Adaptive Radiotherapy The Next Frontier in Radiation Medicine

Michael Milosevic

Radiation Medicine Program
Princess Margaret Hospital and
University of Toronto
Toronto, Canada

Princess Margaret Hospital

Radiotherapy in the 21st Century: Individualized Treatment

Biology and molecular targeting

Synergistic strategies for improving tumor control and reducing side effects

Simple COPY COnformal Cancer

1980's: 60 Gy

The Evolution of Radiotherapy for Cancer

1990's: 70 Gy

2000's: 80 Gy

High Precision Radiotherapy

Linear accelerator with integrated CT imaging

Treat the tumor and avoid normal organs

Image-guided IMRT to ↑ tumor control and/or ↓ toxicity

Tumors Change

- Tumors are spatially heterogeneous
- Tumors are unstable
- Position changes
 - Inter-fraction, Intra-fraction
- Size and shape changes
- Biology changes

Liver metastasis

The Evolution of Adaptive RT

Adapting to Initial Conditions **Clinical setup**

Xray simulation

CT planning

On-line imaging Isocentre translation Motion reduction

On-line imaging Adaptive re-planning

- ↑ Technology
 Dependence
- **↑** Complexity
- ↑ "Human" Input
- ↑ QA
- ↑ Survival
- **↓** Toxicity

to Change

Adapting

M. Milosevic, 2010

Adapt to Changing Conditions

Cervix Cancer

Diagnosis

Cervix Cancer

Diagnosis

Mid-treatment

IMRT for Cervix Cancer

IMRT for Cervix Cancer Challenges

- Tumor and LN identification
 - Gross, microscopic, observer agreement
- Complex target volumes
- Tumor and normal tissue motion
- Tumor regression and deformation
- Clinical response to a shrinking target
- Online daily image quality
- Workload (contouring, planning, quality)

Cervix Cancer Motion, Regression, Deformation

INTER- AND INTRAFRACTIONAL TUMOR AND ORGAN MOVEMENT IN PATIENTS WITH CERVICAL CANCER UNDERGOING RADIOTHERAPY: A CINEMATIC-MRI POINT-OF-INTEREST STUDY

PHILIP CHAN, M.B.B.S.,*^{††} ROBERT DINNIWELL, M.D.,*^{†‡} MASOOM A. HAIDER, M.D.,^{§¶} YOUNG-BIN CHO, PH.D.,*[†] DAVID JAFFRAY, PH.D.,*[†] GINA LOCKWOOD, M.MATH.,^{||} WILFRED LEVIN, M.B.,*[†] LEE MANCHUL, M.D.,*[†] ANTHONY FYLES, M.D.,*^{†‡} AND MICHAEL MILOSEVIC, M.D.*^{†‡}

*Radiation Medicine Program, [§] Department of Medical Imaging, and [§] Clinical Study Coordination and Biostatistics, Princess Margaret Hospital/Ontario Cancer Institute, University Health Network, Toronto, ON, Canada; Departments of [†]Radiation Oncology and [†]Medical Imaging, and [‡]Institute of Medical Sciences, University of Toronto, ON, Canada

CERVICAL CANCER REGRESSION MEASURED USING WEEKLY MAGNETIC RESONANCE IMAGING DURING FRACTIONATED RADIOTHERAPY: RADIOBIOLOGIC MODELING AND CORRELATION WITH TUMOR HYPOXIA

KAREN LIM, M.B.B.S.,*† PHILIP CHAN, M.B.B.S.,* ROBERT DINNIWELL, M.D.,*†

ANTHONY FYLES, M.D.,*† MASOOM HAIDER, M.D.,^{‡§} YOUNG-BIN CHO, PH.D.,*| DAVID JAFFRAY, PH.D.,*†

LEE MANCHUL, M.D.,*† WILFRED LEVIN, M.D.,*† RICHARD P. HILL, PH.D.,†|¶

AND MICHAEL MILOSEVIC, M.D.*†

* Radiation Medicine Program, [‡]Department of Medical Imaging, and [‡]Division of Applied Molecular Oncology, Princess Margaret Hospital/Ontario Cancer Institute, University Health Network, Toronto, ON, Canada; Departments of [‡]Radiation Oncology, [‡]Medical Imaging, and [‡]Medical Biophysics, University of Toronto, Toronto, ON, Canada

Motion and deformation of the target volumes during IMRT for cervical cancer: What margins do we need?

