Directional Discrepancy

Dmitriy Bilyk
University of South Carolina, Columbia, SC

Fields Institute
Toronto, ON, Canada
June 3, 2010

Directional Discrepancy: Setting

\mathcal{P}_{N} - a set of N points in $[0,1]^{d}$
$R \subset[0,1]^{d}$ - a measurable set.

Directional Discrepancy: Setting

\mathcal{P}_{N} - a set of N points in $[0,1]^{d}$
$R \subset[0,1]^{d}$ - a measurable set.

$$
D\left(\mathcal{P}_{N}, R\right)=\sharp\left\{\mathcal{P}_{N} \cap R\right\}-N \cdot \operatorname{vol}(R)
$$

Directional Discrepancy: Setting

\mathcal{P}_{N} - a set of N points in $[0,1]^{d}$
$R \subset[0,1]^{d}$ - a measurable set.

$$
D\left(\mathcal{P}_{N}, R\right)=\sharp\left\{\mathcal{P}_{N} \cap R\right\}-N \cdot \operatorname{vol}(R)
$$

- Let $\Omega \subset S^{1}$

Directional Discrepancy: Setting

\mathcal{P}_{N} - a set of N points in $[0,1]^{d}$
$R \subset[0,1]^{d}$ - a measurable set.

$$
D\left(\mathcal{P}_{N}, R\right)=\sharp\left\{\mathcal{P}_{N} \cap R\right\}-N \cdot \operatorname{vol}(R)
$$

- Let $\Omega \subset S^{1}$
- $\mathcal{A}_{\Omega}=\{$ rectangles with sides parallel to an element of $\Sigma\}$

Directional Discrepancy: Setting

\mathcal{P}_{N} - a set of N points in $[0,1]^{d}$
$R \subset[0,1]^{d}$ - a measurable set.

$$
D\left(\mathcal{P}_{N}, R\right)=\sharp\left\{\mathcal{P}_{N} \cap R\right\}-N \cdot \operatorname{vol}(R)
$$

- Let $\Omega \subset S^{1}$
- $\mathcal{A}_{\Omega}=\{$ rectangles with sides parallel to an element of $\Sigma\}$
-

$$
D_{\Omega}(N)=\inf _{\mathcal{P}_{N}} \sup _{R \in \mathcal{A}_{\Omega}}\left|D\left(\mathcal{P}_{N}, R\right)\right|
$$

No rotations: axis-parallel rectangles

- $\Omega=\{0\}$

Theorem (Lerch; Schmidt)

$$
D_{\Omega}(N) \approx \log N
$$

Theorem (L²: Roth; Davenport)

$$
D_{\Omega}^{2}(N) \approx \sqrt{\log N}
$$

No rotations: axis-parallel rectangles

- $\Omega=\{0\}$

Theorem (Lerch; Schmidt)

$$
D_{\Omega}(N) \approx \log N
$$

Theorem (L²: Roth; Davenport)

$$
D_{\Omega}^{2}(N) \approx \sqrt{\log N}
$$

- Ω finite \longrightarrow same (Beck - Chen, Chen-Travaglini)

All rotations

- $\Omega=S^{1}$

Theorem (J. Beck)

$$
N^{1 / 4} \lesssim D_{\Omega}(N) \lesssim N^{1 / 4} \sqrt{\log N}
$$

discrepancy about $\log n$

discrepancy about $\log n$

discrepancy about $n^{1 / 4}$

All rotations: Beck's method

$$
\text { - } \mathcal{P}_{N} \subset[0,1]^{2}, \quad \# \mathcal{P}_{N}=N
$$

All rotations: Beck's method

- $\mathcal{P}_{N} \subset[0,1]^{2}, \quad \# \mathcal{P}_{N}=N$
- \mathcal{A} - collection of sets
- $A \in \mathcal{A}$

All rotations: Beck's method

- $\mathcal{P}_{N} \subset[0,1]^{2}, \quad \# \mathcal{P}_{N}=N$
- \mathcal{A} - collection of sets
- $A \in \mathcal{A}$

Discrepancy measure: $D(A)=\sum_{p \in \mathcal{P}_{N}} \delta_{p}(A)-N \cdot \operatorname{vol}\left(A \cap[0,1]^{2}\right)$

All rotations: Beck's method

- $\mathcal{P}_{N} \subset[0,1]^{2}, \quad \# \mathcal{P}_{N}=N$
- \mathcal{A} - collection of sets
- $A \in \mathcal{A}$

Discrepancy measure: $D(A)=\sum_{p \in \mathcal{P}_{N}} \delta_{p}(A)-N \cdot \operatorname{vol}\left(A \cap[0,1]^{2}\right)$

All rotations: Beck's method

- $\mathcal{P}_{N} \subset[0,1]^{2}, \quad \# \mathcal{P}_{N}=N$
- \mathcal{A} - collection of sets (translation invariant)
- $A \in \mathcal{A}$

Discrepancy measure: $D(A)=\sum_{p \in \mathcal{P}_{N}} \delta_{p}(A)-N \cdot \operatorname{vol}\left(A \cap[0,1]^{2}\right)$

$$
D(A+x)=\int_{\mathbb{R}^{2}} \mathbf{1}_{A+x}(y) d D(y)
$$

All rotations: Beck's method

- $\mathcal{P}_{N} \subset[0,1]^{2}, \quad \# \mathcal{P}_{N}=N$
- \mathcal{A} - collection of sets (translation invariant)
- $A \in \mathcal{A}$ - symmetric

Discrepancy measure: $D(A)=\sum_{p \in \mathcal{P}_{N}} \delta_{p}(A)-N \cdot \operatorname{vol}\left(A \cap[0,1]^{2}\right)$

$$
\begin{aligned}
D(A+x) & =\int_{\mathbb{R}^{2}} \mathbf{1}_{A+x}(y) d D(y) \\
& =\left(\mathbf{1}_{A} * D\right)(x)
\end{aligned}
$$

All rotations: Beck's method

- $\Delta_{A}(x) \stackrel{\text { def }}{=} D(A+x)=\left(\mathbf{1}_{A} * D\right)(x)$

All rotations: Beck's method

- $\Delta_{A}(x) \stackrel{\text { def }}{=} D(A+x)=\left(\mathbf{1}_{A} * D\right)(x)$
- $\widehat{\Delta}_{A}(\xi)=\widehat{\mathbf{1}}_{A}(\xi) \cdot \widehat{D}(\xi)$

All rotations: Beck's method

- $\Delta_{A}(x) \stackrel{\text { def }}{=} D(A+x)=\left(\mathbf{1}_{A} * D\right)(x)$
- $\widehat{\Delta}_{A}(\xi)=\widehat{\mathbf{1}}_{A}(\xi) \cdot \widehat{D}(\xi)$
- $\left\|\Delta_{A}\right\|_{2}^{2}=\left\|\widehat{\Delta}_{A}\right\|_{2}^{2}=\int_{\mathbb{R}^{2}}\left|\widehat{\mathbf{1}}_{A}(\xi)\right|^{2} \cdot|\widehat{D}(\xi)|^{2} d \xi$

Rotated Squares

$$
\text { - }\left\|\Delta_{A}\right\|_{2}^{2}=\int_{\mathbb{R}^{2}}\left|\widehat{\mathbf{1}}_{A}(\xi)\right|^{2} \cdot|\widehat{D}(\xi)|^{2} d \xi
$$

Rotated Squares

- $\left\|\Delta_{A}\right\|_{2}^{2}=\int_{\mathbb{R}^{2}}\left|\widehat{\mathbf{1}}_{A}(\xi)\right|^{2} \cdot|\widehat{D}(\xi)|^{2} d \xi$
- Let $A_{r}=\left[-\frac{r}{2}, \frac{r}{2}\right]^{2}, r \leq 1$.

