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Review of the Corona Problem in One Variable

The Corona Problem for H∞(D)

The Banach algebra H∞(D) is the collection of all analytic
functions on the disk such that

||f ||H∞(D) = sup
z∈D
|f (z)| <∞.

To each z ∈ D we can associate a multiplicative linear
functional on H∞(D) (point evaluation at z)

ϕz(f ) = f (z)

Let ∆ denote the maximal ideal space of H∞(D). (Maximal
ideals = kernels of nontrivial multiplicative linear functionals.)
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Gelfand Theory of Commutative Banach Algebras

Suppose X is a commutative Banach algebra with an identity
element and let ∆ be its maximal ideal space. (A maximal
ideal is the kernel of a nontrivial multiplicative linear
functional on X .) When equipped with the weak topology, ∆
is a compact Hausdorff space. Define the Gelfand transform
Λ : X → C (∆), x̂(h) = h(x).

Then the Gelfand transform is a continuous algebra
homomorphism from X onto a subalgebra X̂ of C (∆) with
kernel the intersection of all maximal ideals.

One would like to know more about the compact Hausdorff
space ∆ in specific situations. For example, when X is a nice
Banach algebra of functions on a set Ω, then Ω is embedded
in ∆ via the point evaluations, and the question arises as to
whether or not Ω is dense in ∆.
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The Corona Problem for H∞(D)

In 1941, Kakutani asked if there was a Corona in the maximal ideal
space ∆ of H∞(D), i.e. whether or not the disk D was dense in ∆.
One then defines the Corona of the algebra to be ∆ \ D.
In 1962, Lennart Carleson proved the absence of a Corona by
showing that if {gj}Nj=1 is a finite set of functions in H∞(D)
satisfying

0 < δ ≤
N∑

j=1

|gj(z)|2 ≤ 1, z ∈ D,

then there are functions {fj}Nj=1 in H∞(D) with

N∑
j=1

fj(z) gj(z) = 1, z ∈ D and
N∑

j=1

||fj ||H∞(D) ≤ C (δ).
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Extensions of the Corona Problem

The point of departure for many generalizations of Carleson’s
Corona Theorem is the following:

Observation

H∞(D) is the (pointwise) multiplier algebra of the classical Hardy
space H2(D) on the unit disc.

Namely, let MH2(D) denote the class of functions ϕ such that

||Mϕf ||H2(D) ≤ C ||f ||H2(D), ∀f ∈ H2(D) (1)

with ||ϕ||MH2(D)
= inf{C : (1) holds}. Here Mϕ is the multiplier

operator on H2(D) defined by Mϕf = ϕf . It can be shown that
ϕ ∈ H∞(D) if and only if ϕ ∈ MH2(D) and ||ϕ||MH2(D)

= ||ϕ||H∞(D).
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Besov-Sobolev Spaces

The spaces Bσ
2 (Bn) are examples of reproducing kernel

Hilbert spaces.

Namely, for each point λ ∈ Bn there exists a function
kλ ∈ Bσ

2 (Bn) such that

f (λ) = 〈f , kλ〉Bσ
2
.

It isn’t too difficult to show that the kernel function kλ is
given by

kλ(z) =
1

(1− λz)
2σ
.

σ = 1
2 : the Drury-Arveson Hardy space H2

n ; kλ(z) = 1
(1−λz)

.

σ = n
2 : the classical Hardy space H2(Bn); kλ(z) = 1

(1−λz)
n .

σ = n+1
2 : the Bergman space B(Bn); kλ(z) = 1

(1−λz)
n+1 .
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Besov-Sobolev Spaces

The space Bσ
2 (Bn) consists of all holomorphic functions f on

the unit ball Bn such that(
m−1∑
k=0

∣∣∣f (k) (0)
∣∣∣2 +

∫
Bn

∣∣∣∣(1− |z |2
)m+σ

f (m) (z)

∣∣∣∣2 dλn (z)

) 1
2

<∞,

where dλn (z) =
(

1− |z |2
)−n−1

dV (z) is the invariant

measure on Bn,
(

1− |z |2
)

f
′
(z) is an ”invariant” derivative

and m > n
2 − σ.

σ < 0 : Bσ
2 (Bn) is contained in C (Bn) and ∆ = Bn.

