The Bellman Function for a Perturbation of Burkholder's Martingale Transform

Nicholas Boros (joint work with Prabhu Janakiraman and Alexander Volberg)

Michigan State University

June 1, 2010

Motivation

Let $\{f_k\}_k$ be a martingale and $d_k=f_k-f_{k-1}, d_0=f_0$ its associated martingale difference sequence. We define a martingale transform, $MT_{\vec{\epsilon}}$, as

$$MT_{\vec{\varepsilon}}\left(\sum_{k=1}^n d_k\right) := \sum_{k=1}^n \varepsilon_k d_k,$$

where $\varepsilon \in \{\pm 1\}$.

Motivation

Let $\{f_k\}_k$ be a martingale and $d_k=f_k-f_{k-1}, d_0=f_0$ its associated martingale difference sequence. We define a martingale transform, $MT_{\vec{\varepsilon}}$, as

$$MT_{\vec{\varepsilon}}\left(\sum_{k=1}^n d_k\right) := \sum_{k=1}^n \varepsilon_k d_k,$$

where $\varepsilon \in \{\pm 1\}$.

Theorem

(D. Burkholder–1983) For
$$1 , $\|MT_{\vec{e}}\|_{p \to p} = \sup_{\vec{e}} \frac{\|\sum_{k=1}^{n} \varepsilon_k d_k\|_p}{\|\sum_{k=1}^{n} d_k\|_p} = (p^* - 1)$, where $p^* - 1 = \max\{p - 1, \frac{1}{p - 1}\}$.$$

Motivation

Let $\{f_k\}_k$ be a martingale and $d_k=f_k-f_{k-1}, d_0=f_0$ its associated martingale difference sequence. We define a martingale transform, $MT_{\vec{\varepsilon}}$, as

$$MT_{\vec{\varepsilon}}\left(\sum_{k=1}^n d_k\right) := \sum_{k=1}^n \varepsilon_k d_k,$$

where $\varepsilon \in \{\pm 1\}$.

Theorem

(D. Burkholder–1983) For
$$1 , $\|MT_{\vec{e}}\|_{p \to p} = \sup_{\vec{e}} \frac{\|\sum_{k=1}^{n} \varepsilon_k d_k\|_p}{\|\sum_{k=1}^{n} d_k\|_p} = (p^* - 1)$, where $p^* - 1 = \max\{p - 1, \frac{1}{p - 1}\}$.$$

This result has many applications, but the one we will focus on is sharp estimates of singular integrals.

The Ahlfors-Beurling Operator

The Ahlfors-Beurling transform is given by

$$Bf(z):=p.v.-rac{1}{\pi}\int_{\mathbb{C}}rac{f(w)}{(z-w)^2}\,dm_2(w).$$

Let $||B||_p$ denote the operator norm.

The Ahlfors-Beurling Operator

The Ahlfors-Beurling transform is given by

$$Bf(z):=p.v.-rac{1}{\pi}\int_{\mathbb{C}}rac{f(w)}{(z-w)^2}\,dm_2(w).$$

Let $||B||_p$ denote the operator norm.

Lehto (1965):
$$||B||_p \ge p^* - 1$$

The Ahlfors-Beurling Operator

The Ahlfors-Beurling transform is given by

$$Bf(z) := p.v. - \frac{1}{\pi} \int_{\mathbb{C}} \frac{f(w)}{(z-w)^2} dm_2(w).$$

Let $||B||_p$ denote the operator norm.

Lehto (1965): $||B||_p \ge p^* - 1$

Iwaneic (1982): Conjectured $||B||_p = p^* - 1$

Bañuelos, Wang (1995): $||B||_p \le 4(p^*-1)$

Bañuelos, Wang (1995): $||B||_p \le 4(p^*-1)$

Nazarov, Volberg (2003): $||B||_p \le 2(p^* - 1)$

Bañuelos, Wang (1995): $||B||_p \le 4(p^*-1)$

Nazarov, Volberg (2003): $||B||_p \le 2(p^* - 1)$

Bañuelos, Méndez-Hernandez (2003): $||B||_p \le 2(p^*-1)$

Bañuelos, Wang (1995): $||B||_p \le 4(p^*-1)$

Nazarov, Volberg (2003): $||B||_p \le 2(p^* - 1)$

Bañuelos, Méndez-Hernandez (2003): $||B||_p \le 2(p^*-1)$

Dragičević, Volberg (2003): $||B||_p \le \frac{\sqrt{2}(p-1)}{\frac{1}{2\pi}(\int_0^{2\pi}|\cos(\theta)|^p d\theta)^{\frac{1}{p}}}, p > 2$

Bañuelos, Wang (1995): $||B||_p \le 4(p^*-1)$

Nazarov, Volberg (2003): $||B||_p \le 2(p^* - 1)$

Bañuelos, Méndez-Hernandez (2003): $||B||_p \le 2(p^*-1)$

Dragičević, Volberg (2003): $||B||_p \leq \frac{\sqrt{2}(p-1)}{\frac{1}{2\pi}(\int_0^{2\pi}|\cos(\theta)|^p d\theta)^{\frac{1}{p}}}, p > 2$

Bañuelos, Janakiraman (2008): $||B||_p \le 1.575(p^* - 1)$

Bañuelos, Wang (1995): $||B||_p \le 4(p^*-1)$

Nazarov, Volberg (2003): $||B||_p \le 2(p^* - 1)$

Bañuelos, Méndez-Hernandez (2003): $||B||_p \le 2(p^*-1)$

Dragičević, Volberg (2003): $||B||_p \leq \frac{\sqrt{2}(p-1)}{\frac{1}{2\pi}(\int_0^{2\pi}|\cos(\theta)|^p d\theta)^{\frac{1}{p}}}, p > 2$

Bañuelos, Janakiraman (2008): $||B||_p \le 1.575(p^* - 1)$

Geiss, Montgomery-Smith, Saksman (2008):

$$\|\Re B\|_{p} = \|\Im B\|_{p} = p^* - 1$$

Main Result

Goal: For $|\tau| \leq \frac{1}{2}$, compute

$$C_{p,\tau} := \left\| \left(\begin{array}{c} MT_{\vec{\varepsilon}} \\ \tau I \end{array} \right) \right\|_{L^p(\mathbb{R}) \to L^p(\mathbb{R}^2)} = \sup_{\vec{\varepsilon}} \frac{\left\| \sum_{k=1}^n \binom{\varepsilon_k}{\tau} d_k \right\|_p}{\| \sum_{k=1}^n d_k \|_p},$$

Main Result

Goal: For $|\tau| \leq \frac{1}{2}$, compute

$$C_{p,\tau} := \left\| \left(\begin{array}{c} MT_{\vec{\varepsilon}} \\ \tau I \end{array} \right) \right\|_{L^p(\mathbb{R}) \to L^p(\mathbb{R}^2)} = \sup_{\vec{\varepsilon}} \frac{\left\| \sum_{k=1}^n \binom{\varepsilon_k}{\tau} d_k \right\|_p}{\| \sum_{k=1}^n d_k \|_p},$$