Rotated Squares

- $\left\|\Delta_{A}\right\|_{2}^{2}=\int_{\mathbb{R}^{2}}\left|\widehat{\mathbf{1}}_{A}(\xi)\right|^{2} \cdot|\widehat{D}(\xi)|^{2} d \xi$
- Let $A_{r}=\left[-\frac{r}{2}, \frac{r}{2}\right]^{2}, r \leq 1$.
- For $r \approx \frac{1}{2 \sqrt{N}},\left\|\Delta_{A_{r}}\right\|_{2}^{2} \gtrsim 1$

Rotated Squares

- $\left\|\Delta_{A}\right\|_{2}^{2}=\int_{\mathbb{R}^{2}}\left|\widehat{\mathbf{1}}_{A}(\xi)\right|^{2} \cdot|\widehat{D}(\xi)|^{2} d \xi$
- Let $A_{r}=\left[-\frac{r}{2}, \frac{r}{2}\right]^{2}, r \leq 1$.
- For $r \approx \frac{1}{2 \sqrt{N}},\left\|\Delta_{A_{r}}\right\|_{2}^{2} \gtrsim 1$
- IF we had $\left|\widehat{\mathbf{1}}_{A_{r}}(\xi)\right|^{2} \gtrsim \frac{r}{r_{0}} \cdot\left|\widehat{\mathbf{1}}_{A_{r_{0}}}(\xi)\right|^{2}$ for $r>r_{0}$

Rotated Squares

- $\left\|\Delta_{A}\right\|_{2}^{2}=\int_{\mathbb{R}^{2}}\left|\widehat{\mathbf{1}}_{A}(\xi)\right|^{2} \cdot|\widehat{D}(\xi)|^{2} d \xi$
- Let $A_{r}=\left[-\frac{r}{2}, \frac{r}{2}\right]^{2}, r \leq 1$.
- For $r \approx \frac{1}{2 \sqrt{N}},\left\|\Delta_{A_{r}}\right\|_{2}^{2} \gtrsim 1$
- IF we had $\left|\widehat{\mathbf{1}}_{\boldsymbol{A}_{r}}(\xi)\right|^{2} \gtrsim \frac{r}{r_{0}} \cdot\left|\widehat{\mathbf{1}}_{\boldsymbol{A}_{r_{0}}}(\xi)\right|^{2}$ for $r>r_{0}$
- THEN we would have

$$
\left\|\Delta_{A_{1}}\right\|_{2} \gtrsim \sqrt{\frac{1}{1 / 2 \sqrt{N}}}\left\|\Delta_{A_{1 / 2 \sqrt{N}}}\right\|_{2} \approx N^{1 / 4}
$$

Rotated Squares

- $\left\|\Delta_{A}\right\|_{2}^{2}=\int_{\mathbb{R}^{2}}\left|\widehat{\mathbf{1}}_{A}(\xi)\right|^{2} \cdot|\widehat{D}(\xi)|^{2} d \xi$
- Let $A_{r}=\left[-\frac{r}{2}, \frac{r}{2}\right]^{2}, r \leq 1$.
- For $r \approx \frac{1}{2 \sqrt{N}},\left\|\Delta_{A_{r}}\right\|_{2}^{2} \gtrsim 1$
- IF we had $\left|\widehat{\mathbf{1}}_{\boldsymbol{A}_{r}}(\xi)\right|^{2} \gtrsim \frac{r}{r_{0}} \cdot\left|\widehat{\mathbf{1}}_{\boldsymbol{A}_{r_{0}}}(\xi)\right|^{2}$ for $r>r_{0}$
- THEN we would have

$$
\left\|\Delta_{A_{1}}\right\|_{2} \gtrsim \sqrt{\frac{1}{1 / 2 \sqrt{N}}}\left\|\Delta_{A_{1 / 2 \sqrt{N}}}\right\|_{2} \approx N^{1 / 4}
$$

- BUT

$$
\left|\widehat{\mathbf{1}}_{A_{r}}(\xi)\right|^{2}=\left(\frac{\sin \left(\pi \xi_{1} r\right)}{\pi \xi_{1}}\right)^{2} \cdot\left(\frac{\sin \left(\pi \xi_{2} r\right)}{\pi \xi_{2}}\right)^{2}
$$

$\left|\widehat{\mathbf{1}}_{A_{r}}(\xi)\right|^{2}=\left(\sin \left(\pi \xi_{1} r\right) /\left(\pi \xi_{1}\right)\right)^{2} \cdot\left(\sin \left(\pi \xi_{2} r\right) /\left(\pi \xi_{2}\right)\right)^{2}$

$\left|\widehat{\mathbf{1}}_{A_{r}}(\xi)\right|^{2}$ for $r=0.1$

$\left|\widehat{\mathbf{1}}_{A_{r}}(\xi)\right|^{2}=\left(\sin \left(\pi \xi_{1} r\right) /\left(\pi \xi_{1}\right)\right)^{2} \cdot\left(\sin \left(\pi \xi_{2} r\right) /\left(\pi \xi_{2}\right)\right)^{2}$

$\left|\widehat{\mathbf{1}}_{A_{r}}(\xi)\right|^{2}$ for $r=0.2$

$\left|\widehat{\mathbf{1}}_{A_{r}}(\xi)\right|^{2}=\left(\sin \left(\pi \xi_{1} r\right) /\left(\pi \xi_{1}\right)\right)^{2} \cdot\left(\sin \left(\pi \xi_{2} r\right) /\left(\pi \xi_{2}\right)\right)^{2}$

$\left|\widehat{\mathbf{1}}_{\boldsymbol{A}_{r}}(\xi)\right|^{2}$ for $r=0.3$

$\left|\widehat{\mathbf{1}}_{A_{r}}(\xi)\right|^{2}=\left(\sin \left(\pi \xi_{1} r\right) /\left(\pi \xi_{1}\right)\right)^{2} \cdot\left(\sin \left(\pi \xi_{2} r\right) /\left(\pi \xi_{2}\right)\right)^{2}$

