Cycling Without Cyclins: New Views on the Oscillator

Steve Haase

Duke Center for Systems Biology

Cyclin Dependent Kinase (CDK)

A simple cell-cycle oscillator model:

embryonic systems

Somatic Cell Cycles

- extended cell-cycle period
- multiple cyclin/CDKs

Budding yeast cell cycle

Budding Yeast

From The Cell Cycle: Principles of Control by David O Morgan

∆*clb1,2,3,4,5,6 GAL-CLB1*

Examine global transcription dynamics

Wild-type

Cyclin mutant

time ----

Orlando et al., Nature 2009

How is periodic transcription regulated in cyclin mutants?

Could a TF network function as an oscillator independent of cyclin/CDKs?

- Nodes: TFs that maintain periodic transcription in cyclin mutants
- Edges: high confidence TF/promoter interactions p
- < .001

A synchronously updating Boolean model

A transcription network oscillator model

- functions independent of S-phase and mitotic CDKs
- independent of cell-cycle progression
- temporal transcription program
- robust oscillations with similar period

(Socolar and Harer groups: autonomous Boolean models)

Outstanding questions:

1. Can the network oscillator function independent of all cyclin/CDKs?

2. What happens to network oscillator function during a checkpoint arrest?

3. Transcription network oscillator in bigger eukaryotes?

What's wrong with this network model? this network is more complex...

- nodes were pruned if they had no inputs or outputs. Edges (p < .001)

Does network function require G1 cyclins?

- Goal: identify complete network

Can G1 cyclins function as an oscillator?

Transcriptional profiling in cells lacking all cyclin/CDK activities

- Temperature sensitive mutation of Cdk1 (cdc28-4)

-*cdc28-4* mutant cells arrest in G1 (no apparent periodic activities)

Wild-type

 $\Delta clb1,2,3,4,5,6$

cdc28-4

A role for CDKs in regulating transcriptional oscillations?

Amplitude is lost when cyclin/CDK activities are reduced

Wild-type

∆*clb1,2,3,4,5,6*

cdc28-4

Damped oscillations in cells lacking cyclin/CDK activities?

Wild-type

(-) B-cyclin/CDK

(-) all cyclin/CDK

- network oscillator can function independent of all cyclin/CDKs

- cyclin/CDKs contribute to robust cell cycle oscillations

- cyclin/CDKs act as effectors of the oscillator

yeast cells (somatic cells)

Somatic cells and yeast cells

CDKs as effectors of TX network oscillator?

- periodic events should be determined by the cyclins expressed...

CDKs present

none (*cdc28-4*)

G1-CDKs (∆*clb1,2,3,4,5,6*)

cyclic behaviors

G1- and S-CDKs $(\Delta clb1, 2, 3, 4, 5 CLB6)$ Clb6 = cyclin E

CDKs as effectors of transcriptional oscillator?

CDKs present

cyclic behaviors

none (*cdc28-4*)

none

G1-CDKs (∆*clb1,2,3,4,5,6*)

budding

G1- and S-CDKs (\(\triangle clb1, 2, 3, 4, 5\)

budding, DNA replication, SPB duplication

Somatic cells and yeast cells

Somatic cells and yeast cells

Acknowledgements

The Haase Lab

Cell Cycle Systems

Dave Orlando Chenchen Huang

Charles Lin Michael Mayhew

Jianghai Ho Mark Chee

Sara Bristow Leslie Petaya

Rosie Jiang Christine Nelson

Yuanjie Jin

Laura Simmons Kovacs

Funding

- American Cancer Society
- Institute for Genome Science and Policy, Duke
- NIH
- NSF

Collaborators (Duke)

Alex Hartemink Philip Benfey Allister Bernard Jean Wang

Ed Iversen

Josh Socolar

John Harer

Sayan Mukherjee

Mike Jenista