This requires us to find the best $C_{p, au}$ such that for all $n\in\mathbb{Z}_+$

$$\left\| \sum_{k=1}^n \left(\begin{array}{c} \varepsilon_k \\ \tau \end{array} \right) d_k \right\|_{L^p([0,1),\mathbb{R}^2)} \leq C_{p,\tau} \left\| \sum_{k=1}^n d_k \right\|_{L^p([0,1),\mathbb{R})},$$

Main Result

Goal: For $|\tau| \leq \frac{1}{2}$, compute

$$C_{p,\tau} := \left\| \left(\begin{array}{c} MT_{\vec{\varepsilon}} \\ \tau I \end{array} \right) \right\|_{L^p(\mathbb{R}) \to L^p(\mathbb{R}^2)} = \sup_{\vec{\varepsilon}} \frac{\left\| \sum_{k=1}^n \binom{\varepsilon_k}{\tau} d_k \right\|_p}{\| \sum_{k=1}^n d_k \|_p},$$

This requires us to find the best $C_{p, au}$ such that for all $n\in\mathbb{Z}_+$

$$\left\| \sum_{k=1}^n \left(\begin{array}{c} \varepsilon_k \\ \tau \end{array} \right) d_k \right\|_{L^p([0,1),\mathbb{R}^2)} \leq C_{p,\tau} \left\| \sum_{k=1}^n d_k \right\|_{L^p([0,1),\mathbb{R})},$$

Approach: Use the Bellman function technique

Let I be a finte interval and $\alpha^{\pm} \in \mathbb{R}^+$ such that $\alpha^+ + \alpha^- = 1$.

Let I be a finte interval and $\alpha^{\pm} \in \mathbb{R}^+$ such that $\alpha^+ + \alpha^- = 1$.

These α^{\pm} generate two subintervals I^{\pm} such that $|I^{\pm}| = \alpha^{\pm}|I|$ and $I = I^{-} \cup I^{+}$.

Let I be a finte interval and $\alpha^{\pm} \in \mathbb{R}^+$ such that $\alpha^+ + \alpha^- = 1$.

These α^{\pm} generate two subintervals I^{\pm} such that $|I^{\pm}| = \alpha^{\pm}|I|$ and $I = I^{-} \cup I^{+}$.

Example: If
$$I = [0, 1), \alpha^{-} = \frac{1}{3}, \alpha^{+} = \frac{2}{3}$$
,

Let I be a finte interval and $\alpha^{\pm} \in \mathbb{R}^+$ such that $\alpha^+ + \alpha^- = 1$.

These α^{\pm} generate two subintervals I^{\pm} such that $|I^{\pm}| = \alpha^{\pm}|I|$ and $I = I^{-} \cup I^{+}$.

Example: If $I = [0,1), \alpha^- = \frac{1}{3}, \alpha^+ = \frac{2}{3}$, then $I^- = [0,\frac{1}{3})$ and $I^+ = [\frac{1}{3},1)$.

Continuing this, for

$$\{\alpha_{n,m}: 0 < \alpha_{n,m} < 1, 0 \leq m < 2^n, 0 < n < \infty, \alpha_{n,2k} + \alpha_{n,2k+1} = 1\}$$
 we generate $\mathcal{I} := \{I_{n,m}: 0 \leq m < 2^n, 0 < n < \infty\}$ where $I_{n,m} = I_{n,m}^- \cup I_{n,m}^+ = I_{n+1,2m+1} \cup I_{n+1,2m+1}$ and
$$\alpha^- = \alpha_{n+1,2m}, \alpha^+ = \alpha_{n+1,2m+1}.$$
 Note that $I_{0,0} = I$.

Continuing this, for

$$\begin{split} & \{\alpha_{n,m}: 0 < \alpha_{n,m} < 1, 0 \leq m < 2^n, 0 < n < \infty, \alpha_{n,2k} + \alpha_{n,2k+1} = 1\} \\ & \text{we generate } \mathcal{I} := \{I_{n,m}: 0 \leq m < 2^n, 0 < n < \infty\} \\ & \text{where } I_{n,m} = I_{n,m}^- \cup I_{n,m}^+ = I_{n+1,2m+1} \cup I_{n+1,2m+1} \text{ and} \\ & \alpha^- = \alpha_{n+1,2m}, \alpha^+ = \alpha_{n+1,2m+1}. \text{ Note that } I_{0,0} = I. \end{split}$$

Definition

For $J \in \mathcal{I}$ we define the Haar function $h_J := -\sqrt{\frac{\alpha^+}{\alpha^-|J|}}\chi_{J^-} + \sqrt{\frac{\alpha^-}{\alpha^+|J|}}\chi_{J^+}.$

The Bellman function will be independent of I and $\{\alpha_{n,m}\}_{n,m}$ sequence.

The Bellman function will be independent of I and $\{\alpha_{n,m}\}_{n,m}$ sequence.

Choose I = [0,1) and $\mathcal{I} = \mathcal{D}$, the dyadic subintervals.

The Bellman function will be independent of I and $\{\alpha_{n,m}\}_{n,m}$ sequence.

Choose I = [0,1) and $\mathcal{I} = \mathcal{D}$, the dyadic subintervals.

Then for
$$1 and $f \in L^p[0,1)$,
$$f = \langle f \rangle_{[0,1)} \chi_{[0,1)} + \sum_{I \in \sigma(\mathcal{D})} (f,h_I) h_I.$$$$

The Bellman function will be independent of I and $\{\alpha_{n,m}\}_{n,m}$ sequence.

Choose I = [0,1) and $\mathcal{I} = \mathcal{D}$, the dyadic subintervals.

Then for
$$1 and $f \in L^p[0,1)$,
$$f = \langle f \rangle_{[0,1)} \chi_{[0,1)} + \sum_{I \in \sigma(\mathcal{D})} (f,h_I) h_I.$$$$

Definition

We define the martingale transform, g of f, in terms of the expansion in the Haar system, as

$$g := \langle f \rangle_{[0,1)} \chi_{[0,1)} + \sum_{I \in \sigma(\mathcal{D})} \varepsilon_I(f, h_I) h_I,$$

where $\varepsilon_I \in \{\pm 1\}$.

Martingale differenes have integral zero so if we restrict to $L_0^p[0,1)$ functions,

Martingale differenes have integral zero so if we restrict to $L_0^p[0,1)$ functions, then property $|(g,h_J)| = |(f,h_J)|$ for all $J \in \mathcal{D}$ is equivalent to g being the martingale transform of f.

Martingale differenes have integral zero so if we restrict to $L_0^p[0,1)$ functions, then property $|(g,h_J)| = |(f,h_J)|$ for all $J \in \mathcal{D}$ is equivalent to g being the martingale transform of f.

Goal:

$$\left\| \left(\begin{array}{c} \sum_{k=1}^{n} \varepsilon_k d_k \\ \tau \sum_{k=1}^{n} d_k \end{array} \right) \right\|_{L^p([0,1),\mathbb{R}^2)} \leq C_{p,\tau} \left\| \sum_{k=1}^{n} d_k \right\|_{L^p([0,1),\mathbb{R})}$$

Martingale differenes have integral zero so if we restrict to $L_0^p[0,1)$ functions, then property $|(g,h_J)| = |(f,h_J)|$ for all $J \in \mathcal{D}$ is equivalent to g being the martingale transform of f.

