The Bellman Function for a Perturbation of Burkholder's Martingale Transform

Nicholas Boros (joint work with Prabhu Janakiraman and Alexander Volberg)

Michigan State University

$$
\text { June 1, } 2010
$$

Motivation

Let $\left\{f_{k}\right\}_{k}$ be a martingale and $d_{k}=f_{k}-f_{k-1}, d_{0}=f_{0}$ its associated martingale difference sequence. We define a martingale transform, $M T_{\vec{\varepsilon}}$, as

$$
M T_{\vec{\varepsilon}}\left(\sum_{k=1}^{n} d_{k}\right):=\sum_{k=1}^{n} \varepsilon_{k} d_{k}
$$

where $\varepsilon \in\{ \pm 1\}$.

Motivation

Let $\left\{f_{k}\right\}_{k}$ be a martingale and $d_{k}=f_{k}-f_{k-1}, d_{0}=f_{0}$ its associated martingale difference sequence. We define a martingale transform, $M T_{\vec{\varepsilon}}$, as

$$
M T_{\vec{\varepsilon}}\left(\sum_{k=1}^{n} d_{k}\right):=\sum_{k=1}^{n} \varepsilon_{k} d_{k}
$$

where $\varepsilon \in\{ \pm 1\}$.

Theorem

(D. Burkholder-1983) For $1<p<\infty$,
$\left\|M T_{\vec{\varepsilon}}\right\|_{p \rightarrow p}=\sup _{\vec{\varepsilon}} \frac{\left\|\sum_{k=1}^{n} \varepsilon_{k} d_{k}\right\|_{p}}{\left\|\sum_{k=1}^{n} d_{k}\right\|_{p}}=\left(p^{*}-1\right)$, where
$p^{*}-1=\max \left\{p-1, \frac{1}{p-1}\right\}$.

Motivation

Let $\left\{f_{k}\right\}_{k}$ be a martingale and $d_{k}=f_{k}-f_{k-1}, d_{0}=f_{0}$ its associated martingale difference sequence. We define a martingale transform, $M T_{\vec{\varepsilon}}$, as

$$
M T_{\vec{\varepsilon}}\left(\sum_{k=1}^{n} d_{k}\right):=\sum_{k=1}^{n} \varepsilon_{k} d_{k}
$$

where $\varepsilon \in\{ \pm 1\}$.

Theorem

(D. Burkholder-1983) For $1<p<\infty$,
$\left\|M T_{\vec{\varepsilon}}\right\|_{p \rightarrow p}=\sup _{\vec{\varepsilon}} \frac{\left\|\sum_{k=1}^{n} \varepsilon_{k} d_{k}\right\|_{p}}{\left\|\sum_{k=1}^{n} d_{k}\right\|_{p}}=\left(p^{*}-1\right)$, where
$p^{*}-1=\max \left\{p-1, \frac{1}{p-1}\right\}$.
This result has many applications, but the one we will focus on is sharp estimates of singular integrals.

The Ahlfors-Beurling transform is given by

$$
B f(z):=p . v .-\frac{1}{\pi} \int_{\mathbb{C}} \frac{f(w)}{(z-w)^{2}} d m_{2}(w)
$$

Let $\|B\|_{p}$ denote the operator norm.

The Ahlfors-Beurling transform is given by

$$
B f(z):=p . v .-\frac{1}{\pi} \int_{\mathbb{C}} \frac{f(w)}{(z-w)^{2}} d m_{2}(w)
$$

Let $\|B\|_{p}$ denote the operator norm.
Lehto (1965): $\|B\|_{p} \geq p^{*}-1$

The Ahlfors-Beurling Operator

The Ahlfors-Beurling transform is given by

$$
B f(z):=p . v .-\frac{1}{\pi} \int_{\mathbb{C}} \frac{f(w)}{(z-w)^{2}} d m_{2}(w) .
$$

Let $\|B\|_{p}$ denote the operator norm.
Lehto (1965): $\|B\|_{p} \geq p^{*}-1$
Iwaneic (1982): Conjectured $\|B\|_{p}=p^{*}-1$

Applications of Burkholder's Result

Bañuelos, Wang (1995): $\|B\|_{p} \leq 4\left(p^{*}-1\right)$

Applications of Burkholder's Result

Bañuelos, Wang (1995): $\|B\|_{p} \leq 4\left(p^{*}-1\right)$
Nazarov, Volberg (2003): $\|B\|_{p} \leq 2\left(p^{*}-1\right)$

Applications of Burkholder's Result

Bañuelos, Wang (1995): $\|B\|_{p} \leq 4\left(p^{*}-1\right)$
Nazarov, Volberg (2003): $\|B\|_{p} \leq 2\left(p^{*}-1\right)$
Bañuelos, Méndez-Hernandez (2003): $\|B\|_{p} \leq 2\left(p^{*}-1\right)$

Applications of Burkholder's Result

Bañuelos, Wang (1995): $\|B\|_{p} \leq 4\left(p^{*}-1\right)$
Nazarov, Volberg (2003): $\|B\|_{p} \leq 2\left(p^{*}-1\right)$
Bañuelos, Méndez-Hernandez (2003): $\|B\|_{p} \leq 2\left(p^{*}-1\right)$
Dragičević, Volberg (2003): $\|B\|_{p} \leq \frac{\sqrt{2}(p-1)}{\frac{1}{2 \pi}\left(\int_{0}^{2 \pi}|\cos (\theta)|^{p} d \theta\right)^{\frac{1}{p}}}, p>2$

Applications of Burkholder's Result

Bañuelos, Wang (1995): $\|B\|_{p} \leq 4\left(p^{*}-1\right)$
Nazarov, Volberg (2003): $\|B\|_{p} \leq 2\left(p^{*}-1\right)$
Bañuelos, Méndez-Hernandez (2003): $\|B\|_{p} \leq 2\left(p^{*}-1\right)$
Dragičević, Volberg (2003): $\|B\|_{p} \leq \frac{\sqrt{2}(p-1)}{\frac{1}{2 \pi}\left(\int_{0}^{2 \pi}|\cos (\theta)|^{p} d \theta\right)^{\frac{1}{p}}}, p>2$
Bañuelos, Janakiraman (2008): $\|B\|_{p} \leq 1.575\left(p^{*}-1\right)$

Applications of Burkholder's Result

Bañuelos, Wang (1995): $\|B\|_{p} \leq 4\left(p^{*}-1\right)$
Nazarov, Volberg (2003): $\|B\|_{p} \leq 2\left(p^{*}-1\right)$
Bañuelos, Méndez-Hernandez (2003): $\|B\|_{p} \leq 2\left(p^{*}-1\right)$
Dragičević, Volberg (2003): $\|B\|_{p} \leq \frac{\sqrt{2}(p-1)}{\frac{1}{2 \pi}\left(\int_{0}^{2 \pi}|\cos (\theta)|^{p} d \theta\right)^{\frac{1}{p}}}, p>2$
Bañuelos, Janakiraman (2008): $\|B\|_{p} \leq 1.575\left(p^{*}-1\right)$
Geiss, Montgomery-Smith, Saksman (2008):
$\|\Re B\|_{p}=\|\Im B\|_{p}=p^{*}-1$

Main Result

Goal: For $|\tau| \leq \frac{1}{2}$, compute

$$
C_{p, \tau}:=\left\|\binom{M T_{\vec{\varepsilon}}}{\tau I}\right\|_{L^{p}(\mathbb{R}) \rightarrow L^{p}\left(\mathbb{R}^{2}\right)}=\sup _{\vec{\varepsilon}} \frac{\left\|\sum_{k=1}^{n}\binom{\varepsilon_{k}}{\tau} d_{k}\right\|_{p}}{\left\|\sum_{k=1}^{n} d_{k}\right\|_{p}}
$$

Main Result

Goal: For $|\tau| \leq \frac{1}{2}$, compute

$$
C_{p, \tau}:=\left\|\binom{M T_{\vec{\varepsilon}}}{\tau I}\right\|_{L^{p}(\mathbb{R}) \rightarrow L^{p}\left(\mathbb{R}^{2}\right)}=\sup _{\vec{\varepsilon}} \frac{\left\|\sum_{k=1}^{n}\binom{\varepsilon_{k}}{\tau} d_{k}\right\|_{p}}{\left\|\sum_{k=1}^{n} d_{k}\right\|_{p}},
$$

This requires us to find the best $C_{p, \tau}$ such that for all $n \in \mathbb{Z}_{+}$

$$
\left\|\sum_{k=1}^{n}\binom{\varepsilon_{k}}{\tau} d_{k}\right\|_{L^{p}\left([0,1), \mathbb{R}^{2}\right)} \leq C_{p, \tau}\left\|\sum_{k=1}^{n} d_{k}\right\|_{L^{p}([0,1), \mathbb{R})}
$$

Main Result

Goal: For $|\tau| \leq \frac{1}{2}$, compute

$$
C_{p, \tau}:=\left\|\binom{M T_{\vec{\varepsilon}}}{\tau I}\right\|_{L^{p}(\mathbb{R}) \rightarrow L^{p}\left(\mathbb{R}^{2}\right)}=\sup _{\vec{\varepsilon}} \frac{\left\|\sum_{k=1}^{n}\binom{\varepsilon_{k}}{\tau} d_{k}\right\|_{p}}{\left\|\sum_{k=1}^{n} d_{k}\right\|_{p}},
$$

This requires us to find the best $C_{p, \tau}$ such that for all $n \in \mathbb{Z}_{+}$

$$
\left\|\sum_{k=1}^{n}\binom{\varepsilon_{k}}{\tau} d_{k}\right\|_{L^{p}\left([0,1), \mathbb{R}^{2}\right)} \leq C_{p, \tau}\left\|\sum_{k=1}^{n} d_{k}\right\|_{L^{p}([0,1), \mathbb{R})}
$$

Approach: Use the Bellman function technique

Background Information and Notation

Let I be a finte interval and $\alpha^{ \pm} \in \mathbb{R}^{+}$such that $\alpha^{+}+\alpha^{-}=1$.

