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The question.

Somewhat over a decade ago, R. Fefferman asked me the
following question: does the strong maximal operator Ms map
rectangular A∞ weights into rectangular A1?
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Background: Maximal Functions

Recall the Hardy-Littlewood maximal function M, defined
on f ∈ L1

loc(R) by

Mf (x) = sup
Q3x

1
|Q|

∫
Q
|f (y)|dy .

The strong maximal function Ms is defined on f ∈ L1
loc(R2)

by

Msf (x) = sup
R3x

1
|R|

∫
R
|f (y)|dy .
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The class Ap, 1 < p <∞

Recall a non-negative function w ∈ L1
loc is an Ap weight

(p > 1) if

sup
Q

(
1
|Q|

∫
Q

w
)(

1
|Q|

∫
Q

w−
1

p−1

)p−1

<∞.

w ∈ Ap,s (p > 1) (“rectangular Ap”) if

sup
R

(
1
|R|

∫
R

w
)(

1
|R|

∫
R

w−
1

p−1

)p−1

<∞.

Ou Structure results on A∞



Background and first approach
Second approach: natural maximal function

Third approach: Bellman method

The class Ap, 1 < p <∞

Recall a non-negative function w ∈ L1
loc is an Ap weight

(p > 1) if

sup
Q

(
1
|Q|

∫
Q

w
)(

1
|Q|

∫
Q

w−
1

p−1

)p−1

<∞.

w ∈ Ap,s (p > 1) (“rectangular Ap”) if

sup
R

(
1
|R|

∫
R

w
)(

1
|R|

∫
R

w−
1

p−1

)p−1

<∞.

Ou Structure results on A∞



Background and first approach
Second approach: natural maximal function

Third approach: Bellman method

The class Ap, 1 < p <∞

Basics:
∪p>1Ap =: A∞.
There is a “best” Ap class A1 ⊂ ∩pAp; viz., all w such that
Mw(x) ≤ cw(x) a.e.
w ∈ Ap for some p > 1 if and only if w ∈ RHs, for some
s > 1, i.e., satisfies some reverse Hölder inequality,

1
|Q|

∫
Q

w ≤
(

1
|Q|

∫
Q

ws
)1/s

≤ C
1
|Q|

∫
Q

w

for all cubes Q ⊂ Rn.
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M maps A∞ into A1

First approach: Johnson-Neugebauer
Coifman-Rochberg (’80): given any f ∈ L1

loc(R), any
δ ∈ (0,1),

(Mf )δ ∈ A1.

Since for any weight w ∈ RHs,

Mw ≈ (Mws)1/s,

we see Mw must be an A1 weight.
The trouble: for Ms, however, Coifman-Rochberg fails
(counterexample, F. Soria).
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Trying to circumvent Coifman-Rochberg

Second approach: M : A∞ → A1

Closely related fact: M : BMO → BLO, the functions of
bounded lower oscillation, i.e., all φ such that
supQ

1
|Q|
∫

Q φ− infQφ <∞.

(Recall log A∞ ⊂ BMO, log A1 ⊂ BLO)
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Trying to circumvent Coifman-Rochberg

Modify the maximal operator M: consider the natural
maximal operator M\ (introduced by C. Bennett), given by

M\f (x) = sup
B3x

1
|B|

∫
B

f ,

then
BLO = {φ |M\φ(x) ≤ φ(x) + C a.e.}.
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Trying to circumvent Coifman-Rochberg

M\ commutes with the logarithm (on A∞):
Any w ∈ A∞ satisfies a reverse Jensen inequality

e
1
|Q|

R
Q log w ≤ 1

|Q|

∫
Q

w ≤ A∞(w)e
1
|Q|

R
Q log w

,

taking supremums and logarithms yields

0 ≤ [log M\ −M\ log]w ≤ log A∞(w),

i.e., M\ commutes with log on A∞.
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Trying to circumvent Coifman-Rochberg

We want to show MMw(x) ≤ CMw(x):
Using the commutation twice, we get

eM\M\ log w ≤ MMw ≤ A∞(w)A∞(Mw)eM\M\ log w .

i.e.,
MMw ≈ eM\M\ log w

The boundedness of M\ : BMO → BLO implies

≤ eM\ log w+||M\ log w ||BLO ≈ e||M
\ log w ||BLO Mw

So M maps A∞ into A1 again.
Trouble: we don’t know Ms : bmos → blos.
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Background and first approach
Second approach: natural maximal function

Third approach: Bellman method

Digression: Refined Jones Factorization

As a side bonus, commutation yields the following
characterizations:

w ∈ A1 ⇐⇒ w ∈ A∞ ∩ eBLO

w ∈ RH∞ ⇐⇒ w ∈ eBUO(= e−BLO).