Goal:

$$\left\| \left(\begin{array}{c} \sum_{k=1}^n \varepsilon_k d_k \\ \tau \sum_{k=1}^n d_k \end{array} \right) \right\|_{L^p([0,1),\mathbb{R}^2)} \leq C_{p,\tau} \left\| \sum_{k=1}^n d_k \right\|_{L^p([0,1),\mathbb{R})}$$

So we define the Bellman function as

$$\mathcal{B}(x_1, x_2, x_3) := \sup_{f,g} \{ \langle (g^2 + \tau^2 f^2)^{\frac{p}{2}} \rangle_I : x_1 = \langle f \rangle_I, x_2 = \langle g \rangle_I, x_3 = \langle |f|^p \rangle_I, |(f, h_J)| = |(g, h_J)|, \ \forall J \in \mathcal{D} \}$$

on the domain $\Omega = \{x \in \mathbb{R}^3 : x_3 \ge 0, |x_1|^p \le x_3\}.$

Martingale differenes have integral zero so if we restrict to $L_0^p[0,1)$ functions, then property $|(g,h_J)| = |(f,h_J)|$ for all $J \in \mathcal{D}$ is equivalent to g being the martingale transform of f.

Goal:

$$\left\| \left(\begin{array}{c} \sum_{k=1}^n \varepsilon_k d_k \\ \tau \sum_{k=1}^n d_k \end{array} \right) \right\|_{L^p([0,1),\mathbb{R}^2)} \leq C_{p,\tau} \left\| \sum_{k=1}^n d_k \right\|_{L^p([0,1),\mathbb{R})}$$

So we define the Bellman function as

$$\mathcal{B}(x_1, x_2, x_3) := \sup_{f,g} \{ \langle (g^2 + \tau^2 f^2)^{\frac{p}{2}} \rangle_I : x_1 = \langle f \rangle_I, x_2 = \langle g \rangle_I, x_3 = \langle |f|^p \rangle_I, |(f, h_J)| = |(g, h_J)|, \ \forall J \in \mathcal{D} \}$$

on the domain $\Omega = \{x \in \mathbb{R}^3 : x_3 \ge 0, |x_1|^p \le x_3\}.$

Note: The condition $|x_1|^p \le x_3$ is just Hölder's inequality.

Martingale differenes have integral zero so if we restrict to $L_0^p[0,1)$ functions, then property $|(g,h_J)| = |(f,h_J)|$ for all $J \in \mathcal{D}$ is equivalent to g being the martingale transform of f.

Goal:

$$\left\| \left(\begin{array}{c} \sum_{k=1}^n \varepsilon_k d_k \\ \tau \sum_{k=1}^n d_k \end{array} \right) \right\|_{L^p([0,1),\mathbb{R}^2)} \leq C_{p,\tau} \left\| \sum_{k=1}^n d_k \right\|_{L^p([0,1),\mathbb{R})}$$

So we define the Bellman function as

$$\mathcal{B}(x_1, x_2, x_3) := \sup_{f,g} \{ \langle (g^2 + \tau^2 f^2)^{\frac{p}{2}} \rangle_I : x_1 = \langle f \rangle_I, x_2 = \langle g \rangle_I, x_3 = \langle |f|^p \rangle_I, |(f, h_J)| = |(g, h_J)|, \ \forall J \in \mathcal{D} \}$$

on the domain $\Omega = \{x \in \mathbb{R}^3 : x_3 \ge 0, |x_1|^p \le x_3\}.$

Note: The condition $|x_1|^p \le x_3$ is just Hölder's inequality.

Now that we have the problem formalized, we return to I and $\{\alpha_{n,m}\}_{n,m}$ as arbitrary since it doesn't change \mathcal{B} .

Now that we have the problem formalized, we return to I and $\{\alpha_{n,m}\}_{n,m}$ as arbitrary since it doesn't change \mathcal{B} .

Proposition

If
$$p = 2$$
 then $\mathcal{B}(x) = x_2^2 + \tau^2 x_1^2 + (1 + \tau^2)(x_3 - x_1^2)$

Now that we have the problem formalized, we return to I and $\{\alpha_{n,m}\}_{n,m}$ as arbitrary since it doesn't change \mathcal{B} .

Proposition

If
$$p = 2$$
 then $\mathcal{B}(x) = x_2^2 + \tau^2 x_1^2 + (1 + \tau^2)(x_3 - x_1^2)$

Proof: Since $f \in L^2(I)$ then $f = \langle f \rangle_I \chi_I + \sum_{J \in \mathcal{D}} (f, h_J) h_J$ then

Now that we have the problem formalized, we return to I and $\{\alpha_{n,m}\}_{n,m}$ as arbitrary since it doesn't change \mathcal{B} .

Proposition

If
$$p = 2$$
 then $\mathcal{B}(x) = x_2^2 + \tau^2 x_1^2 + (1 + \tau^2)(x_3 - x_1^2)$

Proof: Since $f \in L^2(I)$ then $f = \langle f \rangle_I \chi_I + \sum_{J \in \mathcal{D}} (f, h_J) h_J$ then

$$\langle |f|^2 \rangle_I = \frac{1}{|I|} \int_I |f|^2$$

$$= \langle f \rangle_I^2 + 2 \langle f \rangle_I \sum_{J \in \mathcal{D}} (f, h_J) \frac{1}{|I|} \int_I h_J$$

$$+ \frac{1}{|I|} \int_I \sum_{I, K \in \mathcal{D}} (f, h_J) (f, h_K) h_J h_K$$

Now that we have the problem formalized, we return to I and $\{\alpha_{n,m}\}_{n,m}$ as arbitrary since it doesn't change \mathcal{B} .

Proposition

If
$$p = 2$$
 then $\mathcal{B}(x) = x_2^2 + \tau^2 x_1^2 + (1 + \tau^2)(x_3 - x_1^2)$

Proof: Since $f \in L^2(I)$ then $f = \langle f \rangle_I \chi_I + \sum_{J \in \mathcal{D}} (f, h_J) h_J$ then

$$\langle |f|^2 \rangle_I = \frac{1}{|I|} \int_I |f|^2$$

$$= \langle f \rangle_I^2 + 2 \langle f \rangle_I \sum_{J \in \mathcal{D}} (f, h_J) \frac{1}{|I|} \int_I h_J$$

$$+ \frac{1}{|I|} \int_I \sum_{J, K \in \mathcal{D}} (f, h_J) (f, h_K) h_J h_K$$

$$= \langle f \rangle_I^2 + \frac{1}{|I|} \sum_{I \in \mathcal{D}} |(f, h_J)|^2$$

So
$$||f||_2^2 = |I|x_3 = |I|x_1^2 + \sum_{J \in \mathcal{D}} |(f, h_J)|^2$$
 and similarly

So
$$||f||_2^2 = |I|x_3 = |I|x_1^2 + \sum_{J \in \mathcal{D}} |(f, h_J)|^2$$
 and similarly

$$\|g\|_2^2 = |I|x_2^2 + \sum_{J \in \mathcal{D}} |(g, h_J)|^2 = |I|x_2^2 + \sum_{J \in \mathcal{D}} |(f, h_J)|^2$$