$\left|\widehat{\mathbf{1}}_{A_{r}}(\xi)\right|^{2}$ for $r=0.4$

$\left|\widehat{1}_{A_{r}}(\xi)\right|^{2}=\left(\sin \left(\pi \xi_{1} r\right) /\left(\pi \xi_{1}\right)\right)^{2} \cdot\left(\sin \left(\pi \xi_{2} r\right) /\left(\pi \xi_{2}\right)\right)^{2}$

$\left|\widehat{\mathbf{1}}_{A_{r}}(\xi)\right|^{2}$ for $r=0.5$

Rotated Squares

$$
\text { - }\left|\widehat{\mathbf{1}}_{A_{r}}(\xi)\right|^{2}=\left(\frac{\sin \left(\pi \xi_{1} r\right)}{\pi \xi_{1}}\right)^{2} \cdot\left(\frac{\sin \left(\pi \xi_{2} r\right)}{\pi \xi_{2}}\right)^{2}
$$

Rotated Squares

- $\left|\widehat{\mathbf{1}}_{A_{r}}(\xi)\right|^{2}=\left(\frac{\sin \left(\pi \xi_{1} r\right)}{\pi \xi_{1}}\right)^{2} \cdot\left(\frac{\sin \left(\pi \xi_{2} r\right)}{\pi \xi_{2}}\right)^{2}$
- Let $A_{r} \rho$ denote the rotation of A_{r}

$$
\frac{1}{2 \pi} \int^{2 \pi} \frac{1}{r} \int^{2 r}\left|\hat{\mathbf{1}}_{A_{\rho}}(\xi)\right|^{2}
$$

Rotated Squares

- $\left|\widehat{\mathbf{1}}_{A_{r}}(\xi)\right|^{2}=\left(\frac{\sin \left(\pi \xi_{1} r\right)}{\pi \xi_{1}}\right)^{2} \cdot\left(\frac{\sin \left(\pi \xi_{2} r\right)}{\pi \xi_{2}}\right)^{2}$

$$
\frac{1}{r} \int_{r}^{2 r}\left|\widehat{\mathbf{1}}_{A_{\rho}}(\xi)\right|^{2} d \rho
$$

Rotated Squares

- $\left|\widehat{\mathbf{1}}_{A_{r}}(\xi)\right|^{2}=\left(\frac{\sin \left(\pi \xi_{1} r\right)}{\pi \xi_{1}}\right)^{2} \cdot\left(\frac{\sin \left(\pi \xi_{2} r\right)}{\pi \xi_{2}}\right)^{2}$
- Let $A_{r, \theta}$ denote the rotation of A_{r} by θ

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1}{r} \int_{r}^{2 r}\left|\widehat{\mathbf{1}}_{A_{\rho, \theta}}(\xi)\right|^{2} d \rho d \theta
$$

Rotated Squares

- $\left|\widehat{\mathbf{1}}_{A_{r}}(\xi)\right|^{2}=\left(\frac{\sin \left(\pi \xi_{1} r\right)}{\pi \xi_{1}}\right)^{2} \cdot\left(\frac{\sin \left(\pi \xi_{2} r\right)}{\pi \xi_{2}}\right)^{2}$
- Let $A_{r, \theta}$ denote the rotation of A_{r} by θ

$$
\omega_{r}(\xi)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1}{r} \int_{r}^{2 r}\left|\widehat{\mathbf{1}}_{A_{\rho, \theta}}(\xi)\right|^{2} d \rho d \theta \approx \min \left\{r^{4}, \frac{r}{|\xi|^{3}}\right\}
$$

Rotated Squares

- $\left|\widehat{\mathbf{1}}_{A_{r}}(\xi)\right|^{2}=\left(\frac{\sin \left(\pi \xi_{1} r\right)}{\pi \xi_{1}}\right)^{2} \cdot\left(\frac{\sin \left(\pi \xi_{2} r\right)}{\pi \xi_{2}}\right)^{2}$
- Let $A_{r, \theta}$ denote the rotation of A_{r} by θ

$$
\omega_{r}(\xi)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1}{r} \int_{r}^{2 r}\left|\widehat{\mathbf{1}}_{A_{\rho, \theta}}(\xi)\right|^{2} d \rho d \theta \approx \min \left\{r^{4}, \frac{r}{|\xi|^{3}}\right\}
$$

- Thus $\frac{\omega_{r}(\xi)}{\omega_{r_{0}}(\xi)} \gtrsim \frac{r}{r_{0}}$

Irrational Lattice

Example

Let α be an irrational number. Define $\mathcal{P}_{N}=\left\{\left(\frac{i}{N},\{i \alpha\}\right)\right\}_{i=0}^{N-1}$

Irrational Lattice

Example

Let α be an irrational number. Define $\mathcal{P}_{N}=\left\{\left(\frac{i}{N},\{i \alpha\}\right)\right\}_{i=0}^{N-1}$

Theorem

If the partial quotients of the continued fraction of α are bounded, then the discrepancy of this set with respect to axis-parallel rectangles satisfies $D\left(\mathcal{P}_{N}\right) \approx \log N$.

Irrational Lattice

Example

Let α be an irrational number. Define $\mathcal{P}_{N}=\left\{\left(\frac{i}{N},\{i \alpha\}\right)\right\}_{i=0}^{N-1}$

Theorem

If the partial quotients of the continued fraction of α are bounded, then the discrepancy of this set with respect to axis-parallel rectangles satisfies $D\left(\mathcal{P}_{N}\right) \approx \log N$.

α badly approximable

For any $p, q \in \mathbb{Z}$

$$
\left|\alpha-\frac{p}{q}\right| \gtrsim \frac{1}{q^{2}}
$$

Irrational Lattice

Example

Let $\theta \in[0, \pi]$. Denote by \mathcal{P}_{N}^{θ} the lattice $\frac{1}{\sqrt{N}} \mathbb{Z}^{2}$ rotated by θ and intersected with $[0,1]^{2}$.

Irrational Lattice

Example

Let $\theta \in[0, \pi]$. Denote by \mathcal{P}_{N}^{θ} the lattice $\frac{1}{\sqrt{N}} \mathbb{Z}^{2}$ rotated by θ and intersected with $[0,1]^{2}$.

Theorem

If $\tan \theta$ is badly approximable, i.e.

$$
\left|\tan (\theta)-\frac{p}{q}\right| \gtrsim \frac{1}{q^{2}}
$$

for all integer p, q, then the discrepancy of \mathcal{P}_{N}^{θ} with respect to axis-parallel rectangles satisfies

$$
D\left(\mathcal{P}_{N}^{\theta}\right) \approx \log N
$$

Davenport's lemma

- Finitely many directions

Davenport's lemma

- Finitely many directions

Lemma (Davenport; Cassels)

For any $\phi_{1}, \phi_{2}, \ldots, \phi_{n}$, there exists θ such that for all $j=1, \ldots, n$

$$
\left|\tan \left(\theta-\phi_{j}\right)-\frac{p}{q}\right| \gtrsim \frac{1}{q^{2}}
$$

for all $p \in \mathbb{Z}, q \in \mathbb{N}$.