Background Information and Notation

Let I be a finte interval and $\alpha^{ \pm} \in \mathbb{R}^{+}$such that $\alpha^{+}+\alpha^{-}=1$.
These $\alpha^{ \pm}$generate two subintervals $I^{ \pm}$such that $\left|I^{ \pm}\right|=\alpha^{ \pm}|I|$ and $I=I^{-} \cup I^{+}$.

Background Information and Notation

Let I be a finte interval and $\alpha^{ \pm} \in \mathbb{R}^{+}$such that $\alpha^{+}+\alpha^{-}=1$.
These $\alpha^{ \pm}$generate two subintervals $I^{ \pm}$such that $\left|I^{ \pm}\right|=\alpha^{ \pm}|I|$ and $I=I^{-} \cup I^{+}$.

Example: If $I=[0,1), \alpha^{-}=\frac{1}{3}, \alpha^{+}=\frac{2}{3}$,

Background Information and Notation

Let I be a finte interval and $\alpha^{ \pm} \in \mathbb{R}^{+}$such that $\alpha^{+}+\alpha^{-}=1$.
These $\alpha^{ \pm}$generate two subintervals $I^{ \pm}$such that $\left|I^{ \pm}\right|=\alpha^{ \pm}|I|$ and $I=I^{-} \cup I^{+}$.

Example: If $I=[0,1), \alpha^{-}=\frac{1}{3}, \alpha^{+}=\frac{2}{3}$, then $I^{-}=\left[0, \frac{1}{3}\right)$ and $I^{+}=\left[\frac{1}{3}, 1\right)$.

Background Information and Notation

Continuing this, for
$\left\{\alpha_{n, m}: 0<\alpha_{n, m}<1,0 \leq m<2^{n}, 0<n<\infty, \alpha_{n, 2 k}+\alpha_{n, 2 k+1}=1\right\}$
we generate $\mathcal{I}:=\left\{I_{n, m}: 0 \leq m<2^{n}, 0<n<\infty\right\}$
where $I_{n, m}=I_{n, m}^{-} \cup I_{n, m}^{+}=I_{n+1,2 m+1} \cup I_{n+1,2 m+1}$ and
$\alpha^{-}=\alpha_{n+1,2 m}, \alpha^{+}=\alpha_{n+1,2 m+1}$. Note that $I_{0,0}=I$.

Background Information and Notation

Continuing this, for
$\left\{\alpha_{n, m}: 0<\alpha_{n, m}<1,0 \leq m<2^{n}, 0<n<\infty, \alpha_{n, 2 k}+\alpha_{n, 2 k+1}=1\right\}$
we generate $\mathcal{I}:=\left\{I_{n, m}: 0 \leq m<2^{n}, 0<n<\infty\right\}$
where $I_{n, m}=I_{n, m}^{-} \cup I_{n, m}^{+}=I_{n+1,2 m+1} \cup I_{n+1,2 m+1}$ and
$\alpha^{-}=\alpha_{n+1,2 m}, \alpha^{+}=\alpha_{n+1,2 m+1}$. Note that $I_{0,0}=I$.

Definition

For $J \in \mathcal{I}$ we define the Haar function
$h_{J}:=-\sqrt{\frac{\alpha^{+}}{\alpha^{-}|J|}} \chi_{J^{-}}+\sqrt{\frac{\alpha^{-}}{\alpha^{+}|J|}} \chi_{J^{+}}$.

Background Information and Notation

The Bellman function will be independent of I and $\left\{\alpha_{n, m}\right\}_{n, m}$ sequence.

Background Information and Notation

The Bellman function will be independent of I and $\left\{\alpha_{n, m}\right\}_{n, m}$ sequence.

Choose $I=[0,1)$ and $\mathcal{I}=\mathcal{D}$, the dyadic subintervals.

Background Information and Notation

The Bellman function will be independent of I and $\left\{\alpha_{n, m}\right\}_{n, m}$ sequence.

Choose $I=[0,1)$ and $\mathcal{I}=\mathcal{D}$, the dyadic subintervals.
Then for $1<p<\infty$ and $f \in L^{p}[0,1)$,

$$
f=\langle f\rangle_{[0,1)} \chi_{[0,1)}+\sum_{I \in \sigma(\mathcal{D})}\left(f, h_{l}\right) h_{l} .
$$

Background Information and Notation

The Bellman function will be independent of I and $\left\{\alpha_{n, m}\right\}_{n, m}$ sequence.

Choose $I=[0,1)$ and $\mathcal{I}=\mathcal{D}$, the dyadic subintervals.
Then for $1<p<\infty$ and $f \in L^{p}[0,1)$,

$$
f=\langle f\rangle_{[0,1)} \chi_{[0,1)}+\sum_{I \in \sigma(\mathcal{D})}\left(f, h_{l}\right) h_{l} .
$$

Definition

We define the martingale transform, g of f, in terms of the expansion in the Haar system, as

$$
g:=\langle f\rangle_{[0,1)} \chi_{[0,1)}+\sum_{l \in \sigma(\mathcal{D})} \varepsilon_{l}\left(f, h_{l}\right) h_{l},
$$

where $\varepsilon_{l} \in\{ \pm 1\}$.

Setting up Bellman function

Martingale differenes have integral zero so if we restrict to $L_{0}^{p}[0,1)$ functions,

Setting up Bellman function

Martingale differenes have integral zero so if we restrict to $L_{0}^{p}[0,1)$ functions, then property $\left|\left(g, h_{J}\right)\right|=\left|\left(f, h_{J}\right)\right|$ for all $J \in \mathcal{D}$ is equivalent to g being the martingale transform of f.

Setting up Bellman function

Martingale differenes have integral zero so if we restrict to $L_{0}^{p}[0,1)$ functions, then property $\left|\left(g, h_{J}\right)\right|=\left|\left(f, h_{J}\right)\right|$ for all $J \in \mathcal{D}$ is equivalent to g being the martingale transform of f.

Goal:

$$
\left\|\binom{\sum_{k=1}^{n} \varepsilon_{k} d_{k}}{\tau \sum_{k=1}^{n} d_{k}}\right\|_{L^{p}\left([0,1), \mathbb{R}^{2}\right)} \leq C_{p, \tau}\left\|\sum_{k=1}^{n} d_{k}\right\|_{L^{p}([0,1), \mathbb{R})}
$$

Setting up Bellman function

Martingale differenes have integral zero so if we restrict to $L_{0}^{p}[0,1)$ functions, then property $\left|\left(g, h_{J}\right)\right|=\left|\left(f, h_{J}\right)\right|$ for all $J \in \mathcal{D}$ is equivalent to g being the martingale transform of f.

Goal:

$$
\left\|\binom{\sum_{k=1}^{n} \varepsilon_{k} d_{k}}{\tau \sum_{k=1}^{n} d_{k}}\right\|_{L^{p}\left([0,1), \mathbb{R}^{2}\right)} \leq C_{p, \tau}\left\|\sum_{k=1}^{n} d_{k}\right\|_{L^{p}([0,1), \mathbb{R})}
$$

So we define the Bellman function as

$$
\begin{aligned}
\mathcal{B}\left(x_{1}, x_{2}, x_{3}\right):=\sup _{f, g}\left\{\left\langle\left(g^{2}+\tau^{2} f^{2}\right)^{\frac{p}{2}}\right\rangle_{I}: x_{1}=\langle f\rangle_{I}, x_{2}=\langle g\rangle_{I},\right. \\
\left.\left.x_{3}=\left.\langle | f\right|^{p}\right\rangle_{I},\left|\left(f, h_{J}\right)\right|=\left|\left(g, h_{J}\right)\right|, \quad \forall J \in \mathcal{D}\right\}
\end{aligned}
$$

on the domain $\Omega=\left\{x \in \mathbb{R}^{3}: x_{3} \geq 0,\left|x_{1}\right|^{p} \leq x_{3}\right\}$.