σ = 0 : the Dirichlet space D(Bn);
σ = 1

2 : the Drury-Arveson Hardy space H2
n ;

σ = n
2 : the Classical Hardy space H2(Bn);

σ = n+1
2 : the Bergman space B(Bn).
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The DA Hardy space

The first hint that the classical Hardy space H2(Bn) (consisting of
holomorphic functions on the ball with L2(σ) boundary values)
may not be the correct generalization of the classical Hardy space
on the disk came with the failure of the von Neumann’s inequality
in higher dimensions. Recall the classical inequality:

Theorem (von Neumann 1951 [19])

Let H be a Hilbert space and let f be a complex-valued
polynomial. Then for any contraction T on H,

||f (T )||H→H ≤ ||f (S∗)||H2→H2 = ||f ||H∞(D),

where S∗ is the backward shift operator on H2 = H2(D).

Drury found the correct generalization to the multivariable setting.
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Drury’s generalization

Let A = (A1, . . . ,An) be an n-contraction on a complex
Hilbert space H with pairwise commuting components
satisfying

∑n
j=1 ||Ajh||2 ≤ ||h||2 for all h ∈ H

Drury showed in 1978 [15] that if f is a complex polynomial
on Cn, then ||f (A)|| ≤ ||f ||MK(Bn)

for all n-contractions A on
H where ||f (A)|| is the operator norm of f (A) on H, and
||f ||MK(Bn)

denotes the multiplier norm of the polynomial f on
Drury’s Hardy space of holomorphic functions

K(Bn) =

{∑
k

akzk , z ∈ Bn :
∑
k

|ak |2
k!

|k |!
<∞

}
,

denoted H2
n by Arveson in 1998 [8], who also proves Drury’s

inequality.
Moreover, equality holds above when A = (S∗1 , . . . ,S

∗
n ).
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Chen’s identification of the DA space

In 2003 Chen [12] has identified the Drury-Arveson Hardy

space K(Bn) = H2
n as the Besov-Sobolev space B

1
2
2 (Bn)

consisting of those holomorphic functions
∑

k akzk in the ball
with coefficients ak satisfying∑

k

|ak |2
|k|n−1(n − 1)!k!

(n − 1 + |k|)!
<∞.

The multiplier norms are equivalent: ||f ||MK(Bn)
≈ ||f ||M

B
1
2
2

(Bn)

.

We note that a number of operator-theoretic properties of the
space H2

n are developed by Arveson in [8], including model
theory, that establish its central position in multivariable
operator theory.
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Multiplier Algebras of Besov-Sobolev Spaces MBσ
2 (Bn)

We are interested in the multiplier algebras MBσ
2 (Bn) for

Bσ
2 (Bn). A function ϕ belongs to MBσ

2 (Bn) if

||ϕf ||Bσ
2 (Bn) ≤ C ||f ||Bσ

2 (Bn), ∀f ∈ Bσ
2 (Bn)

||ϕ||MBσ
2

(Bn)
= inf{C : the above inequality holds}.

It can be shown that MBσ
2 (Bn) = H∞(Bn) ∩ X σ2 (Bn), where

X σ2 (Bn) is the collection of functions ϕ such that

dµϕ,m =

∣∣∣∣(1− |z |2
)m+σ

ϕ(m) (z)

∣∣∣∣2 dλn (z) is a Carleson

measure. That is, for all f ∈ Bσ
2 (Bn) :∫

Bn

|f (z) |2
∣∣∣∣(1− |z |2

)m+σ
ϕ(m) (z)

∣∣∣∣2 dλn (z) ≤ C 2||f ||2Bσ
2 (Bn)

with ||ϕ||Xσ
2 (Bn) = inf{C : the above inequality holds}.
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Multiplier Algebras of Besov-Sobolev Spaces MBσ
2 (Bn)

The boundedness of multipliers is shown via a standard
argument. Namely, if ϕ ∈ MBσ

2 (Bn), then ϕ = Mϕ1 is in
Bσ

2 = Bσ
2 (Bn) since 1 ∈ Bσ

2 . Here Mϕ is the multiplier
operator on Bσ

2 defined by Mϕf = ϕf . The adjoint M∗ϕ of the
multiplier operator Mϕ is bounded on (Bσ

2 )′, and if ez is the
point evaluation functional at z on Bσ

2 , then

〈f ,M∗ϕez〉 = 〈Mϕf , ez〉 = ϕ(z)f (z) = ϕ(z)〈f , ez〉 = 〈f , ϕ(z)ez〉

for every f ∈ Bσ
2 (Bn). This shows that M∗ϕez = ϕ(z)ez . Thus

|ϕ(z)| ||ez ||(Bσ
2 )′ = ||M∗ϕez ||(Bσ

2 )′ ≤ ||M∗ϕ|| ||ez ||(Bσ
2 )′ .

