RNA-Seq: Isoforms Quantification and the Mixture of Beta Regression

Billy Chang, Rafal Kustra, Quaid Morris

Graduate Student Research Day
April 29, 2010

Background on Alternative Splicing

- Gene contains EXONS and introns.

intron EXON2 intron

Background on Alternative Splicing

- Gene contains EXONS and introns.

intron EXON2 intron

- Remove introns.
in En EXON2 insn

Background on Alternative Splicing

- Gene contains EXONS and introns.

intron EXON2 intron

- Remove introns.

- Joint Exons.

> EXON2

Isoform A

Background on Alternative Splicing

- Gene contains EXONS and introns.

intron EXON2 intron

- Remove introns.

- Joint Exons.

EXON2
Isoform A

- Exons can be skipped too.

EXON2	Isoform B
EXON2 EXON3	Isoform C
EXON3	Isoform D

Background on Alternative Splicing

- Gene contains EXONS and introns.

intron EXON2 intron

- Remove introns.

- Joint Exons.
EXON2

Isoform A

- Exons can be skipped too.

EXON2	Isoform B
EXON2 EXON3	Isoform C
EXON3	Isoform D

- A single gene can produce multiple proteins.

Why Quantify Isoforms?

- Disease associated isoforms.

Why Quantify Isoforms?

- Disease associated isoforms.

- Gene level...

Why Quantify Isoforms?

- Disease associated isoforms.

- Gene level...

- How to Count?

Why Quantify Isoforms?

- Disease associated isoforms.

- Gene level...

- How to Count?
- Microarray: noisy, design issues.

Why Quantify Isoforms?

- Disease associated isoforms.

- Gene level...

- How to Count?
- Microarray: noisy, design issues.
- Classical Sequencing technology: slow and expensive.

Next Generation Sequencing

Next Generation Sequencing

- Isoform fragmentation (100-400 bp):

Next Generation Sequencing

- Isoform fragmentation (100-400 bp):

- Sequence one end of each fragment (36 bp).

cgtc....tta	aatt....catg	tata $\ldots . . \mathrm{ggtt}$
cgtc...ttta	aatt....catg	tata... ggtt

Next Generation Sequencing

- Isoform fragmentation (100-400 bp):

- Sequence one end of each fragment (36 bp).

cgtc....ttta	aatt....catg	tata....ggtt
cgtc....ttta	aatt....catg	tata....ggtt

- "Reads": subsequences of the isoform.

```
aatt...catg
```

cgtc....ttta
tata....ggtt

Big Picture

- Isoform from donor, fragment and sequence: DONOR

Big Picture

- Isoform from donor, fragment and sequence:

DONOR

- Obtain reads.

Big Picture

- Isoform from donor, fragment and sequence:

DONOR

- Obtain reads.

- Align to currently known isoforms (reference)

REFERENCE

Alignment: Illustration (Integrative Genomic Viewer (IGV))

Alignment: Illustration

The Statistical Problem

- Number of reads aligned to an isoform provide a measure of abundance.

The Statistical Problem

- Number of reads aligned to an isoform provide a measure of abundance.
- Multi-read: a read that can be aligned to multiple isoforms.

The Statistical Problem

- Number of reads aligned to an isoform provide a measure of abundance.
- Multi-read: a read that can be aligned to multiple isoforms.
- Just by chance, repetitive sequences shared by multiple genes.

The Statistical Problem

- Number of reads aligned to an isoform provide a measure of abundance.
- Multi-read: a read that can be aligned to multiple isoforms.
- Just by chance, repetitive sequences shared by multiple genes.
- Alternative isoforms:

The Statistical Problem

- Number of reads aligned to an isoform provide a measure of abundance.
- Multi-read: a read that can be aligned to multiple isoforms.
- Just by chance, repetitive sequences shared by multiple genes.
- Alternative isoforms:

EXON2 EXON3	Isoform A
EXON2	Isoform B
\square	EXON2 EXON3
- Isoform C	

The Statistical Problem

- Number of reads aligned to an isoform provide a measure of abundance.
- Multi-read: a read that can be aligned to multiple isoforms.
- Just by chance, repetitive sequences shared by multiple genes.
- Alternative isoforms:

- Goal: A statistical model to resolve the ambiguity of multi-read.

