathways altered in cancer

•Attempt to generate stochastic simulations of 
signaling network models that can explain the 
single-cell distributions

•Correlate signaling events with cell cycle 
progression in individual cells
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