So
$$||f||_2^2 = |I|x_3 = |I|x_1^2 + \sum_{J \in \mathcal{D}} |(f, h_J)|^2$$
 and similarly

$$||g||_2^2 = |I|x_2^2 + \sum_{J \in \mathcal{D}} |(g, h_J)|^2 = |I|x_2^2 + \sum_{J \in \mathcal{D}} |(f, h_J)|^2$$

Now we can compute \mathcal{B} explicitly.

$$\langle (g^2 + \tau^2 f^2)^{\frac{\rho}{2}} \rangle_I = \langle |g|^2 \rangle_I + \tau^2 \langle |f|^2 \rangle_I$$

So
$$||f||_2^2 = |I|x_3 = |I|x_1^2 + \sum_{J \in \mathcal{D}} |(f, h_J)|^2$$
 and similarly

$$||g||_2^2 = |I|x_2^2 + \sum_{J \in \mathcal{D}} |(g, h_J)|^2 = |I|x_2^2 + \sum_{J \in \mathcal{D}} |(f, h_J)|^2$$

Now we can compute \mathcal{B} explicitly.

$$\langle (g^{2} + \tau^{2} f^{2})^{\frac{p}{2}} \rangle_{I} = \langle |g|^{2} \rangle_{I} + \tau^{2} \langle |f|^{2} \rangle_{I}$$

$$= x_{2}^{2} + \tau^{2} x_{1}^{2} + (1 + \tau^{2}) \frac{1}{|I|} \sum_{I \in \mathcal{D}} |(f, h_{J})|^{2}$$

So
$$||f||_2^2 = |I|x_3 = |I|x_1^2 + \sum_{J \in \mathcal{D}} |(f, h_J)|^2$$
 and similarly

$$||g||_2^2 = |I|x_2^2 + \sum_{J \in \mathcal{D}} |(g, h_J)|^2 = |I|x_2^2 + \sum_{J \in \mathcal{D}} |(f, h_J)|^2$$

Now we can compute \mathcal{B} explicitly.

$$\langle (g^{2} + \tau^{2} f^{2})^{\frac{p}{2}} \rangle_{I} = \langle |g|^{2} \rangle_{I} + \tau^{2} \langle |f|^{2} \rangle_{I}$$

$$= x_{2}^{2} + \tau^{2} x_{1}^{2} + (1 + \tau^{2}) \frac{1}{|I|} \sum_{J \in \mathcal{D}} |(f, h_{J})|^{2}$$

$$= x_{2}^{2} + \tau^{2} x_{1}^{2} + (1 + \tau^{2})(x_{3} - x_{1}^{2})$$

QED

Finding the Bellman function when $p \neq 2$ is much more difficult so we need some properties.

Proposition

Suppose
$$x^{\pm} \in \Omega$$
 such that $x = \alpha^{+}x^{+} + \alpha^{-}x^{-}$, $\alpha^{+} + \alpha^{-} = 1$. If $|x_{1}^{+} - x_{1}^{-}| = |x_{2}^{+} - x_{2}^{-}|$ then $\mathcal{B}(x) \geq \alpha^{+}\mathcal{B}(x^{+}) + \alpha^{-}\mathcal{B}(x^{-})$

Proposition

Suppose
$$x^{\pm} \in \Omega$$
 such that $x = \alpha^{+}x^{+} + \alpha^{-}x^{-}$, $\alpha^{+} + \alpha^{-} = 1$. If $|x_{1}^{+} - x_{1}^{-}| = |x_{2}^{+} - x_{2}^{-}|$ then $\mathcal{B}(x) \geq \alpha^{+}\mathcal{B}(x^{+}) + \alpha^{-}\mathcal{B}(x^{-})$

Changing variables: $y_1 := \frac{x_2 + x_1}{2}$, $y_2 := \frac{x_2 - x_1}{2}$ and $y_3 := x_3$

Proposition

Suppose
$$x^{\pm} \in \Omega$$
 such that $x = \alpha^{+}x^{+} + \alpha^{-}x^{-}$, $\alpha^{+} + \alpha^{-} = 1$. If $|x_{1}^{+} - x_{1}^{-}| = |x_{2}^{+} - x_{2}^{-}|$ then $\mathcal{B}(x) \geq \alpha^{+}\mathcal{B}(x^{+}) + \alpha^{-}\mathcal{B}(x^{-})$

Changing variables: $y_1 := \frac{x_2 + x_1}{2}$, $y_2 := \frac{x_2 - x_1}{2}$ and $y_3 := x_3$

So $\mathcal{M}(y_1, y_2, y_3) := \mathcal{B}(x_1, x_2, x_3) = \mathcal{B}(y_1 - y_2, y_1 + y_2, y_3)$ with the domain of \mathcal{M} as $\Xi := \{ y \in \mathbb{R}^3 : y_3 \ge 0, |y_1 - y_2|^p \le y_3 \}.$

Proposition

Suppose $x^{\pm} \in \Omega$ such that $x = \alpha^{+}x^{+} + \alpha^{-}x^{-}$, $\alpha^{+} + \alpha^{-} = 1$. If $|x_{1}^{+} - x_{1}^{-}| = |x_{2}^{+} - x_{2}^{-}|$ then $\mathcal{B}(x) \geq \alpha^{+}\mathcal{B}(x^{+}) + \alpha^{-}\mathcal{B}(x^{-})$

Changing variables: $y_1 := \frac{x_2 + x_1}{2}$, $y_2 := \frac{x_2 - x_1}{2}$ and $y_3 := x_3$

So $\mathcal{M}(y_1, y_2, y_3) := \mathcal{B}(x_1, x_2, x_3) = \mathcal{B}(y_1 - y_2, y_1 + y_2, y_3)$ with the domain of \mathcal{M} as $\Xi := \{ y \in \mathbb{R}^3 : y_3 \ge 0, |y_1 - y_2|^p \le y_3 \}.$

 $x^{\pm} \in \Omega$ s.t. $|x_1^+ - x_1^-| = |x_2^+ - x_2^-|$, iff $y^{\pm} \in \Xi$ satisfies either y_1 is fixed as $y_1^+ = y_1^-$ or y_2 is fixed as $y_2^+ = y_2^-$.

Proposition

Suppose $x^{\pm} \in \Omega$ such that $x = \alpha^{+}x^{+} + \alpha^{-}x^{-}$, $\alpha^{+} + \alpha^{-} = 1$. If $|x_{1}^{+} - x_{1}^{-}| = |x_{2}^{+} - x_{2}^{-}|$ then $\mathcal{B}(x) \geq \alpha^{+}\mathcal{B}(x^{+}) + \alpha^{-}\mathcal{B}(x^{-})$

Changing variables: $y_1 := \frac{x_2 + x_1}{2}$, $y_2 := \frac{x_2 - x_1}{2}$ and $y_3 := x_3$

So $\mathcal{M}(y_1, y_2, y_3) := \mathcal{B}(x_1, x_2, x_3) = \mathcal{B}(y_1 - y_2, y_1 + y_2, y_3)$ with the domain of \mathcal{M} as $\Xi := \{ y \in \mathbb{R}^3 : y_3 \ge 0, |y_1 - y_2|^p \le y_3 \}.$

 $x^{\pm} \in \Omega$ s.t. $|x_1^+ - x_1^-| = |x_2^+ - x_2^-|$, iff $y^{\pm} \in \Xi$ satisfies either y_1 is fixed as $y_1^+ = y_1^-$ or y_2 is fixed as $y_2^+ = y_2^-$.