Statistical Model

- Generative mechanism: T isoforms with proportion $\left\{\pi_{k}\right\}_{k=1}^{T}$ and length $\left\{I_{k}\right\}_{k=1}^{T}$

$$
\begin{gathered}
t_{i} \sim \operatorname{multinomial}\left(\pi_{1}, \ldots, \pi_{T}\right) \\
r_{i} \mid t_{i}=k \sim P\left(r \mid t_{i}=k\right)
\end{gathered}
$$

$\mathrm{r}_{\mathrm{i}}=0.5$

Statistical Model

- Generative mechanism: T isoforms with proportion $\left\{\pi_{k}\right\}_{k=1}^{T}$ and length $\left\{l_{k}\right\}_{k=1}^{T}$

$$
\begin{gathered}
t_{i} \sim \text { multinomial }\left(\pi_{1}, \ldots, \pi_{T}\right) \\
r_{i} \mid t_{i}=k \sim P\left(r \mid t_{i}=k\right)
\end{gathered}
$$

$$
\mathrm{r}_{\mathrm{i}}=0.5
$$

- t_{i} is unobserved (due to multi-read), marginalize to get $p\left(r_{i}\right)$:

$$
P\left(r=r_{i}\right)=\sum_{k=1}^{T} P\left(r=r_{i k} \mid t_{i}=k\right) p\left(t_{i}=k\right)=\sum_{k=1}^{T} P\left(r=r_{i k} \mid t_{i}=k\right) \pi_{k}
$$

$r_{i k}$ is the mapped location of read i on isoform k.

Statistical Model

- Generative mechanism: T isoforms with proportion $\left\{\pi_{k}\right\}_{k=1}^{T}$ and length $\left\{l_{k}\right\}_{k=1}^{T}$

$$
\begin{gathered}
t_{i} \sim \text { multinomial }\left(\pi_{1}, \ldots, \pi_{T}\right) \\
r_{i} \mid t_{i}=k \sim P\left(r \mid t_{i}=k\right)
\end{gathered}
$$

$$
\mathrm{r}_{\mathrm{i}}=0.5
$$

- t_{i} is unobserved (due to multi-read), marginalize to get $p\left(r_{i}\right)$:

$$
P\left(r=r_{i}\right)=\sum_{k=1}^{T} P\left(r=r_{i k} \mid t_{i}=k\right) p\left(t_{i}=k\right)=\sum_{k=1}^{T} P\left(r=r_{i k} \mid t_{i}=k\right) \pi_{k}
$$

$r_{i k}$ is the mapped location of read i on isoform k.

- $P\left(r=r_{i k} \mid t_{i}=k\right)=0$ if read i cannot be mapped to isoform k.

$P\left(r_{i k} \mid t_{i}=k\right)$

- Fragmentation varies as a function of isoform length:

$P\left(r_{i k} \mid t_{i}=k\right)$

- Fragmentation varies as a function of isoform length:

$P\left(r_{i k} \mid t_{i}=k\right)$

- Fragmentation varies as a function of isoform length:

Billy Chang ()
RNA-Seq
Aor 29, 2010
$10 / 17$

Beta Regression (Ferrari \& Cribari-Neto (2004))

- Assume the relative read location r_{i} follows a beta distribution.

$$
r_{i} \mid t_{i}=k \sim \operatorname{beta}\left(\mu_{k}, \phi_{k}\right)
$$

Beta Regression (Ferrari \& Cribari-Neto (2004))

- Assume the relative read location r_{i} follows a beta distribution.

$$
r_{i} \mid t_{i}=k \sim \operatorname{beta}\left(\mu_{k}, \phi_{k}\right)
$$

- w.r.t. usual parametrization beta $\left(a_{k}, b_{k}\right)$,

$$
a_{k}=\mu_{k} \phi_{k}, b_{k}=\left(1-\mu_{k}\right) \phi_{k}
$$

Beta Regression (Ferrari \& Cribari-Neto (2004))

- Assume the relative read location r_{i} follows a beta distribution.

$$
r_{i} \mid t_{i}=k \sim \operatorname{beta}\left(\mu_{k}, \phi_{k}\right)
$$

- w.r.t. usual parametrization beta $\left(a_{k}, b_{k}\right)$,

$$
a_{k}=\mu_{k} \phi_{k}, b_{k}=\left(1-\mu_{k}\right) \phi_{k}
$$

- $E\left(r_{i} \mid t_{i}=k\right)=\mu_{k}, \operatorname{var}\left(r_{i} \mid t_{i}=k\right)=\frac{\mu_{k}\left(1-\mu_{k}\right)}{1+\phi_{k}}$

Beta Regression (Ferrari \& Cribari-Neto (2004))

- Assume the relative read location r_{i} follows a beta distribution.