This implies that |ϕ(z)| ≤ ||M∗ϕ|| = ||Mϕ|| since
||ez ||(Bσ

2 )′ <∞.
We have ||ϕ||MBσ

2
(Bn)
≈ ||ϕ||H∞(Bn) + ||ϕ||χσ

2 (Bn).
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The Corona Problem for MBσ
2 (Bn)

We wish to study a generalization of Carleson’s Corona Theorem
to higher dimensions and additional function spaces.

Question (Corona Problem)

Given g1, . . . , gN ∈ MBσ
2 (Bn) satisfying 0 < δ ≤

∑N
j=1 |gj(z)|2 ≤ 1

for all z ∈ Bn, does there exist a constant Cn,σ,N,δ(g) and
functions f1, . . . , fN ∈ MBσ

2 (Bn) satisfying

N∑
j=1

||fj ||MBσ
2

(Bn)
≤ Cn,σ,N,δ(g)

N∑
j=1

fj(z)gj(z) = 1, z ∈ Bn?
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The Baby Corona Problem

It is easy to see that the Corona Problem for MBσ
2 (Bn) implies a

”simpler” question that one can consider.

Question (Baby Corona Problem)

Suppose we are given g1, . . . , gN ∈ MBσ
2 (Bn) satisfying

0 < δ ≤
∑N

j=1 |gj(z)|2 ≤ 1 for all z ∈ Bn. Does there exist a
constant Cn,σ,N,δ(g) such that for every h ∈ Bσ

2 (Bn) there exist
functions f1, . . . , fN ∈ Bσ

2 (Bn) satisfying

N∑
j=1

||fj ||2Bσ
2 (Bn)

≤ Cn,σ,N,δ(g)||h||2Bσ
2 (Bn)

N∑
j=1

fj(z)gj(z) = h(z), z ∈ Bn?
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Baby Corona Theorem for Bσ
p (Bn)

Theorem (ŞC, Eric T. Sawyer, Brett D. Wick (2008))

Let 0 ≤ σ and 1 < p <∞. Given g1, . . . , gN ∈ MBσ
p (Bn) satisfying

0 < δ ≤
∑N

j=1 |gj(z)|2 ≤ 1, z ∈ Bn, there exists a constant
Cn,σ,N,p,δ(g) such that for each h ∈ Bσ

p (Bn) there are functions
f1, . . . , fN ∈ Bσ

p (Bn) satisfying

N∑
j=1

||fj ||pBσ
p (Bn)

≤ Cn,σ,N,p,δ(g)||h||pBσ
p (Bn)

N∑
j=1

fj(z)gj(z) = h(z), z ∈ Bn.
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The Corona Theorem for MBσ
2 (Bn)

Corollary (ŞC, Eric T. Sawyer, Brett D. Wick (2008))

Let 0 ≤ σ ≤ 1
2 . Given g1, . . . , gN ∈ MBσ

2 (Bn) satisfying

0 < δ ≤
∑N

j=1 |gj(z)|2 ≤ 1, z ∈ Bn, there exists a constant
Cn,σ,N,δ(g) and there exist functions f1, . . . , fN ∈ MBσ

2 (Bn) satisfying

N∑
j=1

||fj ||MBσ
2

(Bn)
≤ Cn,σ,N,δ(g)

N∑
j=1

fj(z)gj(z) = 1, z ∈ Bn.
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The Corona Theorem for MBσ
2 (Bn)

The proof of this Corollary follows easily from the main Theorem.

When 0 ≤ σ ≤ 1
2 , the spaces Bσ

2 (Bn) are reproducing kernel
Hilbert spaces with a complete Nevanlinna-Pick kernel.

By the Toeplitz Corona Theorem, we have then that the Baby
Corona Problem is equivalent to the full Corona Problem. The
result then follows.

An additional corollary of the above result is the following:

Corollary

For 0 ≤ σ ≤ 1
2 , the unit ball Bn is dense in the maximal ideal space

of MBσ
2 (Bn).

This is because the density of the unit ball Bn in the maximal ideal
space of MBσ

2 (Bn) is equivalent to the Corona Theorem above.

ŞERBAN COSTEA (joint with Eric Sawyer and Brett Wick) Corona Theorems for Multiplier Algebras on Bn



Talk Outline
Motivations of the Problem

Besov-Sobolev spaces and Multiplier Algebras
Main results

Sketch of Proofs
Further results and questions

Earlier work

In 2000 J. Ortega and J. Fabrega [20] obtained partial results
with N = 2 generators for the Banach spaces Bσ

p (Bn) with

σ ∈
[
0, 1

p

)
∪
(

n
p ,∞

)
and 1 < p <∞; and also for the case

N = 2 with σ = n
p when 1 < p ≤ 2.