Lacunary directions

- Lacunary directions $\Omega=\left\{2^{-n}\right\}_{n=1}^{\infty}$

Lacunary directions

- Lacunary directions $\Omega=\left\{2^{-n}\right\}_{n=1}^{\infty}$

Lemma (D.B., X. Ma, J. Pipher, C. Spencer)

There exists θ such that for all $\phi \in \Omega$

$$
\left|\tan (\theta-\phi)-\frac{p}{q}\right| \gtrsim \frac{1}{q^{2} \log ^{2} q}
$$

for all $p \in \mathbb{Z}, q \in \mathbb{N}$.

Lacunary of finite order

- Lacunary set of order M : union of a lacunary set \mathcal{L} of order $M-1$ and lacunary sequences converging to points of \mathcal{L}.

Lacunary of finite order

- Lacunary set of order M : union of a lacunary set \mathcal{L} of order $M-1$ and lacunary sequences converging to points of \mathcal{L}.
- Example: $\Omega=\left\{2^{-n_{1}}+2^{-n_{2}}+\ldots+2^{-n_{M}}\right\}_{n_{k} \in \mathbb{N}}$

Lacunary of finite order

- Lacunary set of order M : union of a lacunary set \mathcal{L} of order $M-1$ and lacunary sequences converging to points of \mathcal{L}.
- Example: $\Omega=\left\{2^{-n_{1}}+2^{-n_{2}}+\ldots+2^{-n_{M}}\right\}_{n_{k} \in \mathbb{N}}$

Lemma (D.B., X. Ma, J. Pipher, C. Spencer)

There exists θ such that for all $\phi \in \Omega$

$$
\left|\tan (\theta-\phi)-\frac{p}{q}\right| \gtrsim \frac{1}{q^{2} \log ^{2 M} q}
$$

for all $p \in \mathbb{Z}, q \in \mathbb{N}$.

Minkowski dimension

- Ω has upper Minkowski dimension $0 \leq d<1$

Minkowski dimension

- Ω has upper Minkowski dimension $0 \leq d<1$

Lemma (D.B., X. Ma, J. Pipher, C. Spencer)

There exists θ such that for all $\phi \in \Omega$

$$
\left|\tan (\theta-\phi)-\frac{p}{q}\right| \gtrsim \frac{1}{q^{\frac{2}{(1-d)^{2}}+\varepsilon}}
$$

for all $p \in \mathbb{Z}, q \in \mathbb{N}$ and any $\varepsilon>0$.

Proof of the lemmas

- We construct a sequence $\ldots I_{n-1} \supset I_{n} \supset \ldots$ with $\left|I_{n}\right| \rightarrow 0$ so that

$$
\begin{equation*}
\left|\tan (\theta-\phi)-\frac{p}{q}\right| \geq \frac{c(n)}{q^{2}} \tag{*}
\end{equation*}
$$

for all $\theta \in I_{n}, \phi \in \Omega$, and $R(n) \leq q \leq R(n+1)$

Proof of the lemmas

- We construct a sequence $\ldots I_{n-1} \supset I_{n} \supset \ldots$ with $\left|I_{n}\right| \rightarrow 0$ so that

$$
\begin{equation*}
\left|\tan (\theta-\phi)-\frac{p}{q}\right| \geq \frac{c(n)}{q^{2}} \tag{*}
\end{equation*}
$$

for all $\theta \in I_{n}, \phi \in \Omega$, and $R(n) \leq q \leq R(n+1)$

- Cover Ω with $N(n)$ intervals of length $\delta(n)$
- We construct a sequence $\ldots I_{n-1} \supset I_{n} \supset \ldots$ with $\left|I_{n}\right| \rightarrow 0$ so that

$$
\begin{equation*}
\left|\tan (\theta-\phi)-\frac{p}{q}\right| \geq \frac{c(n)}{q^{2}} \tag{*}
\end{equation*}
$$

for all $\theta \in I_{n}, \phi \in \Omega$, and $R(n) \leq q \leq R(n+1)$

- Cover Ω with $N(n)$ intervals of length $\delta(n)$
- $N=N(\delta)$ is determined by geometry of Ω
- We construct a sequence $\ldots I_{n-1} \supset I_{n} \supset \ldots$ with $\left|I_{n}\right| \rightarrow 0$ so that

$$
\begin{equation*}
\left|\tan (\theta-\phi)-\frac{p}{q}\right| \geq \frac{c(n)}{q^{2}} \tag{*}
\end{equation*}
$$

for all $\theta \in I_{n}, \phi \in \Omega$, and $R(n) \leq q \leq R(n+1)$

- Cover Ω with $N(n)$ intervals of length $\delta(n)$
- $N=N(\delta)$ is determined by geometry of Ω
- Lacunary:

$$
N \lesssim \log \frac{1}{\delta}
$$

- We construct a sequence $\ldots I_{n-1} \supset I_{n} \supset \ldots$ with $\left|I_{n}\right| \rightarrow 0$ so that

$$
\begin{equation*}
\left|\tan (\theta-\phi)-\frac{p}{q}\right| \geq \frac{c(n)}{q^{2}} \tag{*}
\end{equation*}
$$

for all $\theta \in I_{n}, \phi \in \Omega$, and $R(n) \leq q \leq R(n+1)$

- Cover Ω with $N(n)$ intervals of length $\delta(n)$
- $N=N(\delta)$ is determined by geometry of Ω
- Lacunary:

$$
N \lesssim \log \frac{1}{\delta}
$$

- Lacunary of order M :

$$
N \lesssim \log ^{M} \frac{1}{\delta}
$$

- We construct a sequence $\ldots I_{n-1} \supset I_{n} \supset \ldots$ with $\left|I_{n}\right| \rightarrow 0$ so that

$$
\begin{equation*}
\left|\tan (\theta-\phi)-\frac{p}{q}\right| \geq \frac{c(n)}{q^{2}} \tag{*}
\end{equation*}
$$

for all $\theta \in I_{n}, \phi \in \Omega$, and $R(n) \leq q \leq R(n+1)$

- Cover Ω with $N(n)$ intervals of length $\delta(n)$
- $N=N(\delta)$ is determined by geometry of Ω
- Lacunary:

$$
N \lesssim \log \frac{1}{\delta}
$$

- Lacunary of order M :

$$
N \lesssim \log ^{M} \frac{1}{\delta}
$$

- Upper Minkowski dimension d: $N \leq C_{\varepsilon}\left(\frac{1}{\delta}\right)^{d+\varepsilon}$

