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Motivation

Let {fk}k be a martingale and dk = fk − fk−1, d0 = f0 its
associated martingale difference sequence. We define a martingale
transform, MT~ε, as

MT~ε

(
n∑

k=1

dk

)
:=

n∑
k=1

εkdk ,

where ε ∈ {±1}.

Theorem

(D. Burkholder–1983) For 1 < p <∞,

‖MT~ε‖p→p = sup~ε
‖∑n

k=1 εkdk‖p
‖
∑n

k=1 dk‖p
= (p∗ − 1), where

p∗ − 1 = max{p − 1, 1
p−1}.

This result has many applications, but the one we will focus on is
sharp estimates of singular integrals.
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The Ahlfors-Beurling Operator

The Ahlfors-Beurling transform is given by

Bf (z) := p.v .− 1

π

∫
C

f (w)

(z − w)2
dm2(w).

Let ‖B‖p denote the operator norm.

Lehto (1965): ‖B‖p ≥ p∗ − 1

Iwaneic (1982): Conjectured ‖B‖p = p∗ − 1
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Applications of Burkholder’s Result

Bañuelos, Wang (1995): ‖B‖p ≤ 4(p∗ − 1)

Nazarov, Volberg (2003): ‖B‖p ≤ 2(p∗ − 1)

Bañuelos, Méndez-Hernandez (2003): ‖B‖p ≤ 2(p∗ − 1)

Dragičević, Volberg (2003): ‖B‖p ≤
√
2(p−1)

1
2π

(
∫ 2π
0 |cos(θ)|pdθ)

1
p
, p > 2

Bañuelos, Janakiraman (2008): ‖B‖p ≤ 1.575(p∗ − 1)

Geiss, Montgomery-Smith, Saksman (2008):
‖<B‖p = ‖=B‖p = p∗ − 1
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Main Result

Goal: For |τ | ≤ 1
2 , compute

Cp,τ :=

∥∥∥∥( MT~ε
τ I

)∥∥∥∥
Lp(R)→Lp(R2)

= sup
~ε

∥∥∥∥∑n
k=1

(
εk
τ

)
dk

∥∥∥∥
p

‖
∑n

k=1 dk‖p
,

This requires us to find the best Cp,τ such that for all n ∈ Z+∥∥∥∥∥
n∑

k=1

(
εk
τ

)
dk

∥∥∥∥∥
Lp([0,1),R2)

≤ Cp,τ

∥∥∥∥∥
n∑

k=1

dk

∥∥∥∥∥
Lp([0,1),R)

,

Approach: Use the Bellman function technique
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Background Information and Notation

Let I be a finte interval and α± ∈ R+ such that α+ + α− = 1.

These α± generate two subintervals I± such that |I±| = α±|I | and
I = I− ∪ I+.

Example: If I = [0, 1), α− = 1
3 , α

+ = 2
3 , then I− = [0, 13) and

I+ = [13 , 1).
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Background Information and Notation

Continuing this, for

{αn,m : 0 < αn,m < 1, 0 ≤ m < 2n, 0 < n <∞, αn,2k + αn,2k+1 = 1}

we generate I := {In,m : 0 ≤ m < 2n, 0 < n <∞}

where In,m = I−n,m ∪ I+n,m = In+1,2m+1 ∪ In+1,2m+1 and

α− = αn+1,2m, α
+ = αn+1,2m+1. Note that I0,0 = I .

Definition

For J ∈ I we define the Haar function
hJ := −

√
α+

α−|J|χJ− +
√

α−

α+|J|χJ+ .
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Background Information and Notation

The Bellman function will be independent of I and {αn,m}n,m
sequence.

Choose I = [0, 1) and I = D, the dyadic subintervals.

Then for 1 < p <∞ and f ∈ Lp[0, 1),

f = 〈f 〉[0,1)χ[0,1) +
∑

I∈σ(D)

(f , hI )hI .

Definition

We define the martingale transform, g of f , in terms of the
expansion in the Haar system, as

g := 〈f 〉[0,1)χ[0,1) +
∑

I∈σ(D)

εI (f , hI )hI ,

where εI ∈ {±1}.
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Setting up Bellman function

Martingale differenes have integral zero so if we restrict to Lp
0 [0, 1)

functions,

then property |(g , hJ)| = |(f , hJ)| for all J ∈ D is
equivalent to g being the martingale transform of f .