Setting up Bellman function

Martingale differenes have integral zero so if we restrict to $L_{0}^{p}[0,1)$ functions, then property $\left|\left(g, h_{J}\right)\right|=\left|\left(f, h_{J}\right)\right|$ for all $J \in \mathcal{D}$ is equivalent to g being the martingale transform of f.

Goal:

$$
\left\|\binom{\sum_{k=1}^{n} \varepsilon_{k} d_{k}}{\tau \sum_{k=1}^{n} d_{k}}\right\|_{L^{p}\left([0,1), \mathbb{R}^{2}\right)} \leq C_{p, \tau}\left\|\sum_{k=1}^{n} d_{k}\right\|_{L^{p}([0,1), \mathbb{R})}
$$

So we define the Bellman function as

$$
\begin{aligned}
& \mathcal{B}\left(x_{1}, x_{2}, x_{3}\right):=\sup _{f, g}\left\{\left\langle\left(g^{2}+\tau^{2} f^{2}\right)^{\frac{p}{2}}\right\rangle_{I}: x_{1}=\langle f\rangle_{I}, x_{2}=\langle g\rangle_{I},\right. \\
&\left.\left.x_{3}=\left.\langle | f\right|^{p}\right\rangle_{I},\left|\left(f, h_{J}\right)\right|=\left|\left(g, h_{J}\right)\right|, \forall J \in \mathcal{D}\right\}
\end{aligned}
$$

on the domain $\Omega=\left\{x \in \mathbb{R}^{3}: x_{3} \geq 0,\left|x_{1}\right|^{p} \leq x_{3}\right\}$.
Note: The condition $\left|x_{1}\right|^{p} \leq x_{3}$ is just Hölder's inequality.

Setting up Bellman function

Martingale differenes have integral zero so if we restrict to $L_{0}^{p}[0,1)$ functions, then property $\left|\left(g, h_{J}\right)\right|=\left|\left(f, h_{J}\right)\right|$ for all $J \in \mathcal{D}$ is equivalent to g being the martingale transform of f.

Goal:

$$
\left\|\binom{\sum_{k=1}^{n} \varepsilon_{k} d_{k}}{\tau \sum_{k=1}^{n} d_{k}}\right\|_{L^{p}\left([0,1), \mathbb{R}^{2}\right)} \leq C_{p, \tau}\left\|\sum_{k=1}^{n} d_{k}\right\|_{L^{p}([0,1), \mathbb{R})}
$$

So we define the Bellman function as

$$
\begin{aligned}
& \mathcal{B}\left(x_{1}, x_{2}, x_{3}\right):=\sup _{f, g}\left\{\left\langle\left(g^{2}+\tau^{2} f^{2}\right)^{\frac{p}{2}}\right\rangle_{I}: x_{1}=\langle f\rangle_{I}, x_{2}=\langle g\rangle_{I},\right. \\
&\left.\left.x_{3}=\left.\langle | f\right|^{p}\right\rangle_{I},\left|\left(f, h_{J}\right)\right|=\left|\left(g, h_{J}\right)\right|, \forall J \in \mathcal{D}\right\}
\end{aligned}
$$

on the domain $\Omega=\left\{x \in \mathbb{R}^{3}: x_{3} \geq 0,\left|x_{1}\right|^{p} \leq x_{3}\right\}$.
Note: The condition $\left|x_{1}\right|^{p} \leq x_{3}$ is just Hölder's inequality.

Computation of Bellman function when $p=2$

Now that we have the problem formalized, we return to I and $\left\{\alpha_{n, m}\right\}_{n, m}$ as arbitrary since it doesn't change \mathcal{B}.

Computation of Bellman function when $p=2$

Now that we have the problem formalized, we return to I and $\left\{\alpha_{n, m}\right\}_{n, m}$ as arbitrary since it doesn't change \mathcal{B}.

Proposition

If $p=2$ then $\mathcal{B}(x)=x_{2}^{2}+\tau^{2} x_{1}^{2}+\left(1+\tau^{2}\right)\left(x_{3}-x_{1}^{2}\right)$

Computation of Bellman function when $p=2$

Now that we have the problem formalized, we return to I and $\left\{\alpha_{n, m}\right\}_{n, m}$ as arbitrary since it doesn't change \mathcal{B}.

Proposition

If $p=2$ then $\mathcal{B}(x)=x_{2}^{2}+\tau^{2} x_{1}^{2}+\left(1+\tau^{2}\right)\left(x_{3}-x_{1}^{2}\right)$
Proof: Since $f \in L^{2}(I)$ then $f=\langle f\rangle_{I} \chi_{I}+\sum_{J \in \mathcal{D}}\left(f, h_{J}\right) h_{J}$ then

Computation of Bellman function when $p=2$

Now that we have the problem formalized, we return to I and $\left\{\alpha_{n, m}\right\}_{n, m}$ as arbitrary since it doesn't change \mathcal{B}.

Proposition

If $p=2$ then $\mathcal{B}(x)=x_{2}^{2}+\tau^{2} x_{1}^{2}+\left(1+\tau^{2}\right)\left(x_{3}-x_{1}^{2}\right)$
Proof: Since $f \in L^{2}(I)$ then $f=\langle f\rangle_{I} \chi_{I}+\sum_{J \in \mathcal{D}}\left(f, h_{J}\right) h_{J}$ then

$$
\begin{aligned}
\left.\left.\langle | f\right|^{2}\right\rangle_{I}= & \frac{1}{|I|} \int_{I}|f|^{2} \\
= & \langle f\rangle_{I}^{2}+2\langle f\rangle_{I} \sum_{J \in \mathcal{D}}\left(f, h_{J}\right) \frac{1}{|I|} \int_{I} h_{J} \\
& +\frac{1}{|I|} \int_{I} \sum_{J, K \in \mathcal{D}}\left(f, h_{J}\right)\left(f, h_{K}\right) h_{J} h_{K}
\end{aligned}
$$

Computation of Bellman function when $p=2$

Now that we have the problem formalized, we return to I and $\left\{\alpha_{n, m}\right\}_{n, m}$ as arbitrary since it doesn't change \mathcal{B}.

Proposition

If $p=2$ then $\mathcal{B}(x)=x_{2}^{2}+\tau^{2} x_{1}^{2}+\left(1+\tau^{2}\right)\left(x_{3}-x_{1}^{2}\right)$
Proof: Since $f \in L^{2}(I)$ then $f=\langle f\rangle_{I} \chi_{I}+\sum_{J \in \mathcal{D}}\left(f, h_{J}\right) h_{J}$ then

$$
\begin{aligned}
\left.\left.\langle | f\right|^{2}\right\rangle_{I}= & \frac{1}{|I|} \int_{I}|f|^{2} \\
= & \langle f\rangle_{I}^{2}+2\langle f\rangle_{I} \sum_{J \in \mathcal{D}}\left(f, h_{J}\right) \frac{1}{|I|} \int_{I} h_{J} \\
& \quad+\frac{1}{|I|} \int_{I} \sum_{J, K \in \mathcal{D}}\left(f, h_{J}\right)\left(f, h_{K}\right) h_{J} h_{K} \\
= & \langle f\rangle_{I}^{2}+\frac{1}{|I|} \sum_{J \in \mathcal{D}}\left|\left(f, h_{J}\right)\right|^{2}
\end{aligned}
$$

Computation of Bellman function when $p=2$

So $\|f\|_{2}^{2}=\left|\left\|x_{3}=\left|\|\left|x_{1}^{2}+\sum_{J \in \mathcal{D}}\right|\left(f, h_{J}\right)\right|^{2}\right.\right.$ and similarly

Computation of Bellman function when $p=2$

So $\|f\|_{2}^{2}=\left|\left\|\left|x_{3}=\left|\|\left|x_{1}^{2}+\sum_{J \in \mathcal{D}}\right|\left(f, h_{J}\right)\right|^{2}\right.\right.\right.$ and similarly

$$
\|g\|_{2}^{2}=\left|\left|\left|x_{2}^{2}+\sum_{J \in \mathcal{D}}\right|\left(g, h_{J}\right)\right|^{2}=\left|\left|\left|x_{2}^{2}+\sum_{J \in \mathcal{D}}\right|\left(f, h_{J}\right)\right|^{2}\right.\right.
$$

Computation of Bellman function when $p=2$

So $\|f\|_{2}^{2}=\left|\left\|x_{3}=\left.\left|\| x_{1}^{2}+\sum_{J \in \mathcal{D}}\right|\left(f, h_{J}\right)\right|^{2}\right.\right.$ and similarly

$$
\|g\|_{2}^{2}=\left|\left|\left|x_{2}^{2}+\sum_{J \in \mathcal{D}}\right|\left(g, h_{J}\right)\right|^{2}=\left|\left|\left|x_{2}^{2}+\sum_{J \in \mathcal{D}}\right|\left(f, h_{J}\right)\right|^{2}\right.\right.
$$