Proof of the lemmas

- We construct the sequence .. $I_{n-1} \supset I_{n} \supset \ldots$ with $\left|I_{n}\right| \rightarrow 0$ so that

$$
\begin{equation*}
\left|\tan (\theta-\phi)-\frac{p}{q}\right| \geq \frac{c(n)}{q^{2}} \tag{*}
\end{equation*}
$$

for all $\theta \in I_{n}, \phi \in \Omega$, and $R(n) \leq q \leq R(n+1)$

Proof of the lemmas

- We construct the sequence .. $I_{n-1} \supset I_{n} \supset \ldots$ with $\left|I_{n}\right| \rightarrow 0$ so that

$$
\begin{equation*}
\left|\tan (\theta-\phi)-\frac{p}{q}\right| \geq \frac{c(n)}{q^{2}} \tag{*}
\end{equation*}
$$

for all $\theta \in I_{n}, \phi \in \Omega$, and $R(n) \leq q \leq R(n+1)$

- Cover Ω with $N(n)$ intervals B_{k} of length $\delta(n)$
- We construct the sequence ..I $I_{n-1} \supset I_{n} \supset \ldots$ with $\left|I_{n}\right| \rightarrow 0$ so that

$$
\begin{equation*}
\left|\tan (\theta-\phi)-\frac{p}{q}\right| \geq \frac{c(n)}{q^{2}} \tag{*}
\end{equation*}
$$

for all $\theta \in I_{n}, \phi \in \Omega$, and $R(n) \leq q \leq R(n+1)$

- Cover Ω with $N(n)$ intervals B_{k} of length $\delta(n)$
- Assume $\left(\theta_{1}, \phi_{1}, p_{1}, q_{1}\right)$ and $\left(\theta_{2}, \phi_{2}, p_{2}, q_{2}\right)$ with $\phi_{i} \in B_{k}, \theta_{i} \in I_{n-1}, R(n) \leq q \leq R(n+1)$ violate $(*)$
- We construct the sequence ..I $I_{n-1} \supset I_{n} \supset \ldots$ with $\left|I_{n}\right| \rightarrow 0$ so that

$$
\begin{equation*}
\left|\tan (\theta-\phi)-\frac{p}{q}\right| \geq \frac{c(n)}{q^{2}} \tag{*}
\end{equation*}
$$

for all $\theta \in I_{n}, \phi \in \Omega$, and $R(n) \leq q \leq R(n+1)$

- Cover Ω with $N(n)$ intervals B_{k} of length $\delta(n)$
- Assume $\left(\theta_{1}, \phi_{1}, p_{1}, q_{1}\right)$ and $\left(\theta_{2}, \phi_{2}, p_{2}, q_{2}\right)$ with $\phi_{i} \in B_{k}, \theta_{i} \in I_{n-1}, R(n) \leq q \leq R(n+1)$ violate (*)

$$
\left|\frac{p_{1}}{q_{1}}-\frac{p_{2}}{q_{2}}\right| \leq \frac{2 c(n)}{R(n)^{2}}+C\left|I_{n-1}\right|+C \delta(n)
$$

- We construct the sequence ..I $I_{n-1} \supset I_{n} \supset \ldots$ with $\left|I_{n}\right| \rightarrow 0$ so that

$$
\begin{equation*}
\left|\tan (\theta-\phi)-\frac{p}{q}\right| \geq \frac{c(n)}{q^{2}} \tag{*}
\end{equation*}
$$

for all $\theta \in I_{n}, \phi \in \Omega$, and $R(n) \leq q \leq R(n+1)$

- Cover Ω with $N(n)$ intervals B_{k} of length $\delta(n)$
- Assume $\left(\theta_{1}, \phi_{1}, p_{1}, q_{1}\right)$ and $\left(\theta_{2}, \phi_{2}, p_{2}, q_{2}\right)$ with $\phi_{i} \in B_{k}, \theta_{i} \in I_{n-1}, R(n) \leq q \leq R(n+1)$ violate (*)

$$
\left|\frac{p_{1}}{q_{1}}-\frac{p_{2}}{q_{2}}\right| \leq \frac{2 c(n)}{R(n)^{2}}+C\left|I_{n-1}\right|+C \delta(n) \leq \frac{1}{R(n+1)^{2}}
$$

- We construct the sequence ..I $I_{n-1} \supset I_{n} \supset \ldots$ with $\left|I_{n}\right| \rightarrow 0$ so that

$$
\begin{equation*}
\left|\tan (\theta-\phi)-\frac{p}{q}\right| \geq \frac{c(n)}{q^{2}} \tag{*}
\end{equation*}
$$

for all $\theta \in I_{n}, \phi \in \Omega$, and $R(n) \leq q \leq R(n+1)$

- Cover Ω with $N(n)$ intervals B_{k} of length $\delta(n)$
- Assume $\left(\theta_{1}, \phi_{1}, p_{1}, q_{1}\right)$ and $\left(\theta_{2}, \phi_{2}, p_{2}, q_{2}\right)$ with $\phi_{i} \in B_{k}, \theta_{i} \in I_{n-1}, R(n) \leq q \leq R(n+1)$ violate (*)

$$
\left|\frac{p_{1}}{q_{1}}-\frac{p_{2}}{q_{2}}\right| \leq \frac{2 c(n)}{R(n)^{2}}+C\left|I_{n-1}\right|+C \delta(n) \leq \frac{1}{R(n+1)^{2}}
$$

- Then there is at most one $p / q \in B_{k}$ with $R(n) \leq q_{i} \leq R(n+1)$, which violates $(*)$

Proof of the lemmas

- We construct the sequence..$I_{n-1} \supset I_{n} \supset \ldots$ with $\left|I_{n}\right| \rightarrow 0$ so that

$$
\begin{equation*}
\left|\tan (\theta-\phi)-\frac{p}{q}\right| \geq \frac{c(n)}{q^{2}} \tag{*}
\end{equation*}
$$

for all $\theta \in I_{n}, \phi \in \Omega$, and $R(n) \leq q \leq R(n+1)$

- We construct the sequence .. $I_{n-1} \supset I_{n} \supset \ldots$ with $\left|I_{n}\right| \rightarrow 0$ so that

$$
\begin{equation*}
\left|\tan (\theta-\phi)-\frac{p}{q}\right| \geq \frac{c(n)}{q^{2}} \tag{*}
\end{equation*}
$$

for all $\theta \in I_{n}, \phi \in \Omega$, and $R(n) \leq q \leq R(n+1)$

- For each $k=1, \ldots, N(n)$ remove $\tan ^{-1}$ of the $\frac{c(n)}{R(n)^{2}}$-neighborhood of $\frac{p}{q}$
- We construct the sequence .. $I_{n-1} \supset I_{n} \supset \ldots$ with $\left|I_{n}\right| \rightarrow 0$ so that

$$
\begin{equation*}
\left|\tan (\theta-\phi)-\frac{p}{q}\right| \geq \frac{c(n)}{q^{2}} \tag{*}
\end{equation*}
$$

for all $\theta \in I_{n}, \phi \in \Omega$, and $R(n) \leq q \leq R(n+1)$

- For each $k=1, \ldots, N(n)$ remove $\tan ^{-1}$ of the $\frac{c(n)}{R(n)^{2}}$-neighborhood of $\frac{p}{q}$
-

$$
\left|I_{n-1}\right|-N(n) \cdot\left(\frac{2 c(n)}{R(n)^{2}}+\delta(n)\right)
$$