Goal:∥∥∥∥( ∑n
k=1 εkdk

τ
∑n

k=1 dk

)∥∥∥∥
Lp([0,1),R2)

≤ Cp,τ

∥∥∥∥∥
n∑

k=1

dk

∥∥∥∥∥
Lp([0,1),R)

So we define the Bellman function as

B(x1, x2, x3) := sup
f ,g
{〈(g2 + τ2f 2)

p
2 〉I : x1 = 〈f 〉I , x2 = 〈g〉I ,

x3 = 〈|f |p〉I , |(f , hJ)| = |(g , hJ)|, ∀J ∈ D}

on the domain Ω = {x ∈ R3 : x3 ≥ 0, |x1|p ≤ x3}.

Note: The condition |x1|p ≤ x3 is just Hölder’s inequality.
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Computation of Bellman function when p = 2

Now that we have the problem formalized, we return to I and
{αn,m}n,m as arbitrary since it doesn’t change B.

Proposition

If p = 2 then B(x) = x2
2 + τ2x2

1 + (1 + τ2)(x3 − x2
1 )

Proof: Since f ∈ L2(I ) then f = 〈f 〉IχI +
∑

J∈D (f , hJ)hJ then

〈|f |2〉I =
1

|I |

∫
I
|f |2

= 〈f 〉2I + 2〈f 〉I
∑
J∈D

(f , hJ)
1

|I |

∫
I

hJ

+
1

|I |

∫
I

∑
J,K∈D

(f , hJ)(f , hK )hJhK

= 〈f 〉2I +
1

|I |
∑
J∈D
|(f , hJ)|2

Nicholas Boros Michigan State University



Computation of Bellman function when p = 2

Now that we have the problem formalized, we return to I and
{αn,m}n,m as arbitrary since it doesn’t change B.

Proposition

If p = 2 then B(x) = x2
2 + τ2x2

1 + (1 + τ2)(x3 − x2
1 )

Proof: Since f ∈ L2(I ) then f = 〈f 〉IχI +
∑

J∈D (f , hJ)hJ then

〈|f |2〉I =
1

|I |

∫
I
|f |2

= 〈f 〉2I + 2〈f 〉I
∑
J∈D

(f , hJ)
1

|I |

∫
I

hJ

+
1

|I |

∫
I

∑
J,K∈D

(f , hJ)(f , hK )hJhK

= 〈f 〉2I +
1

|I |
∑
J∈D
|(f , hJ)|2

Nicholas Boros Michigan State University



Computation of Bellman function when p = 2

Now that we have the problem formalized, we return to I and
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Computation of Bellman function when p = 2

So ‖f ‖22 = |I |x3 = |I |x2
1 +

∑
J∈D |(f , hJ)|2 and similarly

‖g‖22 = |I |x2
2 +

∑
J∈D
|(g , hJ)|2 = |I |x2

2 +
∑
J∈D
|(f , hJ)|2

Now we can compute B explicitly.

〈(g2 + τ2f 2)
p
2 〉I = 〈|g |2〉I + τ2〈|f |2〉I

= x2
2 + τ2x2

1 + (1 + τ2)
1

|I |
∑
J∈D
|(f , hJ)|2

= x2
2 + τ2x2

1 + (1 + τ2)(x3 − x2
1 )

QED
Finding the Bellman function when p 6= 2 is much more difficult so
we need some properties.
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Weak concavity of Bellman function

Proposition

Suppose x± ∈ Ω such that x = α+x+ + α−x−, α+ + α− = 1. If
|x+

1 − x−1 | = |x+
2 − x−2 | then B(x) ≥ α+B(x+) + α−B(x−)

Changing variables: y1 := x2+x1
2 , y2 := x2−x1

2 and y3 := x3

So M(y1, y2, y3) := B(x1, x2, x3) = B(y1 − y2, y1 + y2, y3) with the
domain of M as Ξ := {y ∈ R3 : y3 ≥ 0, |y1 − y2|p ≤ y3}.

x± ∈ Ω s.t. |x+
1 − x−1 | = |x+

2 − x−2 |, iff y± ∈ Ξ satisfies either y1 is
fixed as y+

1 = y−1 or y2 is fixed as y+
2 = y−2 .

If j 6= i ∈ {1, 2} and we fix yi as y+
i = y−i . Then M as a function

of yj , y3 is concave, i.e.(
Myjyj Myjy3

My3yj My3y3

)
≤ 0,
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Weak concavity of Bellman function

which is equivalent to

Myjyj ≤ 0,My3y3 ≤ 0,Dj =MyjyjMy3y3 −My3yjMyjy3 ≥ 0.

Proposition

Let j 6= i ∈ {1, 2} and fix yi as y+
i = y−i . Then

Myjyj ≤ 0,My3y3 ≤ 0 and Dj =MyjyjMy3y3 − (Myjy3)2 ≥ 0 is
equivalent to M being a concave function of yj , y3.

So the Bellman function has the needed weak concavity if it
satisfies this Proposition for j = 1 and 2.