If $j \neq i \in \{1,2\}$ and we fix y_i as $y_i^+ = y_i^-$. Then \mathcal{M} as a function of y_j, y_3 is concave, i.e.

$$\left(\begin{array}{cc} \mathcal{M}_{y_jy_j} & \mathcal{M}_{y_jy_3} \\ \mathcal{M}_{y_3y_j} & \mathcal{M}_{y_3y_3} \end{array}\right) \leq 0,$$

which is equivalent to

$$\mathcal{M}_{y_jy_j} \leq 0, \mathcal{M}_{y_3y_3} \leq 0, D_j = \mathcal{M}_{y_jy_j}\mathcal{M}_{y_3y_3} - \mathcal{M}_{y_3y_j}\mathcal{M}_{y_jy_3} \geq 0.$$

which is equivalent to

$$\mathcal{M}_{y_j y_j} \leq 0, \mathcal{M}_{y_3 y_3} \leq 0, D_j = \mathcal{M}_{y_j y_j} \mathcal{M}_{y_3 y_3} - \mathcal{M}_{y_3 y_j} \mathcal{M}_{y_j y_3} \geq 0.$$

Proposition

Let $j \neq i \in \{1,2\}$ and fix y_i as $y_i^+ = y_i^-$. Then $\mathcal{M}_{y_j y_j} \leq 0$, $\mathcal{M}_{y_3 y_3} \leq 0$ and $D_j = \mathcal{M}_{y_j y_j} \mathcal{M}_{y_3 y_3} - (\mathcal{M}_{y_j y_3})^2 \geq 0$ is equivalent to \mathcal{M} being a concave function of y_i, y_3 .

which is equivalent to

$$\mathcal{M}_{y_jy_j} \leq 0, \mathcal{M}_{y_3y_3} \leq 0, D_j = \mathcal{M}_{y_jy_j}\mathcal{M}_{y_3y_3} - \mathcal{M}_{y_3y_j}\mathcal{M}_{y_jy_3} \geq 0.$$

Proposition

Let $j \neq i \in \{1,2\}$ and fix y_i as $y_i^+ = y_i^-$. Then $\mathcal{M}_{y_j y_j} \leq 0$, $\mathcal{M}_{y_3 y_3} \leq 0$ and $D_j = \mathcal{M}_{y_j y_j} \mathcal{M}_{y_3 y_3} - (\mathcal{M}_{y_j y_3})^2 \geq 0$ is equivalent to \mathcal{M} being a concave function of y_j, y_3 .

So the Bellman function has the needed weak concavity if it satisfies this Proposition for j=1 and 2.

which is equivalent to

$$\mathcal{M}_{y_jy_j} \leq 0, \mathcal{M}_{y_3y_3} \leq 0, D_j = \mathcal{M}_{y_jy_j}\mathcal{M}_{y_3y_3} - \mathcal{M}_{y_3y_j}\mathcal{M}_{y_jy_3} \geq 0.$$

Proposition

Let $j \neq i \in \{1,2\}$ and fix y_i as $y_i^+ = y_i^-$. Then $\mathcal{M}_{y_j y_j} \leq 0$, $\mathcal{M}_{y_3 y_3} \leq 0$ and $D_j = \mathcal{M}_{y_j y_j} \mathcal{M}_{y_3 y_3} - (\mathcal{M}_{y_j y_3})^2 \geq 0$ is equivalent to \mathcal{M} being a concave function of y_j, y_3 .

So the Bellman function has the needed weak concavity if it satisfies this Proposition for j=1 and 2.

The Bellman function many other nice properties.

Proposition

Suppose \mathcal{M} is $C^1(\mathbb{R}^3)$, then \mathcal{M} has the following properties.

(i) Symmetry:
$$\mathcal{M}(y_1, y_2, y_3) = \mathcal{M}(y_2, y_1, y_3) = \mathcal{M}(-y_1, -y_2, y_3)$$

Proposition

Suppose \mathcal{M} is $C^1(\mathbb{R}^3)$, then \mathcal{M} has the following properties.

- (i) Symmetry: $\mathcal{M}(y_1, y_2, y_3) = \mathcal{M}(y_2, y_1, y_3) = \mathcal{M}(-y_1, -y_2, y_3)$
- (ii) Dirchlet boundary data:

$$\mathcal{M}(y_1, y_2, (y_1 - y_2)^p) = ((y_1 + y_2)^2 + \tau^2(y_1 - y_2))^{\frac{p}{2}}$$

Proposition

Suppose \mathcal{M} is $C^1(\mathbb{R}^3)$, then \mathcal{M} has the following properties.

- (i) Symmetry: $\mathcal{M}(y_1, y_2, y_3) = \mathcal{M}(y_2, y_1, y_3) = \mathcal{M}(-y_1, -y_2, y_3)$
- (ii) Dirchlet boundary data:

$$\mathcal{M}(y_1, y_2, (y_1 - y_2)^p) = ((y_1 + y_2)^2 + \tau^2(y_1 - y_2))^{\frac{p}{2}}$$

(iii) Neumann conditions: $\mathcal{M}_{y_1}=\mathcal{M}_{y_2}$ on $y_1=y_2$ and $\mathcal{M}_{y_1}=-\mathcal{M}_{y_2}$ on $y_1=-y_2$

Proposition

Suppose \mathcal{M} is $C^1(\mathbb{R}^3)$, then \mathcal{M} has the following properties.

- (i) Symmetry: $\mathcal{M}(y_1, y_2, y_3) = \mathcal{M}(y_2, y_1, y_3) = \mathcal{M}(-y_1, -y_2, y_3)$
- (ii) Dirchlet boundary data:

$$\mathcal{M}(y_1, y_2, (y_1 - y_2)^p) = ((y_1 + y_2)^2 + \tau^2(y_1 - y_2))^{\frac{p}{2}}$$

- (iii) Neumann conditions: $\mathcal{M}_{y_1}=\mathcal{M}_{y_2}$ on $y_1=y_2$ and $\mathcal{M}_{y_1}=-\mathcal{M}_{y_2}$ on $y_1=-y_2$
- (iv) Homogeneity: $\mathcal{M}(ry_1, ry_2, r^p y_3) = r^p \mathcal{M}(y_1, y_2, y_3), \forall r > 0$

Proposition

Suppose \mathcal{M} is $C^1(\mathbb{R}^3)$, then \mathcal{M} has the following properties.