Now we can compute \mathcal{B} explicitly.

$$
\left.\left.\left\langle\left(g^{2}+\tau^{2} f^{2}\right)^{\frac{\rho}{2}}\right\rangle_{I}=\left.\langle | g\right|^{2}\right\rangle_{I}+\left.\tau^{2}\langle | f\right|^{2}\right\rangle_{I}
$$

Computation of Bellman function when $p=2$

So $\|f\|_{2}^{2}=\left|\left\|x_{3}=\left.\left|\| x_{1}^{2}+\sum_{J \in \mathcal{D}}\right|\left(f, h_{J}\right)\right|^{2}\right.\right.$ and similarly

$$
\|g\|_{2}^{2}=\left|\left|\left|x_{2}^{2}+\sum_{J \in \mathcal{D}}\right|\left(g, h_{J}\right)\right|^{2}=\left|\left|\left|x_{2}^{2}+\sum_{J \in \mathcal{D}}\right|\left(f, h_{J}\right)\right|^{2}\right.\right.
$$

Now we can compute \mathcal{B} explicitly.

$$
\begin{aligned}
\left\langle\left(g^{2}+\tau^{2} f^{2}\right)^{\frac{p}{2}}\right\rangle_{I} & \left.\left.=\left.\langle | g\right|^{2}\right\rangle_{I}+\left.\tau^{2}\langle | f\right|^{2}\right\rangle_{I} \\
& =x_{2}^{2}+\tau^{2} x_{1}^{2}+\left(1+\tau^{2}\right) \frac{1}{|I|} \sum_{J \in \mathcal{D}}\left|\left(f, h_{J}\right)\right|^{2}
\end{aligned}
$$

Computation of Bellman function when $p=2$

So $\|f\|_{2}^{2}=\left|\left\|x_{3}=\left.\left|\| x_{1}^{2}+\sum_{J \in \mathcal{D}}\right|\left(f, h_{J}\right)\right|^{2}\right.\right.$ and similarly

$$
\|g\|_{2}^{2}=\left|\left|\left|x_{2}^{2}+\sum_{J \in \mathcal{D}}\right|\left(g, h_{J}\right)\right|^{2}=\left|\left|\left|x_{2}^{2}+\sum_{J \in \mathcal{D}}\right|\left(f, h_{J}\right)\right|^{2}\right.\right.
$$

Now we can compute \mathcal{B} explicitly.

$$
\begin{aligned}
\left\langle\left(g^{2}+\tau^{2} f^{2}\right)^{\frac{p}{2}}\right\rangle_{I} & \left.\left.=\left.\langle | g\right|^{2}\right\rangle_{1}+\left.\tau^{2}\langle | f\right|^{2}\right\rangle_{I} \\
& =x_{2}^{2}+\tau^{2} x_{1}^{2}+\left(1+\tau^{2}\right) \frac{1}{|I|} \sum_{J \in \mathcal{D}}\left|\left(f, h_{J}\right)\right|^{2} \\
& =x_{2}^{2}+\tau^{2} x_{1}^{2}+\left(1+\tau^{2}\right)\left(x_{3}-x_{1}^{2}\right)
\end{aligned}
$$

QED
Finding the Bellman function when $p \neq 2$ is much more difficult so we need some properties.

Weak concavity of Bellman function

Proposition

Suppose $x^{ \pm} \in \Omega$ such that $x=\alpha^{+} x^{+}+\alpha^{-} x^{-}, \alpha^{+}+\alpha^{-}=1$. If $\left|x_{1}^{+}-x_{1}^{-}\right|=\left|x_{2}^{+}-x_{2}^{-}\right|$then $\mathcal{B}(x) \geq \alpha^{+} \mathcal{B}\left(x^{+}\right)+\alpha^{-} \mathcal{B}\left(x^{-}\right)$

Weak concavity of Bellman function

Proposition

Suppose $x^{ \pm} \in \Omega$ such that $x=\alpha^{+} x^{+}+\alpha^{-} x^{-}, \alpha^{+}+\alpha^{-}=1$. If $\left|x_{1}^{+}-x_{1}^{-}\right|=\left|x_{2}^{+}-x_{2}^{-}\right|$then $\mathcal{B}(x) \geq \alpha^{+} \mathcal{B}\left(x^{+}\right)+\alpha^{-} \mathcal{B}\left(x^{-}\right)$

Changing variables: $y_{1}:=\frac{x_{2}+x_{1}}{2}, y_{2}:=\frac{x_{2}-x_{1}}{2}$ and $y_{3}:=x_{3}$

Weak concavity of Bellman function

Proposition

Suppose $x^{ \pm} \in \Omega$ such that $x=\alpha^{+} x^{+}+\alpha^{-} x^{-}, \alpha^{+}+\alpha^{-}=1$. If $\left|x_{1}^{+}-x_{1}^{-}\right|=\left|x_{2}^{+}-x_{2}^{-}\right|$then $\mathcal{B}(x) \geq \alpha^{+} \mathcal{B}\left(x^{+}\right)+\alpha^{-} \mathcal{B}\left(x^{-}\right)$

Changing variables: $y_{1}:=\frac{x_{2}+x_{1}}{2}, y_{2}:=\frac{x_{2}-x_{1}}{2}$ and $y_{3}:=x_{3}$
So $\mathcal{M}\left(y_{1}, y_{2}, y_{3}\right):=\mathcal{B}\left(x_{1}, x_{2}, x_{3}\right)=\mathcal{B}\left(y_{1}-y_{2}, y_{1}+y_{2}, y_{3}\right)$ with the domain of \mathcal{M} as $\equiv:=\left\{y \in \mathbb{R}^{3}: y_{3} \geq 0,\left|y_{1}-y_{2}\right|^{p} \leq y_{3}\right\}$.

Weak concavity of Bellman function

Proposition

Suppose $x^{ \pm} \in \Omega$ such that $x=\alpha^{+} x^{+}+\alpha^{-} x^{-}, \alpha^{+}+\alpha^{-}=1$. If $\left|x_{1}^{+}-x_{1}^{-}\right|=\left|x_{2}^{+}-x_{2}^{-}\right|$then $\mathcal{B}(x) \geq \alpha^{+} \mathcal{B}\left(x^{+}\right)+\alpha^{-} \mathcal{B}\left(x^{-}\right)$

Changing variables: $y_{1}:=\frac{x_{2}+x_{1}}{2}, y_{2}:=\frac{x_{2}-x_{1}}{2}$ and $y_{3}:=x_{3}$
So $\mathcal{M}\left(y_{1}, y_{2}, y_{3}\right):=\mathcal{B}\left(x_{1}, x_{2}, x_{3}\right)=\mathcal{B}\left(y_{1}-y_{2}, y_{1}+y_{2}, y_{3}\right)$ with the domain of \mathcal{M} as $\equiv:=\left\{y \in \mathbb{R}^{3}: y_{3} \geq 0,\left|y_{1}-y_{2}\right|^{p} \leq y_{3}\right\}$.
$x^{ \pm} \in \Omega$ s.t. $\left|x_{1}^{+}-x_{1}^{-}\right|=\left|x_{2}^{+}-x_{2}^{-}\right|$, iff $y^{ \pm} \in \equiv$ satisfies either y_{1} is fixed as $y_{1}^{+}=y_{1}^{-}$or y_{2} is fixed as $y_{2}^{+}=y_{2}^{-}$.

Weak concavity of Bellman function

Proposition

Suppose $x^{ \pm} \in \Omega$ such that $x=\alpha^{+} x^{+}+\alpha^{-} x^{-}, \alpha^{+}+\alpha^{-}=1$. If $\left|x_{1}^{+}-x_{1}^{-}\right|=\left|x_{2}^{+}-x_{2}^{-}\right|$then $\mathcal{B}(x) \geq \alpha^{+} \mathcal{B}\left(x^{+}\right)+\alpha^{-} \mathcal{B}\left(x^{-}\right)$

Changing variables: $y_{1}:=\frac{x_{2}+x_{1}}{2}, y_{2}:=\frac{x_{2}-x_{1}}{2}$ and $y_{3}:=x_{3}$
So $\mathcal{M}\left(y_{1}, y_{2}, y_{3}\right):=\mathcal{B}\left(x_{1}, x_{2}, x_{3}\right)=\mathcal{B}\left(y_{1}-y_{2}, y_{1}+y_{2}, y_{3}\right)$ with the domain of \mathcal{M} as $\equiv:=\left\{y \in \mathbb{R}^{3}: y_{3} \geq 0,\left|y_{1}-y_{2}\right|^{p} \leq y_{3}\right\}$.
$x^{ \pm} \in \Omega$ s.t. $\left|x_{1}^{+}-x_{1}^{-}\right|=\left|x_{2}^{+}-x_{2}^{-}\right|$, iff $y^{ \pm} \in \equiv$ satisfies either y_{1} is fixed as $y_{1}^{+}=y_{1}^{-}$or y_{2} is fixed as $y_{2}^{+}=y_{2}^{-}$.

