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Background on Alternative Splicing

Gene contains EXONS and introns.

Remove introns.

Joint Exons.

Exons can be skipped too.

A single gene can produce multiple proteins.
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Why Quantify Isoforms?

Disease associated isoforms.

Gene level...

How to Count?
Microarray: noisy, design issues.
Classical Sequencing technology: slow and expensive.
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Next Generation Sequencing

Isoform fragmentation (100 - 400 bp):

Sequence one end of each fragment (36 bp).

“Reads”: subsequences of the isoform.
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Big Picture

Isoform from donor, fragment and sequence:

Obtain reads.

Align to currently known isoforms (reference)
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Alignment: Illustration (Integrative Genomic Viewer (IGV))
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Alignment: Illustration
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The Statistical Problem

Number of reads aligned to an isoform provide a measure of
abundance.

Multi-read: a read that can be aligned to multiple isoforms.

I Just by chance, repetitive sequences shared by multiple genes.
I Alternative isoforms:

I

Goal: A statistical model to resolve the ambiguity of multi-read.
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Statistical Model

Generative mechanism: T isoforms with proportion {πk}Tk=1 and
length {lk}Tk=1

ti ∼ multinomial(π1, ..., πT )

ri |ti = k ∼ P(r |ti = k)

ti is unobserved (due to multi-read), marginalize to get p(ri):

P(r = ri) =
T∑

k=1

P(r = rik |ti = k)p(ti = k) =
T∑

k=1

P(r = rik |ti = k)πk

rik is the mapped location of read i on isoform k .
P(r = rik |ti = k) = 0 if read i cannot be mapped to isoform k .
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P(rik |ti = k)

Fragmentation varies as a function of isoform length:
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Beta Regression (Ferrari & Cribari-Neto (2004))

Assume the relative read location ri follows a beta distribution.

ri |ti = k ∼ beta(µk , φk )

w.r.t. usual parametrization beta(ak ,bk ),
ak = µkφk ,bk = (1− µk )φk

E(ri |ti = k) = µk , var(ri |ti = k) = µk (1−µk )
1+φk

Link functions:
µk = logit−1(β0 + β1lk )

φk = exp(θ0 + θ1lk )

log-likelihood:

logP(ri |ti = k) = logΓ(φk )− logΓ(µkφk )− logΓ((1− µk )φk )

+ (µkφk − 1)log(ri) + {(1− µk )φk − 1}log(1− ri)
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EM-Algorithm

The expected complete data log-likelihood is:
N∑

i=1

T∑
k=1

τik logP(rik |ti = k) +
N∑

i=1

T∑
k=1

τik logπk

Where τik = P(ti = k |rik )

E-Step:

τik
.

= P(ti = k |rik ) =
P(rik |ti = k)πk∑T

k ′=1 P(rik ′ |ti = k ′)πk ′

M-Step

πnew
k =

∑N
i=1 τik

N
For beta regression, solve the weighted beta regression problem:

argmax
β0,1,θ0,1

N∑
i=1

T∑
k=1

τik logP(ri |ti = k)
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Simulation

500,000 reads, 36 bp.

3437 isoforms from the 150 genes with the highest number of
isoforms (28-68) from the Ensembl database.
µ(length) = Φ−1( length−500

5000 )

φ(length) = 4Φ−1( length−500
5000 )

Most isoforms have small sample proportions (πk ∼ 10−5), some
larger (∼ 0.001).
Recall:

ti ∼ multinomial(π1, ..., πT )

ri |ti = k ∼ beta(µk , φk )

Beta regression: natural cubic splines expansion on log(length), 4
equally spaced knots.
Bowtie (Langmead (2009)) for read alignment. Reads with > 200
mappable locations are discarded. Obtain ∼ 15,000,000
alignments.
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Simulation Results
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Fitted Model
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Final Thoughts

Fragmentation estimations improves isoform abundances
estimation accuracies.

Computational aspects:

I E-step and updates for πk : sparse matrix manipulation.
I Beta regression: slow.
I Trick: ECM algorithm.

Future work: read errors, GC-content bias.
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