- (i) Symmetry: $\mathcal{M}(y_1, y_2, y_3) = \mathcal{M}(y_2, y_1, y_3) = \mathcal{M}(-y_1, -y_2, y_3)$
- (ii) Dirchlet boundary data:

$$\mathcal{M}(y_1, y_2, (y_1 - y_2)^p) = ((y_1 + y_2)^2 + \tau^2(y_1 - y_2))^{\frac{p}{2}}$$

- (iii) Neumann conditions: $\mathcal{M}_{y_1}=\mathcal{M}_{y_2}$ on $y_1=y_2$ and $\mathcal{M}_{y_1}=-\mathcal{M}_{y_2}$ on $y_1=-y_2$
- (iv) Homogeneity: $\mathcal{M}(ry_1, ry_2, r^p y_3) = r^p \mathcal{M}(y_1, y_2, y_3), \forall r > 0$
- (v) Homogeniety relation: $y_1\mathcal{M}_{y_1}+y_2\mathcal{M}_{y_2}+py_3\mathcal{M}_{y_3}=p\mathcal{M}$

Proposition

Suppose \mathcal{M} is $C^1(\mathbb{R}^3)$, then \mathcal{M} has the following properties.

(i) Symmetry:
$$\mathcal{M}(y_1, y_2, y_3) = \mathcal{M}(y_2, y_1, y_3) = \mathcal{M}(-y_1, -y_2, y_3)$$

(ii) Dirchlet boundary data:

$$\mathcal{M}(y_1, y_2, (y_1 - y_2)^p) = ((y_1 + y_2)^2 + \tau^2(y_1 - y_2))^{\frac{p}{2}}$$

- (iii) Neumann conditions: $\mathcal{M}_{y_1}=\mathcal{M}_{y_2}$ on $y_1=y_2$ and $\mathcal{M}_{y_1}=-\mathcal{M}_{y_2}$ on $y_1=-y_2$
- (iv) Homogeneity: $\mathcal{M}(ry_1, ry_2, r^p y_3) = r^p \mathcal{M}(y_1, y_2, y_3), \forall r > 0$
- (v) Homogeniety relation: $y_1\mathcal{M}_{y_1}+y_2\mathcal{M}_{y_2}+py_3\mathcal{M}_{y_3}=p\mathcal{M}$

This is all of the properties of the Bellman function. Before we can begin to find an explicit formula we need to address a difficulty.

Recall that one of the conditions for weak concavity of the Bellman function is $D_j = \mathcal{M}_{y_i y_j} \mathcal{M}_{y_3 y_3} - (\mathcal{M}_{y_i y_3})^2 \geq 0$.

Recall that one of the conditions for weak concavity of the Bellman function is $D_j = \mathcal{M}_{y_i y_j} \mathcal{M}_{y_3 y_3} - (\mathcal{M}_{y_i y_3})^2 \geq 0$.

Rather than trying to solve a 2nd order parital differential inequality we add an assumption.

Recall that one of the conditions for weak concavity of the Bellman function is $D_j = \mathcal{M}_{y_i y_j} \mathcal{M}_{y_3 y_3} - (\mathcal{M}_{y_i y_3})^2 \geq 0$.

Rather than trying to solve a 2nd order parital differential inequality we add an assumption.

Assumption

If we fix y_i , then

$$\left(\begin{array}{cc} \mathcal{M}_{y_jy_j} & \mathcal{M}_{y_jy_3} \\ \mathcal{M}_{y_3y_j} & \mathcal{M}_{y_3y_3} \end{array}\right)$$

is degenerate, where $i \neq j \in \{1, 2\}$.

Recall that one of the conditions for weak concavity of the Bellman function is $D_j = \mathcal{M}_{y_i y_j} \mathcal{M}_{y_3 y_3} - (\mathcal{M}_{y_i y_3})^2 \geq 0$.

Rather than trying to solve a 2nd order parital differential inequality we add an assumption.

Assumption

If we fix y_i , then

$$\left(\begin{array}{cc} \mathcal{M}_{y_jy_j} & \mathcal{M}_{y_jy_3} \\ \mathcal{M}_{y_3y_j} & \mathcal{M}_{y_3y_3} \end{array}\right)$$

is degenerate, where $i \neq j \in \{1, 2\}$.

Now we have $D_j=\mathcal{M}_{y_jy_j}\mathcal{M}_{y_3y_3}-(\mathcal{M}_{y_3y_j})^2=0,$ the well known Monge–Ampère equation

Solution to the Monge-Ampère equation

Theorem

(Pogorelov–1956) For j=1 or 2, $\mathcal{M}_{y_jy_j}\mathcal{M}_{y_3y_3}-(\mathcal{M}_{y_3y_j})^2=0$ has the solution $M(y)=y_jt_j+y_3t_3+t_0$ on the characteristics $y_jdt_j+y_3dt_3+dt_0=0$, which are straight lines in the $y_j\times y_3$ plane. Furthermore, t_0,t_j,t_3 are constant on characteristics with the property $M_{v_i}=t_j,M_{v_3}=t_3$.

Because of the symmetry property of \mathcal{M} , we only need to consider the domain $\Xi_+ := \{y : -y_1 \le y_2 \le y_1, y_3 \ge 0, (y_1 - y_2)^p \le y_3\}$ rather than Ξ .

Because of the symmetry property of \mathcal{M} , we only need to consider the domain $\Xi_+ := \{y : -y_1 \le y_2 \le y_1, y_3 \ge 0, (y_1 - y_2)^p \le y_3\}$ rather than Ξ .

Since characteristics are straight lines, then one end, we will denote U, must be on the boundary $\{y: (y_1-y_2)^p=y_3\}$.

Because of the symmetry property of \mathcal{M} , we only need to consider the domain $\Xi_+ := \{y : -y_1 \le y_2 \le y_1, y_3 \ge 0, (y_1 - y_2)^p \le y_3\}$ rather than Ξ .

Since characteristics are straight lines, then one end, we will denote U, must be on the boundary $\{y: (y_1-y_2)^p=y_3\}$.

Cases

(1) The characteristic goes from U to $\{y: y_1 = y_2\}$

Because of the symmetry property of \mathcal{M} , we only need to consider the domain $\Xi_+ := \{y : -y_1 \le y_2 \le y_1, y_3 \ge 0, (y_1 - y_2)^p \le y_3\}$ rather than Ξ .

Since characteristics are straight lines, then one end, we will denote U, must be on the boundary $\{y: (y_1-y_2)^p=y_3\}$.

Cases

- (1) The characteristic goes from U to $\{y: y_1 = y_2\}$
- (2) The characteristic goes from U to to infinity, running parallel to the y_3 -axis

Because of the symmetry property of \mathcal{M} , we only need to consider the domain $\Xi_+ := \{y : -y_1 \leq y_2 \leq y_1, y_3 \geq 0, (y_1 - y_2)^p \leq y_3\}$ rather than Ξ .

Since characteristics are straight lines, then one end, we will denote U, must be on the boundary $\{y: (y_1-y_2)^p=y_3\}$.

Cases

- (1) The characteristic goes from U to $\{y: y_1 = y_2\}$
- (2) The characteristic goes from U to to infinity, running parallel to the y_3 -axis
- (3) The characteristic goes from U to $\{y: y_1 = -y_2\}$

Because of the symmetry property of \mathcal{M} , we only need to consider the domain $\Xi_+ := \{y : -y_1 \le y_2 \le y_1, y_3 \ge 0, (y_1 - y_2)^p \le y_3\}$ rather than Ξ .