If $j \neq i \in\{1,2\}$ and we fix y_{i} as $y_{i}^{+}=y_{i}^{-}$. Then \mathcal{M} as a function of y_{j}, y_{3} is concave, i.e.

$$
\left(\begin{array}{ll}
\mathcal{M}_{y_{j} y_{j}} & \mathcal{M}_{y_{j} y_{3}} \\
\mathcal{M}_{y_{3} y_{j}} & \mathcal{M}_{y_{3} y_{3}}
\end{array}\right) \leq 0
$$

Weak concavity of Bellman function

which is equivalent to

$$
\mathcal{M}_{y_{j} y_{j}} \leq 0, \mathcal{M}_{y_{3} y_{3}} \leq 0, D_{j}=\mathcal{M}_{y_{j} y_{j}} \mathcal{M}_{y_{3} y_{3}}-\mathcal{M}_{y_{3} y_{j}} \mathcal{M}_{y_{j} y_{3}} \geq 0
$$

Weak concavity of Bellman function

which is equivalent to

$$
\mathcal{M}_{y_{j} y_{j}} \leq 0, \mathcal{M}_{y_{3} y_{3}} \leq 0, D_{j}=\mathcal{M}_{y_{j} y_{j}} \mathcal{M}_{y_{3} y_{3}}-\mathcal{M}_{y_{3} y_{j}} \mathcal{M}_{y_{j} y_{3}} \geq 0
$$

Proposition

Let $j \neq i \in\{1,2\}$ and fix y_{i} as $y_{i}^{+}=y_{i}^{-}$. Then $\mathcal{M}_{y_{j} y_{j}} \leq 0, \mathcal{M}_{y_{3} y_{3}} \leq 0$ and $D_{j}=\mathcal{M}_{y_{j} y_{j}} \mathcal{M}_{y_{3} y_{3}}-\left(\mathcal{M}_{y_{j} y_{3}}\right)^{2} \geq 0$ is equivalent to \mathcal{M} being a concave function of y_{j}, y_{3}.

Weak concavity of Bellman function

which is equivalent to

$$
\mathcal{M}_{y_{j} y_{j}} \leq 0, \mathcal{M}_{y_{3} y_{3}} \leq 0, D_{j}=\mathcal{M}_{y_{j} y_{j}} \mathcal{M}_{y_{3} y_{3}}-\mathcal{M}_{y_{3} y_{j}} \mathcal{M}_{y_{j} y_{3}} \geq 0
$$

Proposition

Let $j \neq i \in\{1,2\}$ and fix y_{i} as $y_{i}^{+}=y_{i}^{-}$. Then $\mathcal{M}_{y_{j} y_{j}} \leq 0, \mathcal{M}_{y_{3} y_{3}} \leq 0$ and $D_{j}=\mathcal{M}_{y_{j} y_{j}} \mathcal{M}_{y_{3} y_{3}}-\left(\mathcal{M}_{y_{j} y_{3}}\right)^{2} \geq 0$ is equivalent to \mathcal{M} being a concave function of y_{j}, y_{3}.

So the Bellman function has the needed weak concavity if it satisfies this Proposition for $j=1$ and 2.

Weak concavity of Bellman function

which is equivalent to

$$
\mathcal{M}_{y_{j} y_{j}} \leq 0, \mathcal{M}_{y_{3} y_{3}} \leq 0, D_{j}=\mathcal{M}_{y_{j} y_{j}} \mathcal{M}_{y_{3} y_{3}}-\mathcal{M}_{y_{3} y_{j}} \mathcal{M}_{y_{j} y_{3}} \geq 0
$$

Proposition

Let $j \neq i \in\{1,2\}$ and fix y_{i} as $y_{i}^{+}=y_{i}^{-}$. Then $\mathcal{M}_{y_{j} y_{j}} \leq 0, \mathcal{M}_{y_{3} y_{3}} \leq 0$ and $D_{j}=\mathcal{M}_{y_{j} y_{j}} \mathcal{M}_{y_{3} y_{3}}-\left(\mathcal{M}_{y_{j} y_{3}}\right)^{2} \geq 0$ is equivalent to \mathcal{M} being a concave function of y_{j}, y_{3}.

So the Bellman function has the needed weak concavity if it satisfies this Proposition for $j=1$ and 2.

The Bellman function many other nice properties.

Bellman function properties

Proposition

Suppose \mathcal{M} is $C^{1}\left(\mathbb{R}^{3}\right)$, then \mathcal{M} has the following properties.
(i) Symmetry: $\mathcal{M}\left(y_{1}, y_{2}, y_{3}\right)=\mathcal{M}\left(y_{2}, y_{1}, y_{3}\right)=\mathcal{M}\left(-y_{1},-y_{2}, y_{3}\right)$

Bellman function properties

Proposition

Suppose \mathcal{M} is $C^{1}\left(\mathbb{R}^{3}\right)$, then \mathcal{M} has the following properties.
(i) Symmetry: $\mathcal{M}\left(y_{1}, y_{2}, y_{3}\right)=\mathcal{M}\left(y_{2}, y_{1}, y_{3}\right)=\mathcal{M}\left(-y_{1},-y_{2}, y_{3}\right)$
(ii) Dirchlet boundary data:

$$
\mathcal{M}\left(y_{1}, y_{2},\left(y_{1}-y_{2}\right)^{p}\right)=\left(\left(y_{1}+y_{2}\right)^{2}+\tau^{2}\left(y_{1}-y_{2}\right)\right)^{\frac{p}{2}}
$$

Bellman function properties

Proposition

Suppose \mathcal{M} is $C^{1}\left(\mathbb{R}^{3}\right)$, then \mathcal{M} has the following properties.
(i) Symmetry: $\mathcal{M}\left(y_{1}, y_{2}, y_{3}\right)=\mathcal{M}\left(y_{2}, y_{1}, y_{3}\right)=\mathcal{M}\left(-y_{1},-y_{2}, y_{3}\right)$
(ii) Dirchlet boundary data:
$\mathcal{M}\left(y_{1}, y_{2},\left(y_{1}-y_{2}\right)^{p}\right)=\left(\left(y_{1}+y_{2}\right)^{2}+\tau^{2}\left(y_{1}-y_{2}\right)\right)^{\frac{p}{2}}$
(iii) Neumann conditions: $\mathcal{M}_{y_{1}}=\mathcal{M}_{y_{2}}$ on $y_{1}=y_{2}$ and $\mathcal{M}_{y_{1}}=-\mathcal{M}_{y_{2}}$ on $y_{1}=-y_{2}$

Bellman function properties

Proposition

Suppose \mathcal{M} is $C^{1}\left(\mathbb{R}^{3}\right)$, then \mathcal{M} has the following properties.
(i) Symmetry: $\mathcal{M}\left(y_{1}, y_{2}, y_{3}\right)=\mathcal{M}\left(y_{2}, y_{1}, y_{3}\right)=\mathcal{M}\left(-y_{1},-y_{2}, y_{3}\right)$
(ii) Dirchlet boundary data:
$\mathcal{M}\left(y_{1}, y_{2},\left(y_{1}-y_{2}\right)^{p}\right)=\left(\left(y_{1}+y_{2}\right)^{2}+\tau^{2}\left(y_{1}-y_{2}\right)\right)^{\frac{p}{2}}$
(iii) Neumann conditions: $\mathcal{M}_{y_{1}}=\mathcal{M}_{y_{2}}$ on $y_{1}=y_{2}$ and $\mathcal{M}_{y_{1}}=-\mathcal{M}_{y_{2}}$ on $y_{1}=-y_{2}$
(iv) Homogeneity: $\mathcal{M}\left(r y_{1}, r y_{2}, r^{p} y_{3}\right)=r^{p} \mathcal{M}\left(y_{1}, y_{2}, y_{3}\right), \forall r>0$

Bellman function properties

Proposition

Suppose \mathcal{M} is $C^{1}\left(\mathbb{R}^{3}\right)$, then \mathcal{M} has the following properties.
(i) Symmetry: $\mathcal{M}\left(y_{1}, y_{2}, y_{3}\right)=\mathcal{M}\left(y_{2}, y_{1}, y_{3}\right)=\mathcal{M}\left(-y_{1},-y_{2}, y_{3}\right)$
(ii) Dirchlet boundary data:
$\mathcal{M}\left(y_{1}, y_{2},\left(y_{1}-y_{2}\right)^{p}\right)=\left(\left(y_{1}+y_{2}\right)^{2}+\tau^{2}\left(y_{1}-y_{2}\right)\right)^{\frac{p}{2}}$
(iii) Neumann conditions: $\mathcal{M}_{y_{1}}=\mathcal{M}_{y_{2}}$ on $y_{1}=y_{2}$ and $\mathcal{M}_{y_{1}}=-\mathcal{M}_{y_{2}}$ on $y_{1}=-y_{2}$
(iv) Homogeneity: $\mathcal{M}\left(r y_{1}, r y_{2}, r^{p} y_{3}\right)=r^{p} \mathcal{M}\left(y_{1}, y_{2}, y_{3}\right), \forall r>0$
(v) Homogeniety relation: $y_{1} \mathcal{M}_{y_{1}}+y_{2} \mathcal{M}_{y_{2}}+p y_{3} \mathcal{M}_{y_{3}}=p \mathcal{M}$