- We construct the sequence .. $I_{n-1} \supset I_{n} \supset \ldots$ with $\left|I_{n}\right| \rightarrow 0$ so that

$$
\begin{equation*}
\left|\tan (\theta-\phi)-\frac{p}{q}\right| \geq \frac{c(n)}{q^{2}} \tag{*}
\end{equation*}
$$

for all $\theta \in I_{n}, \phi \in \Omega$, and $R(n) \leq q \leq R(n+1)$

- For each $k=1, \ldots, N(n)$ remove $\tan ^{-1}$ of the $\frac{c(n)}{R(n)^{2}}$-neighborhood of $\frac{p}{q}$
-

$$
\left|I_{n-1}\right|-N(n) \cdot\left(\frac{2 c(n)}{R(n)^{2}}+\delta(n)\right) \geq(N(n)+1)\left|I_{n}\right|
$$

- We construct the sequence .. $I_{n-1} \supset I_{n} \supset \ldots$ with $\left|I_{n}\right| \rightarrow 0$ so that

$$
\begin{equation*}
\left|\tan (\theta-\phi)-\frac{p}{q}\right| \geq \frac{c(n)}{q^{2}} \tag{*}
\end{equation*}
$$

for all $\theta \in I_{n}, \phi \in \Omega$, and $R(n) \leq q \leq R(n+1)$

- For each $k=1, \ldots, N(n)$ remove $\tan ^{-1}$ of the $\frac{c(n)}{R(n)^{2}}$-neighborhood of $\frac{p}{q}$
-

$$
\left|I_{n-1}\right|-N(n) \cdot\left(\frac{2 c(n)}{R(n)^{2}}+\delta(n)\right) \geq(N(n)+1)\left|I_{n}\right|
$$

- Then the remainder contains an interval of length $\left|I_{n}\right|$

Proof of the lemmas

- We construct the sequence .. $I_{n-1} \supset I_{n} \supset \ldots$ with $\left|I_{n}\right| \rightarrow 0$ so that

$$
\begin{equation*}
\left|\tan (\theta-\phi)-\frac{p}{q}\right| \geq \frac{c(n)}{q^{2}} \tag{*}
\end{equation*}
$$

for all $\theta \in I_{n}, \phi \in \Omega$, and $R(n) \leq q \leq R(n+1)$

Proof of the lemmas

- We construct the sequence .. $I_{n-1} \supset I_{n} \supset \ldots$ with $\left|I_{n}\right| \rightarrow 0$ so that

$$
\begin{equation*}
\left|\tan (\theta-\phi)-\frac{p}{q}\right| \geq \frac{c(n)}{q^{2}} \tag{*}
\end{equation*}
$$

for all $\theta \in I_{n}, \phi \in \Omega$, and $R(n) \leq q \leq R(n+1)$

- $\left|I_{n-1}\right|-N(n) \cdot\left(\frac{2 c(n)}{R(n)^{2}}+\delta(n)\right) \geq(N(n)+1)\left|I_{n}\right|$
- We construct the sequence..$I_{n-1} \supset I_{n} \supset \ldots$ with $\left|I_{n}\right| \rightarrow 0$ so that

$$
\begin{equation*}
\left|\tan (\theta-\phi)-\frac{p}{q}\right| \geq \frac{c(n)}{q^{2}} \tag{*}
\end{equation*}
$$

for all $\theta \in I_{n}, \phi \in \Omega$, and $R(n) \leq q \leq R(n+1)$

- $\left|I_{n-1}\right|-N(n) \cdot\left(\frac{2 c(n)}{R(n)^{2}}+\delta(n)\right) \geq(N(n)+1)\left|I_{n}\right|$
- $\frac{2 c(n)}{R(n)^{2}}+C\left|I_{n-1}\right|+C \delta(n) \leq \frac{1}{R(n+1)^{2}}$
- We construct the sequence..$I_{n-1} \supset I_{n} \supset \ldots$ with $\left|I_{n}\right| \rightarrow 0$ so that

$$
\begin{equation*}
\left|\tan (\theta-\phi)-\frac{p}{q}\right| \geq \frac{c(n)}{q^{2}} \tag{*}
\end{equation*}
$$

for all $\theta \in I_{n}, \phi \in \Omega$, and $R(n) \leq q \leq R(n+1)$

- $\left|I_{n-1}\right|-N(n) \cdot\left(\frac{2 c(n)}{R(n)^{2}}+\delta(n)\right) \geq(N(n)+1)\left|I_{n}\right|$
- $\frac{2 c(n)}{R(n)^{2}}+C\left|I_{n-1}\right|+C \delta(n) \leq \frac{1}{R(n+1)^{2}}$
- Finite: $R(n)=a^{n}, c(n)=c, \delta(n)=0, N(n)=N$
- We construct the sequence..$I_{n-1} \supset I_{n} \supset \ldots$ with $\left|I_{n}\right| \rightarrow 0$ so that

$$
\begin{equation*}
\left|\tan (\theta-\phi)-\frac{p}{q}\right| \geq \frac{c(n)}{q^{2}} \tag{*}
\end{equation*}
$$

for all $\theta \in I_{n}, \phi \in \Omega$, and $R(n) \leq q \leq R(n+1)$

- $\left|I_{n-1}\right|-N(n) \cdot\left(\frac{2 c(n)}{R(n)^{2}}+\delta(n)\right) \geq(N(n)+1)\left|I_{n}\right|$
- $\frac{2 c(n)}{R(n)^{2}}+C\left|I_{n-1}\right|+C \delta(n) \leq \frac{1}{R(n+1)^{2}}$
- Lacunary: $R(n)=n^{n / 2} \log ^{n / 2} n, c(n)=\frac{c}{n^{2} \log ^{2} n}$

$$
c(n) \approx \log ^{-2} R(n)
$$

- We construct the sequence..$I_{n-1} \supset I_{n} \supset \ldots$ with $\left|I_{n}\right| \rightarrow 0$ so that

$$
\begin{equation*}
\left|\tan (\theta-\phi)-\frac{p}{q}\right| \geq \frac{c(n)}{q^{2}} \tag{*}
\end{equation*}
$$

for all $\theta \in I_{n}, \phi \in \Omega$, and $R(n) \leq q \leq R(n+1)$

- $\left|I_{n-1}\right|-N(n) \cdot\left(\frac{2 c(n)}{R(n)^{2}}+\delta(n)\right) \geq(N(n)+1)\left|I_{n}\right|$
- $\frac{2 c(n)}{R(n)^{2}}+C\left|I_{n-1}\right|+C \delta(n) \leq \frac{1}{R(n+1)^{2}}$
- Lacunary of order $M: R(n)=n^{n M / 2}, c(n)=\frac{c}{n^{2 M} \log ^{2 M} n}$

$$
c(n) \approx \log ^{-2 M} R(n)
$$

- We construct the sequence..$I_{n-1} \supset I_{n} \supset \ldots$ with $\left|I_{n}\right| \rightarrow 0$ so that

$$
\begin{equation*}
\left|\tan (\theta-\phi)-\frac{p}{q}\right| \geq \frac{c(n)}{q^{2}} \tag{*}
\end{equation*}
$$

for all $\theta \in I_{n}, \phi \in \Omega$, and $R(n) \leq q \leq R(n+1)$

- $\left|I_{n-1}\right|-N(n) \cdot\left(\frac{2 c(n)}{R(n)^{2}}+\delta(n)\right) \geq(N(n)+1)\left|I_{n}\right|$
- $\frac{2 c(n)}{R(n)^{2}}+C\left|I_{n-1}\right|+C \delta(n) \leq \frac{1}{R(n+1)^{2}}$
- Minkowski dimension $d: R(n)=2^{a^{n}}$,

$$
c(n)=c 2^{-2 a^{n}\left(a^{2}-1\right)} \approx R(n)^{-\left(2 a^{2}-1\right)}, \text { where } a=\frac{1}{1-d-\varepsilon}
$$

Generalization

- Let $N(x)$ be an upper bound of the minimal number of intervals of length x needed to cover Ω.