Since characteristics are straight lines, then one end, we will denote U, must be on the boundary $\{y: (y_1-y_2)^p=y_3\}$.

Cases

- (1) The characteristic goes from U to $\{y: y_1 = y_2\}$
- (2) The characteristic goes from U to to infinity, running parallel to the y_3 -axis
- (3) The characteristic goes from U to $\{y: y_1 = -y_2\}$
- (4) The characteristic goes from U to $\{y: (y_1 y_2)^p = y_3\}$

Strategy for finding Bellman:

1. Fix a case for the characteristics.

Strategy for finding Bellman:

- 1. Fix a case for the characteristics.
- 2. Fix either y_1 or y_2

Strategy for finding Bellman:

- 1. Fix a case for the characteristics.
- 2. Fix either y_1 or y_2
- 3. Take Monge–Ampère solution and use Bellman function properties to get rid of characteristics.

Strategy for finding Bellman:

- 1. Fix a case for the characteristics.
- 2. Fix either y_1 or y_2
- 3. Take Monge–Ampère solution and use Bellman function properties to get rid of characteristics.
- 4. Check to see if the solution satisfies weak concavity needed to be a Bellman function candidate.

Let 2 .

Let 2 .

Consider Case (1_2) .

Let 2 .

Consider Case (1_2) . This notation means that j=2 is fixed in the M.A. and y_1 is fixed.

Let 2 .

Consider Case (1_2) . This notation means that j=2 is fixed in the M.A. and y_1 is fixed.

The Monge–Ampère solution from Case (1_2) is only valid on half of Ξ_+ , but satisfies all Bellman function properties.

Let 2 .

Consider Case (1_2) . This notation means that j=2 is fixed in the M.A. and y_1 is fixed.

The Monge–Ampère solution from Case (1_2) is only valid on half of Ξ_+ , but satisfies all Bellman function properties.

It turns that the Monge–Ampère solution in Case (2_2) is only valid on half of Ξ_+ , as well, and satisfies all Bellman function properties.

But,

Let 2 .

Consider Case (1_2) . This notation means that j=2 is fixed in the M.A. and y_1 is fixed.

The Monge–Ampère solution from Case (1_2) is only valid on half of Ξ_+ , but satisfies all Bellman function properties.

It turns that the Monge–Ampère solution in Case (2_2) is only valid on half of Ξ_+ , as well, and satisfies all Bellman function properties.

But, it is valid on the missing half.

Let 2 .

Consider Case (1_2) . This notation means that j=2 is fixed in the M.A. and y_1 is fixed.

The Monge–Ampère solution from Case (1_2) is only valid on half of Ξ_+ , but satisfies all Bellman function properties.

It turns that the Monge–Ampère solution in Case (2_2) is only valid on half of Ξ_+ , as well, and satisfies all Bellman function properties.

But, it is valid on the missing half. So we can glue together a whole solution.

Proposition

For $2 and <math>|\tau| \leq \frac{1}{2}$ the solution to the Monge–Ampère equation is given by

$$M(y) = (1 + \tau^2)^{\frac{\rho}{2}} [y_1^2 + 2\gamma y_1 y_2 + y_2^2]^{\frac{\rho}{2}} + ((p-1)^2 + \tau^2)^{\frac{\rho}{2}} [y_3 - (y_1 - y_2)^p]$$

when
$$-y_1 < y_2 \le \frac{p-2}{p} y_1$$

Proposition

For $2 and <math>|\tau| \leq \frac{1}{2}$ the solution to the Monge–Ampère equation is given by

$$M(y) = (1 + \tau^2)^{\frac{\rho}{2}} [y_1^2 + 2\gamma y_1 y_2 + y_2^2]^{\frac{\rho}{2}} + ((\rho - 1)^2 + \tau^2)^{\frac{\rho}{2}} [y_3 - (y_1 - y_2)^{\rho}]$$

when $-y_1 < y_2 \le \frac{p-2}{p} y_1$ and is given implicitly by $G(y_1 + y_2, y_1 - y_2) = y_3 G(\sqrt{\omega^2 - \tau^2}, 1)$ when $\frac{p-2}{p} y_1 \le y_2 < y_1$,

Proposition

For $2 and <math>|\tau| \leq \frac{1}{2}$ the solution to the Monge–Ampère equation is given by

$$M(y) = (1 + \tau^2)^{\frac{\rho}{2}} [y_1^2 + 2\gamma y_1 y_2 + y_2^2]^{\frac{\rho}{2}} + ((\rho - 1)^2 + \tau^2)^{\frac{\rho}{2}} [y_3 - (y_1 - y_2)^{\rho}]$$

when $-y_1 < y_2 \le \frac{p-2}{p} y_1$ and is given implicitly by $G(y_1+y_2,y_1-y_2)=y_3G(\sqrt{\omega^2-\tau^2},1)$ when $\frac{p-2}{p} y_1 \le y_2 < y_1,$ where $G(z_1,z_2)=(z_1+z_2)^{p-1}[z_1-(p-1)z_2], \omega=\left(\frac{M(y)}{y_3}\right)^{\frac{1}{p}}$ and $\gamma=\frac{1-\tau^2}{1+\tau^2}.$ This solution satisfies all properties of the Bellman function.

Let 1 .

Let
$$1 .$$

The Monge–Ampère solution from Case (3_2) is only valid on half of Ξ_+ , but satisfies all Bellman function properties.

Let 1 .

The Monge–Ampère solution from Case (3_2) is only valid on half of Ξ_+ , but satisfies all Bellman function properties.

It turns that the Monge–Ampère solution in Case (2_2) is only valid on half of Ξ_+ , as well, and satisfies all Bellman function properties.

But,

Let 1 .

The Monge–Ampère solution from Case (3_2) is only valid on half of Ξ_+ , but satisfies all Bellman function properties.

It turns that the Monge–Ampère solution in Case (2_2) is only valid on half of Ξ_+ , as well, and satisfies all Bellman function properties.

But, it is valid on the missing half.

Let 1 .

The Monge–Ampère solution from Case (3_2) is only valid on half of Ξ_+ , but satisfies all Bellman function properties.

It turns that the Monge–Ampère solution in Case (2_2) is only valid on half of Ξ_+ , as well, and satisfies all Bellman function properties.

But, it is valid on the missing half. So we can glue together a whole solution.

Proposition

Let $1 . If <math>|\tau| \leq \frac{1}{2}$ then a solution to the Monge–Ampère equation is given by

$$M(y) = (1+\tau^2)^{\frac{\rho}{2}} [y_1^2 + 2\gamma y_1 y_2 + y_2^2]^{\frac{\rho}{2}} + \left(\frac{1}{(\rho-1)^2} + \tau^2\right)^{\frac{\rho}{2}} [y_3 - (y_1 - y_2)^{\rho}]$$

when $\frac{2-p}{p}y_1 \le y_2 < y_1$

Proposition

Let $1 . If <math>|\tau| \le \frac{1}{2}$ then a solution to the Monge–Ampère equation is given by

$$M(y) = (1+\tau^2)^{\frac{\rho}{2}} [y_1^2 + 2\gamma y_1 y_2 + y_2^2]^{\frac{\rho}{2}} + \left(\frac{1}{(p-1)^2} + \tau^2\right)^{\frac{\rho}{2}} [y_3 - (y_1 - y_2)^p]$$

when $\frac{2-p}{p}y_1 \le y_2 < y_1$ and is given implicitly by $G(y_1 - y_2, y_1 + y_2) = y_3 G(1, \sqrt{\omega^2 - \tau^2})$ when $-y_1 < y_2 \le \frac{2-p}{p}y_1$.