The Bellman function many other nice properties.
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Bellman function properties

Proposition

Suppose M is C 1(R3), then M has the following properties.

(i) Symmetry: M(y1, y2, y3) =M(y2, y1, y3) =M(−y1,−y2, y3)

(ii) Dirchlet boundary data:
M(y1, y2, (y1 − y2)p) = ((y1 + y2)2 + τ2(y1 − y2))

p
2

(iii) Neumann conditions: My1 =My2 on y1 = y2 and
My1 = −My2 on y1 = −y2

(iv) Homogeneity: M(ry1, ry2, r
py3) = rpM(y1, y2, y3),∀r > 0

(v) Homogeniety relation: y1My1 + y2My2 + py3My3 = pM

This is all of the properties of the Bellman function. Before we can
begin to find an explicit formula we need to address a difficulty.
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A needed assumption

Recall that one of the conditions for weak concavity of the Bellman
function is Dj =MyjyjMy3y3 − (Myjy3)2 ≥ 0.

Rather than trying to solve a 2nd order parital differential
inequality we add an assumption.

Assumption

If we fix yi , then (
Myjyj Myjy3

My3yj My3y3

)
is degenerate, where i 6= j ∈ {1, 2}.

Now we have Dj =MyjyjMy3y3 − (My3yj )
2 = 0, the well known

Monge–Ampère equation
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Solution to the Monge–Ampère equation

Theorem

(Pogorelov–1956) For j = 1 or 2,MyjyjMy3y3 − (My3yj )
2 = 0 has

the solution M(y) = yj tj + y3t3 + t0 on the characteristics
yjdtj + y3dt3 + dt0 = 0, which are straight lines in the yj × y3
plane. Furthermore, t0, tj , t3 are constant on characteristics with
the property Myj = tj ,My3 = t3.
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Cases for characteristics

Because of the symmetry property of M, we only need to consider
the domain Ξ+ := {y : −y1 ≤ y2 ≤ y1, y3 ≥ 0, (y1 − y2)p ≤ y3}
rather than Ξ.

Since characteristics are straight lines, then one end, we will
denote U, must be on the boundary {y : (y1 − y2)p = y3}.

Cases

(1) The characteristic goes from U to {y : y1 = y2}

(2) The characteristic goes from U to to infinity, running parallel
to the y3-axis

(3) The characteristic goes from U to {y : y1 = −y2}

(4) The characteristic goes from U to {y : (y1 − y2)p = y3}
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Strategy for finding explicit form of Bellman function

Strategy for finding Bellman:

1. Fix a case for the characteristics.

2. Fix either y1 or y2

3. Take Monge–Ampère solution and use Bellman function
properties to get rid of characteristics.

4. Check to see if the solution satisfies weak concavity needed to
be a Bellman function candidate.
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Finding Bellman function candidate when 2 < p <∞

Let 2 < p <∞.

Consider Case (12). This notation means that j = 2 is fixed in the
M.A. and y1 is fixed.

The Monge–Ampère solution from Case (12) is only valid on half
of Ξ+, but satisfies all Bellman function properties.

It turns that the Monge–Ampère solution in Case (22) is only valid
on half of Ξ+, as well, and satisfies all Bellman function properties.

But, it is valid on the missing half. So we can glue together a
whole solution.
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Bellman function candidate when 2 < p <∞

Proposition

For 2 < p <∞ and |τ | ≤ 1
2 the solution to the Monge–Ampère

equation is given by

M(y) = (1 + τ2)
p
2 [y2

1 + 2γy1y2 + y2
2 ]

p
2

+((p − 1)2 + τ2)
p
2 [y3 − (y1 − y2)p]

when −y1 < y2 ≤ p−2
p y1

and is given implicitly by

G (y1 + y2, y1 − y2) = y3G (
√
ω2 − τ2, 1) when p−2

p y1 ≤ y2 < y1,

where G (z1, z2) = (z1 + z2)p−1[z1 − (p − 1)z2], ω =
(
M(y)
y3

) 1
p

and

γ = 1−τ2
1+τ2

. This solution satisfies all properties of the Bellman
function.
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Finding Bellman function candidate when 1 < p < 2

Let 1 < p < 2.

The Monge–Ampère solution from Case (32) is only valid on half
of Ξ+, but satisfies all Bellman function properties.

It turns that the Monge–Ampère solution in Case (22) is only valid
on half of Ξ+, as well, and satisfies all Bellman function properties.