Generalization

- Let $N(x)$ be an upper bound of the minimal number of intervals of length x needed to cover Ω.
- Let $F(x)=x \cdot N(x)$

Generalization

- Let $N(x)$ be an upper bound of the minimal number of intervals of length x needed to cover Ω.
- Let $F(x)=x \cdot N(x)$

Lemma (D.B., X. Ma, J. Pipher, C. Spencer)

There exists θ such that for all $\phi \in \Omega$

$$
\left|\tan (\theta-\phi)-\frac{p}{q}\right| \gtrsim F^{-1}\left(F^{-1}\left(\frac{1}{q^{2}}\right)\right)
$$

for all $p \in \mathbb{Z}, q \in \mathbb{N}$.

Erdös-Turan inequality

- For a sequence $\omega=\left(\omega_{n}\right) \subset[0,1]$:

$$
D_{N}(\omega)=\sup _{x \subset[0,1]}\left|\#\left\{n \leq N: \omega_{n} \leq x\right\}-N x\right|
$$

Theorem (Erdös-Turan)

For any sequence $\omega \subset[0,1]$ we have

$$
D_{N}(\omega) \lesssim \frac{N}{m}+\sum_{h=1}^{m} \frac{1}{h}\left|\sum_{n=1}^{N} e^{2 \pi i h \omega_{n}}\right|
$$

for all natural numbers m.

- If $\omega_{n}=\{n \alpha\}$

$$
\left|\sum_{n=1}^{N} e^{2 \pi i h n \alpha}\right| \leq \frac{2}{\left|e^{2 \pi i h \alpha}-1\right|}=\frac{1}{|\sin (\pi h \alpha)|}=\frac{1}{\sin (\pi\|h \theta\|)} \lesssim \frac{1}{\|h \alpha\|}
$$

Exponential sum estimates

Let ψ be a non-decreasing function on \mathbb{R}_{+}.
$\alpha \in \mathbb{R}$ is of type $<\psi$ if for all $q \in \mathbb{N}$ we have $q\|q \alpha\|>1 / \psi(q)$, i.e.

$$
\left|\alpha-\frac{p}{q}\right|>\frac{1}{q^{2} \cdot \psi(q)}
$$

Exponential sum estimates

Let ψ be a non-decreasing function on \mathbb{R}_{+}.
$\alpha \in \mathbb{R}$ is of type $<\psi$ if for all $q \in \mathbb{N}$ we have $q\|q \alpha\|>1 / \psi(q)$, i.e.

$$
\begin{gathered}
\left|\alpha-\frac{p}{q}\right|>\frac{1}{q^{2} \cdot \psi(q)} \\
\sum_{h=1}^{m} \frac{1}{h\|h \theta\|} \lesssim \psi(2 m) \log m+\sum_{h=1}^{m} \frac{\psi(2 h) \log h}{h}
\end{gathered}
$$

Exponential sum estimates

Let ψ be a non-decreasing function on \mathbb{R}_{+}.
$\alpha \in \mathbb{R}$ is of type $<\psi$ if for all $q \in \mathbb{N}$ we have $q\|q \alpha\|>1 / \psi(q)$, i.e.

$$
\begin{gathered}
\left|\alpha-\frac{p}{q}\right|>\frac{1}{q^{2} \cdot \psi(q)} \\
\sum_{h=1}^{m} \frac{1}{h\|h \theta\|} \lesssim \log ^{2} m+\psi(m)+\sum_{h=1}^{m} \frac{\psi(h)}{h}
\end{gathered}
$$

Exponential sum estimates

Let ψ be a non-decreasing function on \mathbb{R}_{+}.
$\alpha \in \mathbb{R}$ is of type $<\psi$ if for all $q \in \mathbb{N}$ we have $q\|q \alpha\|>1 / \psi(q)$, i.e.

$$
\begin{gathered}
\left|\alpha-\frac{p}{q}\right|>\frac{1}{q^{2} \cdot \psi(q)} \\
\sum_{h=1}^{m} \frac{1}{h\|h \theta\|} \lesssim \log ^{2} m+\psi(m)+\sum_{h=1}^{m} \frac{\psi(h)}{h}
\end{gathered}
$$

Finitely many directions: $\psi(q)=$ const

Exponential sum estimates

Let ψ be a non-decreasing function on \mathbb{R}_{+}.
$\alpha \in \mathbb{R}$ is of type $<\psi$ if for all $q \in \mathbb{N}$ we have $q\|q \alpha\|>1 / \psi(q)$, i.e.

$$
\begin{gathered}
\left|\alpha-\frac{p}{q}\right|>\frac{1}{q^{2} \cdot \psi(q)} \\
\sum_{h=1}^{m} \frac{1}{h\|h \theta\|} \lesssim \log ^{2} m+\psi(m)+\sum_{h=1}^{m} \frac{\psi(h)}{h}
\end{gathered}
$$

Lacunary directions: $\psi(q) \approx \log ^{2} q$

Exponential sum estimates

Let ψ be a non-decreasing function on \mathbb{R}_{+}.
$\alpha \in \mathbb{R}$ is of type $<\psi$ if for all $q \in \mathbb{N}$ we have $q\|q \alpha\|>1 / \psi(q)$, i.e.

$$
\begin{gathered}
\left|\alpha-\frac{p}{q}\right|>\frac{1}{q^{2} \cdot \psi(q)} \\
\sum_{h=1}^{m} \frac{1}{h\|h \theta\|} \lesssim \log ^{2} m+\psi(m)+\sum_{h=1}^{m} \frac{\psi(h)}{h}
\end{gathered}
$$

Lacunary of order $M: \psi(q) \approx \log ^{2 M} q$

Exponential sum estimates

Let ψ be a non-decreasing function on \mathbb{R}_{+}.
$\alpha \in \mathbb{R}$ is of type $<\psi$ if for all $q \in \mathbb{N}$ we have $q\|q \alpha\|>1 / \psi(q)$, i.e.