Linda van de Bunt^{a,*}, Ina M. Jürgenliemk-Schulz^a, Gérard A.P. de Kort^b, Judith M. Roesink^a, Robbert J.H.A. Tersteeg^a, Uulke A. van der Heide^a

^aDepartment of Radiation Oncology, and ^bDepartment of Radiology, University Medical Center Utrecht, The Netherlands

An assessment of interfractional uterine and cervical motion: Implications for radiotherapy target volume definition in gynaecological cancer

Alexandra Taylor*, Melanie E.B. Powell

Department of Radiotherapy, St. Bartholomew's Hospital, London, UK

CERVIX REGRESSION AND MOTION DURING THE COURSE OF EXTERNAL BEAM CHEMORADIATION FOR CERVICAL CANCER

Beth M. Beadle, M.D., Ph.D.,* Anuja Jhingran, M.D.,* Mohammad Salehpour, Ph.D.,

Marianne Sam, B.S.,* Revathy B. Iyer, M.D.,

† and Patricia J. Eifel, M.D.*

Departments of *Radiation Oncology, †Radiation Physics, and †Diagnostic Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, TX

Cervix Cancer: Change During RT

Weekly MR imaging to track tumor movement

Tumor Regression During RT

Karen Lim, 2008

M. Milosevic, 2010

Cervix Motion During RT

Cervix (Week 1)

Point-of-Interest (POI) Analysis

Philip Chan, 2008

Uterine PTV Margins for IMRT

Cervix Cancer Motion Summary

- Complex, spatially-dependent motion
- Large inter-fraction tumor motion
- Small intra-fraction tumor motion
- Tumor regression and deformation

Cervix Cancer Motion Summary

- Complex, spatially-dependent motion
- Large inter-fraction tumor motion
- Small intra-fraction tumor motion
- Tumor regression and deformation
- How do these changes during treatment influence the dose delivered to the tumor and critical normal tissues?

Cervix Cancer Motion Dosimetric Impact of Margin Size

- 20 patients, weekly MR's
- 3 plans (50 Gy):
 - (a) Conventional
 - (b) 20 mm PTV
 - (c) 5 mm PTV
- "Delivered" dose accumulation over the course of treatment

Courtesy of Karen Lim

Deformable Soft Tissue Modeling

MORPHEUS: Mapping of weekly anatomy to planning geometry

Courtesy of Kristy Brock and James Stewart

Delivered Dose Accumulation

Dose-Difference Map

ORBIT: Mapping of delivered vs. planned dose to tumor and normal organs

Courtesy of Karen Lim and Val Kelly

Cervix Cancer Motion and Dose

Case 1

Case 2

4 weeks

Courtesy of Karen Lim and James Stewart

Cervix Cancer Motion Dosimetric Impact of Margin Size

Tumor coverage

Cervix Cancer Motion Dosimetric Impact of Margin Size

Tumor coverage

Normal organ sparing *Karen Lim, 2009*

Cervix Cancer Motion

Extreme, complex and unpredictable motion implies the need for:

- Daily image guidance
- Daily "adaptive" re-planning

Cervix Cancer Adaptive RT

1) IMRT with uniform 3mm PTV margin, no replanning

IMRT Plan
Optimization Function

Planning

Deliver

Criteria:

- D98% GTV > 50 Gy
- D98% CTV > 49 Gy
- D98% PTV > 47.5 Gy
- OARs subject to RTOG 0418 protocol

2) Automatic replan with pre-treatment optimization function

Cervix Cancer Adaptive RT

Summary

- Tumors move, shrink and change shape.
- Extreme, unpredictable anatomic changes can occur.
- Large safety margins are required to account for inter- and intra-fraction movement and avoid missing tumor.
- Smaller margins may be feasible with daily online imaging and adaptive replanning, allowing dose escalation and/or normal tissue sparing.
- Opportunities for research and development
 - Daily online image quality, automated contouring, automated replanning, quality assurance, biologic adaptation

OCAIRO

Ontario Consortium for Adaptive Interventions in Radiation Oncology

- Alliance of 7 Ontario institutions
- Inter-disciplinary
- Funding from Ontario Research Fund
- Research Themes:
 - 3D/4D imaging for adaptive RT
 - Adaptive RT processes
 - Validation of imaging, deformation and dose accumulation techniques
 - Software development for clinical translation

Princess Margaret Hospital

Radiation Oncology: A. Fyles, W. Levin, L. Manchul, K. Lim, P. Chan

Medical Physics: Y-B Cho, K. Brock, D. Jaffray, J. Jezioranski, I. Yeung,

T. Craig, J. Stewart, J. Moseley, M. Sharpe, J, Xie

Medical Imaging: M. Haider

Radiotherapy: V. Kelly, J. Paterson

Biostatistics: M. Pintilie, G. Lockwood

RaySearch Laboratories AB

A. Lundin, H. Rehbinder, J. Löf

Supported by:

Canadian Cancer Society

Terry Fox Foundation

Giovanni and Concetta Guglietti Family Trust