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Motivation

Context:

I MCMC methods construct a Markov chain of dependent
samples from a target distribution

I Different methods work better on different distributions

I Extensive tuning may be required, limiting usefulness

I Comparisons between methods in existing research are often
confusing

Goals:

I Present comparisons between MCMC methods clearly

I Minimize end-user tuning



MCMC users spend a lot of time looking at trace plots
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Figures of merit

Two (usually equivalent) ways of describing how well an MCMC
method performs on a specific distribution:

I Processor-seconds per independent observation
I invariant to chain length
I direct connection to user needs
I but, depends on test hardware and system load

I Density function evaluations per independent observation
I also invariant to chain length
I does not depend on test hardware or system load
I but, does not account for processor use by the sampler itself

But, what does “per independent observation” mean?



Correlation length/autocorrelation time, τ

I Define τ by:

τ = 1 + 2
∞∑

k=1

ρk (1)

where ρk is the ACF of {Xj} at lag k :

ρk =
cov(Xj ,Xj−k)

var(Xj)
(for all j)

I If the sum in equation 1 converges, we have the CLT:√
n/τ(X̄n − E (Xj))⇒ N

(
0, var(Xj)

)
I The sample ACF is inaccurate for large lags, so we cannot use

equation 1 to estimate τ directly.



Two ways of modeling the ACF (of a difficult example)
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IMS cutoff

I Intial monotone sequence (IMS): sum sample ACF until a
heuristic cutoff

I AR(AIC): autoregressive model with order chosen by AIC



Comparing optimally-tuned samplers

Density evaluations per independent obs. for four distributions

Γ(1.2, 1) Mixture(32) Mixture(4) log  Γ(1, 1)
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I Easy to read: ARMS appears to do well

I But, samplers are often not optimally tuned

I Narrow range of density evaluations per independent obs.



A tuning parameter plot

Performance of Metropolis on a Gaussian

scale tuning parameter
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Comparing several samplers on several distributions
Each row is a distribution, each column is a sampler, and each panel plots
evaluations per independent observation (y) vs. scale tuning parameter (x).

Metropolis ARMS Metropolis (with Trials) Slice (no stepping−out) Slice (stepping−out)
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Summary

I We can create grids of samplers and distributions plotting
log-density evaluations per independent observation against a
tuning parameter.

I Grids allow researchers to compare MCMC methods on a wide
variety of distributions and tuning parameters.

I Comparison clarifies which methods are suitable for end-users
with minimal knowledge of MCMC.



References

I C. J. Geyer, “Practical Markov Chain Monte Carlo,”
Statistical Science 7 no. 4 (1992): 473–511.

I M. Plummer, N. Best, K. Cowles, and K. Vines, “CODA:
Convergence Diagnosis and Output Analysis for MCMC,”
R News 6 no. 1 (Mar. 2006): 7–11.



Performance of AR modeling of correlation length

Correlation length CI coverage and relative error for
effective sample sizes 10 and 200 from four distributions

coverage of 95% CI median rel. error
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I When target variance is defined (i.e. excepting tν=2), nominal
95% CI for τ moderately underestimates true uncertainty

I Moderate relative errors allow broad comparisons with small
effective sample sizes