$$
\begin{gathered}
\left|\alpha-\frac{p}{q}\right|>\frac{1}{q^{2} \cdot \psi(q)} \\
\sum_{h=1}^{m} \frac{1}{h\|h \theta\|} \lesssim \log ^{2} m+\psi(m)+\sum_{h=1}^{m} \frac{\psi(h)}{h}
\end{gathered}
$$

Minkowski dimension $d: \psi(q) \approx q^{\frac{2}{(1-d)^{2}}-2+\varepsilon}$

Directional Discrepancy

$$
D_{\Omega}\left(\mathcal{P}_{N}^{\theta}\right) \lesssim D_{c \sqrt{N}}(\{n \cdot \tan (\theta-\phi)\})
$$

Directional Discrepancy

Theorem (DB, Ma, Pipher, Spencer)

- Lacunary directions $\Omega=\left\{2^{-n}\right\}_{n=1}^{\infty}$

$$
D_{\Omega}(N) \lesssim \log ^{3} N
$$

- Lacunary of order M

$$
D_{\Omega}(N) \lesssim \log ^{2 M+1} N
$$

- Ω has upper Minkowski dimension $0 \leq d<1$

$$
D_{\Omega}(N) \lesssim N^{\frac{1}{2}-\frac{1}{2(\tau+1)}+\varepsilon},
$$

where $\tau=\frac{2}{(1-d)^{2}}-2$.

Directional Discrepancy

- Ω has upper Minkowski dimension $0 \leq d<1$

$$
\begin{aligned}
& \qquad D_{\Omega}(N) \lesssim N^{\frac{1}{2}-\frac{1}{2(\tau+1)}+\varepsilon}, \quad(*) \\
& \text { where } \tau=\frac{2}{(1-d)^{2}}-2
\end{aligned}
$$

Directional Discrepancy

- Ω has upper Minkowski dimension $0 \leq d<1$

$$
\begin{aligned}
& \qquad D_{\Omega}(N) \lesssim N^{\frac{1}{2}-\frac{1}{2(\tau+1)}+\varepsilon}, \quad(*) \\
& \text { where } \tau=\frac{2}{(1-d)^{2}}-2
\end{aligned}
$$

- but for $\Omega=[0,2 \pi)$,

$$
D_{\Omega}(N) \lesssim N^{1 / 4} \log ^{1 / 2} N
$$

Directional Discrepancy

- Ω has upper Minkowski dimension $0 \leq d<1$

$$
\begin{equation*}
D_{\Omega}(N) \lesssim N^{\frac{1}{2}-\frac{1}{2(\tau+1)}+\varepsilon}, \tag{*}
\end{equation*}
$$

where $\tau=\frac{2}{(1-d)^{2}}-2$.

- but for $\Omega=[0,2 \pi)$,

$$
D_{\Omega}(N) \lesssim N^{1 / 4} \log ^{1 / 2} N
$$

- So $(*)$ is interesting only for $\frac{1}{2}-\frac{1}{2(\tau+1)}<\frac{1}{4}$, i.e. $\tau<1$,

$$
d<1-\left(\frac{2}{3}\right)^{\frac{1}{2}} \approx 0.1835 \ldots
$$

Directional Discrepancy

- Ω has upper Minkowski dimension $0 \leq d<1$

$$
D_{\Omega}(N) \lesssim N^{\frac{1}{2}-\frac{1}{2(\tau+1)}+\varepsilon}, \text { where } \tau=\frac{2}{(1-d)^{2}}-2
$$

Directional Discrepancy

- Ω has upper Minkowski dimension $0 \leq d<1$

$$
D_{\Omega}(N) \lesssim N^{\frac{1}{2}-\frac{1}{2(\tau+1)}+\varepsilon}, \text { where } \tau=\frac{2}{(1-d)^{2}}-2
$$

- If $\tan \theta$ is of type $<q^{\tau}$ for some $\tau \geq 0$,
i.e. for all $q \in \mathbb{N}$ we have $q \cdot\|q \cdot \tan \theta\| \gtrsim 1 / q^{\tau}$ or

$$
\left|\tan \theta-\frac{p}{q}\right| \gtrsim \frac{1}{q^{2+\tau}}
$$

then \mathcal{P}_{N}^{θ} satisfies

$$
D\left(\mathcal{P}_{N}^{\theta}\right) \gtrsim N^{\frac{1}{2}-\frac{1}{2(\tau+1)}-\varepsilon}
$$

for axis-parallel rectangles.

Directional Discrepancy L^{2}

Theorem (DB, Ma, Pipher, Spencer)

Let μ be any probability measure on \mathcal{A}_{Ω}. Then

1) If Ω is a lacunary sequence, there exists $\mathcal{P} \subset[0,1]^{2}, \# \mathcal{P}=N$

$$
\left(\int_{\mathcal{A}_{\Omega}}\left|D_{\Omega}(\mathcal{P}, R)\right|^{2} d \mu(R)\right)^{\frac{1}{2}} \lesssim \log ^{\frac{5}{2}} N .
$$

2) If Ω is lacunary of order M, there exists $\mathcal{P} \subset[0,1]^{2}$, \#P $=N$

$$
\left(\int_{\mathcal{A}_{\Omega}}\left|D_{\Omega}(\mathcal{P}, R)\right|^{2} d \mu(R)\right)^{\frac{1}{2}} \lesssim \log ^{2 M+\frac{1}{2}} N .
$$

3) If Ω has upper Minkowski dimension $0 \leq d<1$, there exists \mathcal{P}

$$
\left(\int_{\mathcal{A}_{\Omega}}\left|D_{\Omega}(\mathcal{P}, R)\right|^{2} d \mu(R)\right)^{\frac{1}{2}} \lesssim N^{\frac{1}{2}-\frac{1}{2(\tau+1)}+\varepsilon}
$$

for any $\varepsilon>0$, if $\tau=\frac{2}{(1-d)^{2}}-2<1$

Directional Discrepancy L^{2}

Lemma

Let I be a finite interval of consecutive integers.

1) Assume $\tan \phi$ satisfies $\nu\|\nu \tan \phi\|>\frac{c}{\log ^{2 M} \nu}$, for all $\nu \in \mathbb{N}$. Then

$$
\sum_{\nu=1}^{\infty} \frac{1}{\nu^{2}}\left|\sum_{n \in I} e^{-2 \pi i \nu n \tan \phi}\right|^{2} \lesssim \log ^{4 M+1}|I|
$$

2) Assume $\tan \phi$ satisfies $\nu\|\nu \tan \phi\|>c \nu^{-\tau+\varepsilon}$, for all $\varepsilon>0$, where $0 \leq \tau<1$. Then

$$
\sum_{\nu=1}^{\infty} \frac{1}{\nu^{2}}\left|\sum_{n \in I} e^{-2 \pi i \nu n \tan \phi}\right|^{2} \lesssim|I|^{\frac{2 \tau}{\tau+1}+\varepsilon^{\prime}}, \text { where } \varepsilon^{\prime}=\mathcal{O}(\varepsilon)
$$