Bellman function properties

Proposition

Suppose \mathcal{M} is $C^{1}\left(\mathbb{R}^{3}\right)$, then \mathcal{M} has the following properties.
(i) Symmetry: $\mathcal{M}\left(y_{1}, y_{2}, y_{3}\right)=\mathcal{M}\left(y_{2}, y_{1}, y_{3}\right)=\mathcal{M}\left(-y_{1},-y_{2}, y_{3}\right)$
(ii) Dirchlet boundary data:
$\mathcal{M}\left(y_{1}, y_{2},\left(y_{1}-y_{2}\right)^{p}\right)=\left(\left(y_{1}+y_{2}\right)^{2}+\tau^{2}\left(y_{1}-y_{2}\right)\right)^{\frac{p}{2}}$
(iii) Neumann conditions: $\mathcal{M}_{y_{1}}=\mathcal{M}_{y_{2}}$ on $y_{1}=y_{2}$ and $\mathcal{M}_{y_{1}}=-\mathcal{M}_{y_{2}}$ on $y_{1}=-y_{2}$
(iv) Homogeneity: $\mathcal{M}\left(r y_{1}, r y_{2}, r^{p} y_{3}\right)=r^{p} \mathcal{M}\left(y_{1}, y_{2}, y_{3}\right), \forall r>0$
(v) Homogeniety relation: $y_{1} \mathcal{M}_{y_{1}}+y_{2} \mathcal{M}_{y_{2}}+p y_{3} \mathcal{M}_{y_{3}}=p \mathcal{M}$

This is all of the properties of the Bellman function. Before we can begin to find an explicit formula we need to address a difficulty.

A needed assumption

Recall that one of the conditions for weak concavity of the Bellman function is $D_{j}=\mathcal{M}_{y_{j} y_{j}} \mathcal{M}_{y_{3} y_{3}}-\left(\mathcal{M}_{y_{j} y_{3}}\right)^{2} \geq 0$.

A needed assumption

Recall that one of the conditions for weak concavity of the Bellman function is $D_{j}=\mathcal{M}_{y_{j} y_{j}} \mathcal{M}_{y_{3} y_{3}}-\left(\mathcal{M}_{y_{j} y_{3}}\right)^{2} \geq 0$.

Rather than trying to solve a 2nd order parital differential inequality we add an assumption.

A needed assumption

Recall that one of the conditions for weak concavity of the Bellman function is $D_{j}=\mathcal{M}_{y_{j} y_{j}} \mathcal{M}_{y_{3} y_{3}}-\left(\mathcal{M}_{y_{j} y_{3}}\right)^{2} \geq 0$.

Rather than trying to solve a $2 n d$ order parital differential inequality we add an assumption.

Assumption

If we fix y_{i}, then

$$
\left(\begin{array}{ll}
\mathcal{M}_{y_{j} y_{j}} & \mathcal{M}_{y_{j} y_{3}} \\
\mathcal{M}_{y_{3} y_{j}} & \mathcal{M}_{y_{3} y_{3}}
\end{array}\right)
$$

is degenerate, where $i \neq j \in\{1,2\}$.

A needed assumption

Recall that one of the conditions for weak concavity of the Bellman function is $D_{j}=\mathcal{M}_{y_{j} y_{j}} \mathcal{M}_{y_{3} y_{3}}-\left(\mathcal{M}_{y_{j} y_{3}}\right)^{2} \geq 0$.

Rather than trying to solve a 2nd order parital differential inequality we add an assumption.

Assumption

If we fix y_{i}, then

$$
\left(\begin{array}{ll}
\mathcal{M}_{y_{j} y_{j}} & \mathcal{M}_{y_{j} y_{3}} \\
\mathcal{M}_{y_{3} y_{j}} & \mathcal{M}_{y_{3} y_{3}}
\end{array}\right)
$$

is degenerate, where $i \neq j \in\{1,2\}$.
Now we have $D_{j}=\mathcal{M}_{y_{j} y_{j}} \mathcal{M}_{y_{3} y_{3}}-\left(\mathcal{M}_{y_{3} y_{j}}\right)^{2}=0$, the well known Monge-Ampère equation

Solution to the Monge-Ampère equation

> Theorem
> (Pogorelov-1956) For $j=1$ or $2, \mathcal{M}_{y_{j} y_{j}} \mathcal{M}_{y_{3} y_{3}}-\left(\mathcal{M}_{y_{3} y_{j}}\right)^{2}=0$ has the solution $M(y)=y_{j} t_{j}+y_{3} t_{3}+t_{0}$ on the characteristics $y_{j} d t_{j}+y_{3} d t_{3}+d t_{0}=0$, which are straight lines in the $y_{j} \times y_{3}$ plane. Furthermore, t_{0}, t_{j}, t_{3} are constant on characteristics with the property $M_{y_{j}}=t_{j}, M_{y_{3}}=t_{3}$.

Cases for characteristics

Because of the symmetry property of \mathcal{M}, we only need to consider the domain $\Xi_{+}:=\left\{y:-y_{1} \leq y_{2} \leq y_{1}, y_{3} \geq 0,\left(y_{1}-y_{2}\right)^{p} \leq y_{3}\right\}$ rather than $\overline{\text { 三. }}$

Cases for characteristics

Because of the symmetry property of \mathcal{M}, we only need to consider the domain $\Xi_{+}:=\left\{y:-y_{1} \leq y_{2} \leq y_{1}, y_{3} \geq 0,\left(y_{1}-y_{2}\right)^{p} \leq y_{3}\right\}$ rather than $\overline{\text { E. }}$

Since characteristics are straight lines, then one end, we will denote U, must be on the boundary $\left\{y:\left(y_{1}-y_{2}\right)^{p}=y_{3}\right\}$.

Cases for characteristics

Because of the symmetry property of \mathcal{M}, we only need to consider the domain $\Xi_{+}:=\left\{y:-y_{1} \leq y_{2} \leq y_{1}, y_{3} \geq 0,\left(y_{1}-y_{2}\right)^{p} \leq y_{3}\right\}$ rather than $\overline{\text { E. }}$

Since characteristics are straight lines, then one end, we will denote U, must be on the boundary $\left\{y:\left(y_{1}-y_{2}\right)^{p}=y_{3}\right\}$.

Cases

(1) The characteristic goes from U to $\left\{y: y_{1}=y_{2}\right\}$

Cases for characteristics

Because of the symmetry property of \mathcal{M}, we only need to consider the domain $\Xi_{+}:=\left\{y:-y_{1} \leq y_{2} \leq y_{1}, y_{3} \geq 0,\left(y_{1}-y_{2}\right)^{p} \leq y_{3}\right\}$ rather than $\overline{\text { E }}$.

Since characteristics are straight lines, then one end, we will denote U, must be on the boundary $\left\{y:\left(y_{1}-y_{2}\right)^{p}=y_{3}\right\}$.

Cases

(1) The characteristic goes from U to $\left\{y: y_{1}=y_{2}\right\}$
(2) The characteristic goes from U to to infinity, running parallel to the y_{3}-axis

Cases for characteristics

Because of the symmetry property of \mathcal{M}, we only need to consider the domain $\Xi_{+}:=\left\{y:-y_{1} \leq y_{2} \leq y_{1}, y_{3} \geq 0,\left(y_{1}-y_{2}\right)^{p} \leq y_{3}\right\}$ rather than $\overline{\text { E. }}$

Since characteristics are straight lines, then one end, we will denote U, must be on the boundary $\left\{y:\left(y_{1}-y_{2}\right)^{p}=y_{3}\right\}$.

Cases

(1) The characteristic goes from U to $\left\{y: y_{1}=y_{2}\right\}$
(2) The characteristic goes from U to to infinity, running parallel to the y_{3}-axis
(3) The characteristic goes from U to $\left\{y: y_{1}=-y_{2}\right\}$

Cases for characteristics

Because of the symmetry property of \mathcal{M}, we only need to consider the domain $\Xi_{+}:=\left\{y:-y_{1} \leq y_{2} \leq y_{1}, y_{3} \geq 0,\left(y_{1}-y_{2}\right)^{p} \leq y_{3}\right\}$ rather than $\overline{\text { E. }}$

Since characteristics are straight lines, then one end, we will denote U, must be on the boundary $\left\{y:\left(y_{1}-y_{2}\right)^{p}=y_{3}\right\}$.