And these can be used to clarify a generalized Jones
factorization due to Cruz-Uribe and Neugebauer:

w ∈ Ap ∩ RHs ⇐⇒ w = w0w1,

where w0 ∈ A1 ∩ RHs and w1 ∈ Ap ∩ RH∞
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Digression: Refined Jones Factorization

The crucial step in Cruz-Uribe–Neugebauer’s proof of the
generalized Jones factorization is the following.

Lemma: w ∈ A1 ⇐⇒ w1−p ∈ Ap ∩ RH∞.
Proof:

w ∈ A1 ⇐⇒ w ∈ A∞∩eBLO ⇐⇒
{

w ∈ Ap′

w1−p ∈ eBUO = RH∞

}
⇐⇒

{
w1−p ∈ Ap

w1−p ∈ RH∞

}
.
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Digression: Refined Jones Factorization

Proof (of refined Jones factorization):
w ∈ Ap ∩ RHs ⇐⇒ ws ∈ As(p−1)+1

⇐⇒ ws = v0v1−[s(p−1)+1]
1 = v0v−s(p−1)

1 (by original Jones
factorization)
⇐⇒ w = v1/s

0 v1−p
1 ; v0, v1 ∈ A1;

take w0 = v1/s
0 , w1 = v1−p

1 .
By the first line, w0 ∈ A1 ∩ RHs; by the lemma,
w1 ∈ Ap ∩ RH∞.
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Background and first approach
Second approach: natural maximal function

Third approach: Bellman method

Getting back to the question of Ms : A∞ → A1

Third approach: the Bellman method.
Bellman-type methods introduced by Burkholder in the
’80s then used with great effect by Nazarov, Treil, and
Volberg, starting in ’95. Recently undergone great
evolution, starting with Vasyunin in ’03 (and then Dindos,
Slavin, Stokolos, Vasyunin, Volberg, Wall, etc. to sharpen
various results)
E.g., Vasyunin (’03), Dindos and Wall (’06) on Ap and RHs;
Slavin, Stokolos, and Vasyunin (’08) used it to get sharp
bounds for M on Lp(R).
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Getting back to the question of Ms : A∞ → A1

Third approach: the Bellman method.
Bellman-type methods introduced by Burkholder in the
’80s then used with great effect by Nazarov, Treil, and
Volberg, starting in ’95. Recently undergone great
evolution, starting with Vasyunin in ’03 (and then Dindos,
Slavin, Stokolos, Vasyunin, Volberg, Wall, etc. to sharpen
various results)
E.g., Vasyunin (’03), Dindos and Wall (’06) on Ap and RHs;
Slavin, Stokolos, and Vasyunin (’08) used it to get sharp
bounds for M on Lp(R).

Ou Structure results on A∞



Background and first approach
Second approach: natural maximal function

Third approach: Bellman method

The New Bellman Philosophy

Meta-observation: Many of the objects (“B”, say) of interest
depend on, or are relations between, “martingale variables,”
i.e., constructs V which satisfy a relation of the form

V =
V− + V+

2
.

Such objects/concepts themselves often also satisfy a
“pseudo-concavity” condition

B(V ) '
B(V−) + B(V+)

2
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Background and first approach
Second approach: natural maximal function

Third approach: Bellman method

The New Bellman Philosophy

These two facts together force the constructs of interest to be
solutions of Monge-Ampère PDEs; further, such problems can
be solved for explicitly (via "Bellman foliations
(Vasyunin-Volberg)), yielding sharp results.

Hope: to use the Bellman approach to re-prove the
classical M : A∞ → A1 (in the dyadic case) without
Coifman-Rochberg. Then (if possible) generalize for Ms.
(Work in progress with Slavin)
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Bellman Approach to M : A∞ → A1

Let M denote the dyadic maximal operator

Mf (x) = sup
I3x
〈f 〉I ,

supremum of averages over all dyadic intervals I 3 x .
w ∈ Aδ∞ means that for all dyadic intervals I,

〈w〉I ≤ δe
〈log w〉I .
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Bellman Approach to M : A∞ → A1

We hope to show Mw ∈ A1 i.e., 〈Mw〉I ≤ C infI Mw , so we
define the Bellman function

B(x1, x2,L) = sup
w ∈ Aδ∞
〈w〉I = x1
〈log w〉I = x2

supR⊃I〈w〉R = L

1
|I|

∫
I
Mw

(Ωδ = {(x1, x2,L) : log(x1
δ ) ≤ x2 ≤ log x1; 0 < x1 ≤ L} is the

domain of B).
In the dyadic case, L = infI Mw ; so to show Mw ∈ A1, “all”
we must do is show that B(x1, x2,L) ≤ CL.
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Problem: how do we figure out what B is?
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Second approach: natural maximal function

Third approach: Bellman method

Simple observations about B

Homogeneity: If instead we take the supremum over
w̃ = τw ∈ Aδ∞, τ > 0, we see that

τB(x1, x2,L) = B(τx1, x2 + log τ, τL).