Proposition

Let $1 . If <math>|\tau| \leq \frac{1}{2}$ then a solution to the Monge–Ampère equation is given by

$$M(y) = (1+\tau^2)^{\frac{\rho}{2}} [y_1^2 + 2\gamma y_1 y_2 + y_2^2]^{\frac{\rho}{2}} + \left(\frac{1}{(p-1)^2} + \tau^2\right)^{\frac{\rho}{2}} [y_3 - (y_1 - y_2)^p]$$

when $\frac{2-p}{p}y_1 \leq y_2 < y_1$ and is given implicitly by $G(y_1-y_2,y_1+y_2) = y_3 G(1,\sqrt{\omega^2-\tau^2})$ when $-y_1 < y_2 \leq \frac{2-p}{p}y_1$. This solution satisfies all of the properties of the Bellman function.

The Monge–Ampère solution from Case (1_1) does not satisfy the weak concavity needed to be the Bellman function, since $D_2 < 0$.

The Monge–Ampère solution from Case (1_1) does not satisfy the weak concavity needed to be the Bellman function, since $D_2 < 0$.

The Monge–Ampère solution from Case (2_1) does not satisfy the weak concavity needed to be the Bellman function, since $M_{y_1y_1} > 0$ in part of Xi_+ .

The Monge–Ampère solution from Case (1_1) does not satisfy the weak concavity needed to be the Bellman function, since $D_2 < 0$.

The Monge–Ampère solution from Case (2_1) does not satisfy the weak concavity needed to be the Bellman function, since $M_{y_1y_1} > 0$ in part of Xi_+ . Since this solution is only a partial solution and there is no other solution to glue together with it, we discard this case.

The Monge–Ampère solution from Case (1_1) does not satisfy the weak concavity needed to be the Bellman function, since $D_2 < 0$.

The Monge–Ampère solution from Case (2_1) does not satisfy the weak concavity needed to be the Bellman function, since $M_{y_1y_1} > 0$ in part of Xi_+ . Since this solution is only a partial solution and there is no other solution to glue together with it, we discard this case.

The Monge–Ampère solution from Case (3_1) does not satisfy the weak concavity needed to be the Bellman function, since $D_2 < 0$.

The Monge–Ampère solution from Case (1_1) does not satisfy the weak concavity needed to be the Bellman function, since $D_2 < 0$.

The Monge–Ampère solution from Case (2_1) does not satisfy the weak concavity needed to be the Bellman function, since $M_{y_1y_1} > 0$ in part of Xi_+ . Since this solution is only a partial solution and there is no other solution to glue together with it, we discard this case.

The Monge–Ampère solution from Case (3_1) does not satisfy the weak concavity needed to be the Bellman function, since $D_2 < 0$.

Case (4) still needs to be finished

The Monge–Ampère solution from Case (4) does not provide a Bellman function candidate?

Case (4) still needs to be finished

The Monge–Ampère solution from Case (4) does not provide a Bellman function candidate?

In proof of Burkholder's result using the Bellman function technique there is a counterexample of test functions provided for this case.

Case (4) still needs to be finished

The Monge–Ampère solution from Case (4) does not provide a Bellman function candidate?

In proof of Burkholder's result using the Bellman function technique there is a counterexample of test functions provided for this case.

This still needs to be finished here but we are confident that there will still be a counterexample in the general case.

Main Result

Goal: For $|\tau| \leq \frac{1}{2}$, prove that for all $n \in \mathbb{Z}_+$ and any $\{d_k\}_k$ martingale difference,

$$\left\| \sum_{k=1}^n \left(\begin{array}{c} \varepsilon_k \\ \tau \end{array} \right) d_k \right\|_{L^p([0,1),\mathbb{R}^2)} \leq C_{p,\tau} \left\| \sum_{k=1}^n d_k \right\|_{L^p([0,1),\mathbb{R})},$$

Main Result

Goal: For $|\tau| \leq \frac{1}{2}$, prove that for all $n \in \mathbb{Z}_+$ and any $\{d_k\}_k$ martingale difference,

$$\left\| \sum_{k=1}^n \left(\begin{array}{c} \varepsilon_k \\ \tau \end{array} \right) d_k \right\|_{L^p([0,1),\mathbb{R}^2)} \leq C_{p,\tau} \left\| \sum_{k=1}^n d_k \right\|_{L^p([0,1),\mathbb{R})},$$

This estimate can be proven now that we have a Bellman function candidate.

Main Result

Goal: For $|\tau| \leq \frac{1}{2}$, prove that for all $n \in \mathbb{Z}_+$ and any $\{d_k\}_k$ martingale difference,

$$\left\| \sum_{k=1}^n \left(\begin{array}{c} \varepsilon_k \\ \tau \end{array} \right) d_k \right\|_{L^p([0,1),\mathbb{R}^2)} \leq C_{p,\tau} \left\| \sum_{k=1}^n d_k \right\|_{L^p([0,1),\mathbb{R})},$$

This estimate can be proven now that we have a Bellman function candidate.

To show that the sharp constant is $C_{p,\tau} = ((p^* - 1)^2 + \tau^2)^{\frac{1}{2}}$, we need to show that our Bellman candidate is actually the Bellman function by closing the door on Case (4).

Application

Let B be the Ahlfors–Beurling operator, I is the identity operator and $\tau \in \mathbb{R}$, then

Application

Let B be the Ahlfors–Beurling operator, I is the identity operator and $\tau \in \mathbb{R}$, then

$$\left\| \left(\begin{array}{c} \Re B \\ \tau I \end{array} \right) \right\|_{L^{p}(\mathbb{C},\mathbb{R}) \to L^{p}(\mathbb{C},\mathbb{R}^{2})} = \left\| \left(\begin{array}{c} MT_{\vec{\varepsilon}} \\ \tau I \end{array} \right) \right\|_{L^{p}(\mathbb{R}) \to L^{p}(\mathbb{R}^{2})} = C_{p,\tau}.$$

Application

Let B be the Ahlfors–Beurling operator, I is the identity operator and $\tau \in \mathbb{R}$, then

$$\left\|\left(\begin{array}{c} \Re B \\ \tau I \end{array}\right)\right\|_{L^p(\mathbb{C},\mathbb{R})\to L^p(\mathbb{C},\mathbb{R}^2)} = \left\|\left(\begin{array}{c} MT_{\vec{\varepsilon}} \\ \tau I \end{array}\right)\right\|_{L^p(\mathbb{R})\to L^p(\mathbb{R}^2)} = C_{p,\tau}.$$

Again, once we close the door on Case (4), then for $|\tau| \leq \frac{1}{2}$, we will have $C_{p,\tau} = ((p^*-1)^2 + \tau^2)^{\frac{1}{2}}$.

Thank you