Cases

(1) The characteristic goes from U to $\left\{y: y_{1}=y_{2}\right\}$
(2) The characteristic goes from U to to infinity, running parallel to the y_{3}-axis
(3) The characteristic goes from U to $\left\{y: y_{1}=-y_{2}\right\}$
(4) The characteristic goes from U to $\left\{y:\left(y_{1}-y_{2}\right)^{p}=y_{3}\right\}$

Strategy for finding explicit form of Bellman function

Strategy for finding Bellman:

1. Fix a case for the characteristics.

Strategy for finding explicit form of Bellman function

Strategy for finding Bellman:

1. Fix a case for the characteristics.
2. Fix either y_{1} or y_{2}

Strategy for finding explicit form of Bellman function

Strategy for finding Bellman:

1. Fix a case for the characteristics.
2. Fix either y_{1} or y_{2}
3. Take Monge-Ampère solution and use Bellman function properties to get rid of characteristics.

Strategy for finding explicit form of Bellman function

Strategy for finding Bellman:

1. Fix a case for the characteristics.
2. Fix either y_{1} or y_{2}
3. Take Monge-Ampère solution and use Bellman function properties to get rid of characteristics.
4. Check to see if the solution satisfies weak concavity needed to be a Bellman function candidate.

Finding Bellman function candidate when $2<p<\infty$

Let $2<p<\infty$.

Finding Bellman function candidate when $2<p<\infty$

Let $2<p<\infty$.
Consider Case (12).

Finding Bellman function candidate when $2<p<\infty$

Let $2<p<\infty$.
Consider Case (1_{2}). This notation means that $j=2$ is fixed in the M.A. and y_{1} is fixed.

Finding Bellman function candidate when $2<p<\infty$

Let $2<p<\infty$.
Consider Case (1_{2}). This notation means that $j=2$ is fixed in the M.A. and y_{1} is fixed.

The Monge-Ampère solution from Case $\left(1_{2}\right)$ is only valid on half of Ξ_{+}, but satisfies all Bellman function properties.

Finding Bellman function candidate when $2<p<\infty$

Let $2<p<\infty$.
Consider Case (1_{2}). This notation means that $j=2$ is fixed in the M.A. and y_{1} is fixed.

The Monge-Ampère solution from Case $\left(1_{2}\right)$ is only valid on half of $\bar{\Xi}_{+}$, but satisfies all Bellman function properties.

It turns that the Monge-Ampère solution in Case $\left(2_{2}\right)$ is only valid on half of Ξ_{+}, as well, and satisfies all Bellman function properties.

But,

Finding Bellman function candidate when $2<p<\infty$

Let $2<p<\infty$.
Consider Case (1_{2}). This notation means that $j=2$ is fixed in the M.A. and y_{1} is fixed.

The Monge-Ampère solution from Case $\left(1_{2}\right)$ is only valid on half of $\bar{\Xi}_{+}$, but satisfies all Bellman function properties.

It turns that the Monge-Ampère solution in Case $\left(2_{2}\right)$ is only valid on half of Ξ_{+}, as well, and satisfies all Bellman function properties.

But, it is valid on the missing half.

Finding Bellman function candidate when $2<p<\infty$

Let $2<p<\infty$.
Consider Case (1_{2}). This notation means that $j=2$ is fixed in the M.A. and y_{1} is fixed.

The Monge-Ampère solution from Case $\left(1_{2}\right)$ is only valid on half of $\bar{\Xi}_{+}$, but satisfies all Bellman function properties.

It turns that the Monge-Ampère solution in Case $\left(2_{2}\right)$ is only valid on half of Ξ_{+}, as well, and satisfies all Bellman function properties.

But, it is valid on the missing half. So we can glue together a whole solution.

Bellman function candidate when $2<p<\infty$

Proposition

For $2<p<\infty$ and $|\tau| \leq \frac{1}{2}$ the solution to the Monge-Ampère equation is given by

$$
\begin{aligned}
& M(y)=\left(1+\tau^{2}\right)^{\frac{p}{2}}\left[y_{1}^{2}+2 \gamma y_{1} y_{2}+y_{2}^{2}\right]^{\frac{p}{2}} \\
&+\left((p-1)^{2}+\tau^{2}\right)^{\frac{p}{2}}\left[y_{3}-\left(y_{1}-y_{2}\right)^{p}\right]
\end{aligned}
$$

when $-y_{1}<y_{2} \leq \frac{p-2}{p} y_{1}$

Bellman function candidate when $2<p<\infty$

Proposition

For $2<p<\infty$ and $|\tau| \leq \frac{1}{2}$ the solution to the Monge-Ampère equation is given by

$$
\begin{aligned}
& M(y)=\left(1+\tau^{2}\right)^{\frac{p}{2}}\left[y_{1}^{2}+2 \gamma y_{1} y_{2}+y_{2}^{2}\right]^{\frac{p}{2}} \\
&+\left((p-1)^{2}+\tau^{2}\right)^{\frac{p}{2}}\left[y_{3}-\left(y_{1}-y_{2}\right)^{p}\right]
\end{aligned}
$$

when $-y_{1}<y_{2} \leq \frac{p-2}{p} y_{1}$ and is given implicitly by $G\left(y_{1}+y_{2}, y_{1}-y_{2}\right)=y_{3} G\left(\sqrt{\omega^{2}-\tau^{2}}, 1\right)$ when $\frac{p-2}{p} y_{1} \leq y_{2}<y_{1}$,

Bellman function candidate when $2<p<\infty$

Proposition

For $2<p<\infty$ and $|\tau| \leq \frac{1}{2}$ the solution to the Monge-Ampère equation is given by

$$
\begin{aligned}
& M(y)=\left(1+\tau^{2}\right)^{\frac{p}{2}}\left[y_{1}^{2}+2 \gamma y_{1} y_{2}+y_{2}^{2}\right]^{\frac{p}{2}} \\
&+\left((p-1)^{2}+\tau^{2}\right)^{\frac{p}{2}}\left[y_{3}-\left(y_{1}-y_{2}\right)^{p}\right]
\end{aligned}
$$

when $-y_{1}<y_{2} \leq \frac{p-2}{p} y_{1}$ and is given implicitly by $G\left(y_{1}+y_{2}, y_{1}-y_{2}\right)=y_{3} G\left(\sqrt{\omega^{2}-\tau^{2}}, 1\right)$ when $\frac{p-2}{p} y_{1} \leq y_{2}<y_{1}$, where $G\left(z_{1}, z_{2}\right)=\left(z_{1}+z_{2}\right)^{p-1}\left[z_{1}-(p-1) z_{2}\right], \omega=\left(\frac{M(y)}{y_{3}}\right)^{\frac{1}{p}}$ and $\gamma=\frac{1-\tau^{2}}{1+\tau^{2}}$. This solution satisfies all properties of the Bellman function.

Finding Bellman function candidate when $1<p<2$

Let $1<p<2$.

Finding Bellman function candidate when $1<p<2$

Let $1<p<2$.
The Monge-Ampère solution from Case (3_{2}) is only valid on half of Ξ_{+}, but satisfies all Bellman function properties.

Finding Bellman function candidate when $1<p<2$

Let $1<p<2$.
The Monge-Ampère solution from Case $\left(3_{2}\right)$ is only valid on half of Ξ_{+}, but satisfies all Bellman function properties.

It turns that the Monge-Ampère solution in Case $\left(2_{2}\right)$ is only valid on half of Ξ_{+}, as well, and satisfies all Bellman function properties.

But,

Finding Bellman function candidate when $1<p<2$

Let $1<p<2$.
The Monge-Ampère solution from Case $\left(3_{2}\right)$ is only valid on half of Ξ_{+}, but satisfies all Bellman function properties.

It turns that the Monge-Ampère solution in Case $\left(2_{2}\right)$ is only valid on half of Ξ_{+}, as well, and satisfies all Bellman function properties.

But, it is valid on the missing half.

Finding Bellman function candidate when $1<p<2$

Let $1<p<2$.
The Monge-Ampère solution from Case $\left(3_{2}\right)$ is only valid on half of Ξ_{+}, but satisfies all Bellman function properties.

It turns that the Monge-Ampère solution in Case $\left(2_{2}\right)$ is only valid on half of Ξ_{+}, as well, and satisfies all Bellman function properties.

But, it is valid on the missing half. So we can glue together a whole solution.