But, it is valid on the missing half. So we can glue together a
whole solution.
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Bellman function candidate when 1 < p < 2

Proposition

Let 1 < p < 2. If |τ | ≤ 1
2 then a solution to the Monge–Ampère

equation is given by

M(y) = (1 + τ2)
p
2 [y2

1 + 2γy1y2 + y2
2 ]

p
2

+

(
1

(p − 1)2
+ τ2

) p
2

[y3 − (y1 − y2)p]

when 2−p
p y1 ≤ y2 < y1

and is given implicitly by

G (y1 − y2, y1 + y2) = y3G (1,
√
ω2 − τ2) when −y1 < y2 ≤ 2−p

p y1.
This solution satisfies all of the properties of the Bellman function.
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Cases that are not Bellman function candidates

The Monge–Ampère solution from Case (11) does not satisfy the
weak concavity needed to be the Bellman function, since D2 < 0.

The Monge–Ampère solution from Case (21) does not satisfy the
weak concavity needed to be the Bellman function, since
My1y1 > 0 in part of Xi+. Since this solution is only a partial
solution and there is no other solution to glue together with it, we
discard this case.

The Monge–Ampère solution from Case (31) does not satisfy the
weak concavity needed to be the Bellman function, since D2 < 0.

Nicholas Boros Michigan State University



Cases that are not Bellman function candidates

The Monge–Ampère solution from Case (11) does not satisfy the
weak concavity needed to be the Bellman function, since D2 < 0.

The Monge–Ampère solution from Case (21) does not satisfy the
weak concavity needed to be the Bellman function, since
My1y1 > 0 in part of Xi+.

Since this solution is only a partial
solution and there is no other solution to glue together with it, we
discard this case.

The Monge–Ampère solution from Case (31) does not satisfy the
weak concavity needed to be the Bellman function, since D2 < 0.

Nicholas Boros Michigan State University



Cases that are not Bellman function candidates

The Monge–Ampère solution from Case (11) does not satisfy the
weak concavity needed to be the Bellman function, since D2 < 0.

The Monge–Ampère solution from Case (21) does not satisfy the
weak concavity needed to be the Bellman function, since
My1y1 > 0 in part of Xi+. Since this solution is only a partial
solution and there is no other solution to glue together with it, we
discard this case.

The Monge–Ampère solution from Case (31) does not satisfy the
weak concavity needed to be the Bellman function, since D2 < 0.

Nicholas Boros Michigan State University



Cases that are not Bellman function candidates

The Monge–Ampère solution from Case (11) does not satisfy the
weak concavity needed to be the Bellman function, since D2 < 0.

The Monge–Ampère solution from Case (21) does not satisfy the
weak concavity needed to be the Bellman function, since
My1y1 > 0 in part of Xi+. Since this solution is only a partial
solution and there is no other solution to glue together with it, we
discard this case.

The Monge–Ampère solution from Case (31) does not satisfy the
weak concavity needed to be the Bellman function, since D2 < 0.

Nicholas Boros Michigan State University



Cases that are not Bellman function candidates

The Monge–Ampère solution from Case (11) does not satisfy the
weak concavity needed to be the Bellman function, since D2 < 0.

The Monge–Ampère solution from Case (21) does not satisfy the
weak concavity needed to be the Bellman function, since
My1y1 > 0 in part of Xi+. Since this solution is only a partial
solution and there is no other solution to glue together with it, we
discard this case.

The Monge–Ampère solution from Case (31) does not satisfy the
weak concavity needed to be the Bellman function, since D2 < 0.

Nicholas Boros Michigan State University



Case (4) still needs to be finished

The Monge–Ampère solution from Case (4) does not provide a
Bellman function candidate?

In proof of Burkholder’s result using the Bellman function
technique there is a counterexample of test functions provided for
this case.

This still needs to be finished here but we are confident that there
will still be a counterexample in the general case.
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Main Result

Goal: For |τ | ≤ 1
2 , prove that for all n ∈ Z+ and any {dk}k

martingale difference,∥∥∥∥∥
n∑

k=1

(
εk
τ

)
dk

∥∥∥∥∥
Lp([0,1),R2)

≤ Cp,τ

∥∥∥∥∥
n∑

k=1

dk

∥∥∥∥∥
Lp([0,1),R)

,

This estimate can be proven now that we have a Bellman function
candidate.

To show that the sharp constant is Cp,τ = ((p∗ − 1)2 + τ2)
1
2 , we

need to show that our Bellman candidate is actually the Bellman
function by closing the door on Case (4).
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Application

Let B be the Ahlfors–Beurling operator, I is the identity operator
and τ ∈ R, then

∥∥∥∥( <B
τ I

)∥∥∥∥
Lp(C,R)→Lp(C,R2)

=

∥∥∥∥( MT~ε
τ I

)∥∥∥∥
Lp(R)→Lp(R2)

= Cp,τ .

Again, once we close the door on Case (4), then for |τ | ≤ 1
2 , we

will have Cp,τ = ((p∗ − 1)2 + τ2)
1
2 .
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Thank you
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