In 2000 M.Andersson and H. Carlsson [4] solved the baby
corona problem for H2(Bn) with N =∞ and obtained the
analogous (baby) Hp corona theorem on the ball Bn for
1 < p <∞ (see also Amar [2], Andersson-Carlsson [5], [3],
and Krantz-Li [17].)

In 2005 S. Treil and the third author [26] obtained the Hp

corona theorem for the polydisk Dn (see also Lin [18] and
Trent [27].)
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Sketch of Proof of the Baby Corona Theorem

Suppose we are given g1, . . . , gN ∈ MBσ
p (Bn) satisfying

0 < δ ≤
∑N

j=1 |gj(z)|2 ≤ 1, z ∈ Bn.

Set ϕj(z) =
gj (z)∑
i |gi (z)|2 h(z).

This solution is smooth and satisfies the correct estimates, but
is far from analytic.
In order to have an analytic solution, we will need to solve a
sequence of ∂-equations:

For η a ∂-closed (0, q) form, we want to solve the equation
∂ψ = η for a (0, q − 1) form ψ.
To accomplish this, we will use the Koszul complex. This
gives an algorithmic way of solving the ∂-equations for each
(0, q) form with 1 ≤ q ≤ n after starting with a (0, n) form.
This produces a correction to the initial guess of ϕj , call it ξj ,
and set fj = ϕj − ξj . By the Koszul complex we will have that
each fj is in fact analytic. We also have

∑
fjgj = h but now

the estimates that we seek are in doubt.
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Sketch of Proof of the Baby Corona Theorem

To guarantee the estimates, we have to look closer at the
solution operator to the ∂-equation on ∂-closed (0, q) forms.
Following the work of Øvrelid and Charpentier, one can
compute that the solution operator is an integral operator
that takes (0, q) forms to (0, q − 1) forms with integral kernel:

(1− wz)n−q
(

1− |w |2
)q−1

4 (w , z)n (w j − z j), ∀1 ≤ q ≤ n.

Here 4 (w , z) = |1− wz |2 −
(

1− |w |2
)(

1− |z |2
)
. When

n = 1 the Charpentier kernel is the Cauchy kernel.
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Sketch of Proof of the Baby Corona Theorem

One then needs to show that these solution operators map the
Besov-Sobolev spaces Bσ

p (Bn) to themselves. This is
accomplished by a couple of key facts:

The Besov-Sobolev spaces are very ”flexible” in terms of the
norm that one can use. We only need to take the parameter m
sufficiently high.
We show that these operators are very well behaved on
”real-variable” versions of the space Bσ

p (Bn). These, of course,
contain the spaces that we are interested in.
To show that the solution operators are bounded on
Lp(Bn; dV ) the original proof uses the Schur test. To handle
the boundedness on Bσ

p (Bn), we can also use the Schur test
but this requires a little more work to handle the derivative.
Finally, key to this approach, properties of the kernel and the
unit ball are exploited to achieve the desired estimates.
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The H∞(Bn) Corona Problem

When σ = n
2 (the classical Hardy space H2(Bn)), we have a weaker

version of the Corona Problem that we can prove.

Theorem (ŞC, Eric T. Sawyer, Brett D. Wick (2009))

Given g1, . . . , gN ∈ H∞(Bn) satisfying 0 < δ ≤
∑N

j=1 |gj(z)|2 ≤ 1
for all z ∈ Bn, there is a constant Cn,N,δ(g) and there are functions
f1, . . . , fN ∈ BMOA(Bn) satisfying

N∑
j=1

||fj ||BMOA(Bn) ≤ Cn,N,δ(g) and
N∑

j=1

fj(z)gj(z) = 1, z ∈ Bn.

This gives another proof of a famous theorem of Varopoulos.
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Open Problems and Future Directions

We know that the Corona Problem always implies the Baby Corona
Problem. By the Toeplitz Corona Problem, we know that, under
certain conditions on the reproducing kernel, these problems are in
fact equivalent. What happens if we don’t have these conditions ?

Does the algebra H∞(Bn) of bounded analytic functions on
the ball have a Corona in its maximal ideal space ?

Does the Corona Theorem for the multiplier algebra of the
Drury-Arveson space extend to more general domains in Cn ?

Can we prove a Corona Theorem for any algebra in higher
dimensions that is not the multiplier algebra of a Hilbert space
with the complete Nevanlinna-Pick property ?
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THANK YOU !!!
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Ş. Costea, E. Sawyer and B.D. Wick, BMO Estimates
for the H∞(Bn) Corona Problem, J. Funct. Anal., 258 (2010),
3818-3840. arXiv: 0905.1476 [math.CA]

S. W. Drury, A generalization of von Neumann’s inequality
to the complex ball, Proc. A.M.S., 68 (1978), 300-304.
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