Bellman function candidate when $1<p<2$

Proposition

Let $1<p<2$. If $|\tau| \leq \frac{1}{2}$ then a solution to the Monge-Ampère equation is given by

$$
\begin{aligned}
& M(y)=\left(1+\tau^{2}\right)^{\frac{p}{2}}\left[y_{1}^{2}+2 \gamma y_{1} y_{2}+y_{2}^{2}\right]^{\frac{p}{2}} \\
&+\left(\frac{1}{(p-1)^{2}}+\tau^{2}\right)^{\frac{p}{2}}\left[y_{3}-\left(y_{1}-y_{2}\right)^{p}\right]
\end{aligned}
$$

when $\frac{2-p}{p} y_{1} \leq y_{2}<y_{1}$

Bellman function candidate when $1<p<2$

Proposition

Let $1<p<2$. If $|\tau| \leq \frac{1}{2}$ then a solution to the Monge-Ampère equation is given by

$$
\begin{aligned}
& M(y)=\left(1+\tau^{2}\right)^{\frac{p}{2}}\left[y_{1}^{2}+2 \gamma y_{1} y_{2}+y_{2}^{2}\right]^{\frac{p}{2}} \\
&+\left(\frac{1}{(p-1)^{2}}+\tau^{2}\right)^{\frac{p}{2}}\left[y_{3}-\left(y_{1}-y_{2}\right)^{p}\right]
\end{aligned}
$$

when $\frac{2-p}{p} y_{1} \leq y_{2}<y_{1}$ and is given implicitly by

$$
G\left(y_{1}-y_{2}, y_{1}+y_{2}\right)=y_{3} G\left(1, \sqrt{\omega^{2}-\tau^{2}}\right) \text { when }-y_{1}<y_{2} \leq \frac{2-p}{p} y_{1} .
$$

Bellman function candidate when $1<p<2$

Proposition

Let $1<p<2$. If $|\tau| \leq \frac{1}{2}$ then a solution to the Monge-Ampère equation is given by

$$
\begin{aligned}
& M(y)=\left(1+\tau^{2}\right)^{\frac{p}{2}}\left[y_{1}^{2}+2 \gamma y_{1} y_{2}+y_{2}^{2}\right]^{\frac{p}{2}} \\
&+\left(\frac{1}{(p-1)^{2}}+\tau^{2}\right)^{\frac{p}{2}}\left[y_{3}-\left(y_{1}-y_{2}\right)^{p}\right]
\end{aligned}
$$

when $\frac{2-p}{p} y_{1} \leq y_{2}<y_{1}$ and is given implicitly by $G\left(y_{1}-y_{2}, y_{1}+y_{2}\right)=y_{3} G\left(1, \sqrt{\omega^{2}-\tau^{2}}\right)$ when $-y_{1}<y_{2} \leq \frac{2-p}{p} y_{1}$.
This solution satisfies all of the properties of the Bellman function.

Cases that are not Bellman function candidates

The Monge-Ampère solution from Case $\left(1_{1}\right)$ does not satisfy the weak concavity needed to be the Bellman function, since $D_{2}<0$.

Cases that are not Bellman function candidates

The Monge-Ampère solution from Case $\left(1_{1}\right)$ does not satisfy the weak concavity needed to be the Bellman function, since $D_{2}<0$.

The Monge-Ampère solution from Case $\left(2_{1}\right)$ does not satisfy the weak concavity needed to be the Bellman function, since $M_{y_{1} y_{1}}>0$ in part of $X i_{+}$.

Cases that are not Bellman function candidates

The Monge-Ampère solution from Case $\left(1_{1}\right)$ does not satisfy the weak concavity needed to be the Bellman function, since $D_{2}<0$.

The Monge-Ampère solution from Case $\left(2_{1}\right)$ does not satisfy the weak concavity needed to be the Bellman function, since $M_{y_{1} y_{1}}>0$ in part of $X i_{+}$. Since this solution is only a partial solution and there is no other solution to glue together with it, we discard this case.

Cases that are not Bellman function candidates

The Monge-Ampère solution from Case $\left(1_{1}\right)$ does not satisfy the weak concavity needed to be the Bellman function, since $D_{2}<0$.

The Monge-Ampère solution from Case $\left(2_{1}\right)$ does not satisfy the weak concavity needed to be the Bellman function, since $M_{y_{1} y_{1}}>0$ in part of $X i_{+}$. Since this solution is only a partial solution and there is no other solution to glue together with it, we discard this case.

The Monge-Ampère solution from Case $\left(3_{1}\right)$ does not satisfy the weak concavity needed to be the Bellman function, since $D_{2}<0$.

Cases that are not Bellman function candidates

The Monge-Ampère solution from Case $\left(1_{1}\right)$ does not satisfy the weak concavity needed to be the Bellman function, since $D_{2}<0$.

The Monge-Ampère solution from Case $\left(2_{1}\right)$ does not satisfy the weak concavity needed to be the Bellman function, since $M_{y_{1} y_{1}}>0$ in part of $X i_{+}$. Since this solution is only a partial solution and there is no other solution to glue together with it, we discard this case.

The Monge-Ampère solution from Case $\left(3_{1}\right)$ does not satisfy the weak concavity needed to be the Bellman function, since $D_{2}<0$.

Case (4) still needs to be finished

The Monge-Ampère solution from Case (4) does not provide a Bellman function candidate?

Case (4) still needs to be finished

The Monge-Ampère solution from Case (4) does not provide a Bellman function candidate?

In proof of Burkholder's result using the Bellman function technique there is a counterexample of test functions provided for this case.

Case (4) still needs to be finished

The Monge-Ampère solution from Case (4) does not provide a Bellman function candidate?

In proof of Burkholder's result using the Bellman function technique there is a counterexample of test functions provided for this case.

This still needs to be finished here but we are confident that there will still be a counterexample in the general case.

Main Result

Goal: For $|\tau| \leq \frac{1}{2}$, prove that for all $n \in \mathbb{Z}_{+}$and any $\left\{d_{k}\right\}_{k}$ martingale difference,

$$
\left\|\sum_{k=1}^{n}\binom{\varepsilon_{k}}{\tau} d_{k}\right\|_{L^{p}\left([0,1), \mathbb{R}^{2}\right)} \leq C_{p, \tau}\left\|\sum_{k=1}^{n} d_{k}\right\|_{L^{p}([0,1), \mathbb{R})}
$$

Main Result

Goal: For $|\tau| \leq \frac{1}{2}$, prove that for all $n \in \mathbb{Z}_{+}$and any $\left\{d_{k}\right\}_{k}$ martingale difference,

$$
\left\|\sum_{k=1}^{n}\binom{\varepsilon_{k}}{\tau} d_{k}\right\|_{L^{p}\left([0,1), \mathbb{R}^{2}\right)} \leq C_{p, \tau}\left\|\sum_{k=1}^{n} d_{k}\right\|_{L^{p}([0,1), \mathbb{R})}
$$

This estimate can be proven now that we have a Bellman function candidate.

Main Result

Goal: For $|\tau| \leq \frac{1}{2}$, prove that for all $n \in \mathbb{Z}_{+}$and any $\left\{d_{k}\right\}_{k}$ martingale difference,

$$
\left\|\sum_{k=1}^{n}\binom{\varepsilon_{k}}{\tau} d_{k}\right\|_{L^{p}\left([0,1), \mathbb{R}^{2}\right)} \leq C_{p, \tau}\left\|\sum_{k=1}^{n} d_{k}\right\|_{L^{p}([0,1), \mathbb{R})}
$$

This estimate can be proven now that we have a Bellman function candidate.

To show that the sharp constant is $C_{p, \tau}=\left(\left(p^{*}-1\right)^{2}+\tau^{2}\right)^{\frac{1}{2}}$, we need to show that our Bellman candidate is actually the Bellman function by closing the door on Case (4).

Application

Let B be the Ahlfors-Beurling operator, I is the identity operator and $\tau \in \mathbb{R}$, then

Application

Let B be the Ahlfors-Beurling operator, I is the identity operator and $\tau \in \mathbb{R}$, then

$$
\left\|\binom{\Re B}{\tau I}\right\|_{L^{p}(\mathbb{C}, \mathbb{R}) \rightarrow L^{p}\left(\mathbb{C}, \mathbb{R}^{2}\right)}=\left\|\binom{M T_{\vec{\varepsilon}}}{\tau I}\right\|_{L^{p}(\mathbb{R}) \rightarrow L^{p}\left(\mathbb{R}^{2}\right)}=C_{p, \tau} .
$$

Application

Let B be the Ahlfors-Beurling operator, l is the identity operator and $\tau \in \mathbb{R}$, then

$$
\left\|\binom{\Re B}{\tau I}\right\|_{L^{p}(\mathbb{C}, \mathbb{R}) \rightarrow L^{p}\left(\mathbb{C}, \mathbb{R}^{2}\right)}=\left\|\binom{M T_{\vec{\varepsilon}}}{\tau I}\right\|_{L^{p}(\mathbb{R}) \rightarrow L^{p}\left(\mathbb{R}^{2}\right)}=C_{p, \tau} .
$$

Again, once we close the door on Case (4), then for $|\tau| \leq \frac{1}{2}$, we will have $C_{p, \tau}=\left(\left(p^{*}-1\right)^{2}+\tau^{2}\right)^{\frac{1}{2}}$.

Thank you