Differentiating with respect to τ and setting τ = 1 yields

x1Bx1 + Bx2 + LBL = B

Boundary condition: On the boundary x2 = log x1 of Ωδ, w
must be constant; thus

B(x1, log x1,L) = L.
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Background and first approach
Second approach: natural maximal function

Third approach: Bellman method

Key observation about B: pseudoconcavity

Pseudoconcavity: Fix L > 0, and choose x−, x+ such that
1
2(x−1 + x+

1 ) ≤ L. Taking the supremum of

〈Mw〉I =
1
2
〈Mw〉

I−
+

1
2
〈Mw〉

I+

over weights w ∈ Aδ∞ such that (〈w〉
I±
, 〈log w〉

I±
) = x±, we

see that (since supR⊃Q±〈w〉R = max
{

supR⊃Q〈w〉R , x
±
1

}
),

B(
1
2

(x−+x+),L) ≥ 1
2

B(x−,max{L, x−1 })+
1
2

B(x+,max{L, x+
1 }).

The above is the key to getting that differential inequalities
that lead to a Monge-Ampère problem.
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Getting differential inequalities

Notice that if, in the pseudoconcavity condition, we take
x−, x+ ∈ ωδ close enough to x , and such that x = 1

2(x− + x+).
then L± = max{L, x±1 } = L and so pseudoconcavity becomes
concavity:

B(x ,L) ≥ 1
2

B(x−,L) +
1
2

B(x+,L).

This means that, everywhere in Ωδ where B is sufficiently
differentiable, we must have negative semidefiniteness of the
Hessian of B,

d2
xB =

[
Bx1x1 Bx1x2

Bx1x2 Bx2x2

]
.
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Getting differential inequalities: Sketch

On the infinitesimal scale, the pseudoconcavity condition (plus
the fact that x1 and x2 are “martingale variables” forces (on the
boundary L = x1),

−1
8

(∆x)T d2
xB(x , x1)(∆x)+

1
2

BL(x , x1)(x1−x+
1 )+o(‖∆x‖2) ≥ 0.

The first term is non-negative and of the second order, while
the second term is non-positive (since BL ≥ 0 and (wlog)
x1 < x+

1 ) and of the first order. Thus we must have

BL(x , x1) = 0.
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The Monge-Ampère Boundary Value Problem

Further, roughly speaking, the fact that the Bellman
function is the minimum of all candidates satisfying the
pseudoconcavity condition causes us to demand that the
Hessian be singular, i.e.,

Bx1x1Bx2x2 = B2
x1x2

.

All together, we have the following Monge-Ampère
boundary value problem:

Bx1x1Bx2x2 = B2
x1x2

, Bx2x2 ≤ 0,

BL(x , x1) = 0, B(x1, log x1,L) = L

x1Bx1 + Bx2 + LBL = B
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Theorem (Vasyunin-Volberg)

Let Ω be a plane domain and G = G(x1, x2) be a C2 function
satisfying the homogeneous Monge–Ampère equation in Ω :

Gx1x1Gx2x2 = G2
x1x2

, (1)

and such that either Gx1x1 6= 0 or Gx2x2 6= 0.
Then there are differentiable functions t0, t1, t2 of (x1, x2) such
that

G = t1x1 + t2x2 + t0 (2)

and tk are constant on each integral trajectory generated by the
kernel of the Hessian d2G. Moreover, these integral trajectories
are straight lines given by

x1dt1 + x2dt2 + dt0 = 0. (3)
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x2 = log x1

x2 = log(x1/δ)

x2 = x1/L− 1− log(L/δ) x1 = L

a = L

u = ξ1L

q
q

Q
Q

Qs
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Solving for the Bellman candidate in the lower region, it
turns out to be

B(x) =
1
ξ

(a
L

)ξ/(1−ξ)
(x1 − aξ) + L,

where a is the x1 coordinate of the tangent point
(a, log(a/δ)) of the line of foliation

x2 =
x1

a
− 1 + log

(a
δ

)
,

and ξ the lesser root of the equation ξ − log ξ = 1 + log δ.
We also have an expression for the Bellman candidate in
the upper region, and the bound C appears to be 1

ξ . (Still
not finished: need to check various points.)
Trouble: would this work for Ms?
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Thank you for your attention.
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