$$
r_{i} \mid t_{i}=k \sim \operatorname{beta}\left(\mu_{k}, \phi_{k}\right)
$$

- w.r.t. usual parametrization $\operatorname{beta}\left(a_{k}, b_{k}\right)$,

$$
a_{k}=\mu_{k} \phi_{k}, b_{k}=\left(1-\mu_{k}\right) \phi_{k}
$$

- $E\left(r_{i} \mid t_{i}=k\right)=\mu_{k}, \operatorname{var}\left(r_{i} \mid t_{i}=k\right)=\frac{\mu_{k}\left(1-\mu_{k}\right)}{1+\phi_{k}}$
- Link functions:

$$
\begin{gathered}
\mu_{k}=\operatorname{logit}^{-1}\left(\beta_{0}+\beta_{1} I_{k}\right) \\
\phi_{k}=\exp \left(\theta_{0}+\theta_{1} I_{k}\right)
\end{gathered}
$$

Beta Regression (Ferrari \& Cribari-Neto (2004))

- Assume the relative read location r_{i} follows a beta distribution.

$$
r_{i} \mid t_{i}=k \sim \operatorname{beta}\left(\mu_{k}, \phi_{k}\right)
$$

- w.r.t. usual parametrization beta $\left(a_{k}, b_{k}\right)$,

$$
a_{k}=\mu_{k} \phi_{k}, b_{k}=\left(1-\mu_{k}\right) \phi_{k}
$$

- $E\left(r_{i} \mid t_{i}=k\right)=\mu_{k}, \operatorname{var}\left(r_{i} \mid t_{i}=k\right)=\frac{\mu_{k}\left(1-\mu_{k}\right)}{1+\phi_{k}}$
- Link functions:

$$
\begin{gathered}
\mu_{k}=\operatorname{logit}^{-1}\left(\beta_{0}+\beta_{1} I_{k}\right) \\
\phi_{k}=\exp \left(\theta_{0}+\theta_{1} I_{k}\right)
\end{gathered}
$$

- log-likelihood:

$$
\begin{aligned}
\log P\left(r_{i} \mid t_{i}=k\right) & =\log \Gamma\left(\phi_{k}\right)-\log \Gamma\left(\mu_{k} \phi_{k}\right)-\log \Gamma\left(\left(1-\mu_{k}\right) \phi_{k}\right) \\
& +\left(\mu_{k} \phi_{k}-1\right) \log \left(r_{i}\right)+\left\{\left(1-\mu_{k}\right) \phi_{k}-1\right\} \log \left(1-r_{i}\right)
\end{aligned}
$$

EM-Algorithm

- The expected complete data log-likelihood is:

$$
\sum_{i=1}^{N} \sum_{k=1}^{T} \tau_{i k} \log P\left(r_{i k} \mid t_{i}=k\right)+\sum_{i=1}^{N} \sum_{k=1}^{T} \tau_{i k} \log \pi_{k}
$$

Where $\tau_{i k}=P\left(t_{i}=k \mid r_{i k}\right)$

EM-Algorithm

- The expected complete data log-likelihood is:

$$
\sum_{i=1}^{N} \sum_{k=1}^{T} \tau_{i k} \log P\left(r_{i k} \mid t_{i}=k\right)+\sum_{i=1}^{N} \sum_{k=1}^{T} \tau_{i k} \log \pi_{k}
$$

Where $\tau_{i k}=P\left(t_{i}=k \mid r_{i k}\right)$

- E-Step:

$$
\tau_{i k} \doteq P\left(t_{i}=k \mid r_{i k}\right)=\frac{P\left(r_{i k} \mid t_{i}=k\right) \pi_{k}}{\sum_{k^{\prime}=1}^{T} P\left(r_{i k^{\prime}} \mid t_{i}=k^{\prime}\right) \pi_{k^{\prime}}}
$$

EM-Algorithm

- The expected complete data log-likelihood is:

$$
\sum_{i=1}^{N} \sum_{k=1}^{T} \tau_{i k} \log P\left(r_{i k} \mid t_{i}=k\right)+\sum_{i=1}^{N} \sum_{k=1}^{T} \tau_{i k} \log \pi_{k}
$$

Where $\tau_{i k}=P\left(t_{i}=k \mid r_{i k}\right)$

- E-Step:

$$
\tau_{i k} \doteq P\left(t_{i}=k \mid r_{i k}\right)=\frac{P\left(r_{i k} \mid t_{i}=k\right) \pi_{k}}{\sum_{k^{\prime}=1}^{T} P\left(r_{i k^{\prime}} \mid t_{i}=k^{\prime}\right) \pi_{k^{\prime}}}
$$

- M-Step

$$
\pi_{k}^{\text {new }}=\frac{\sum_{i=1}^{N} \tau_{i k}}{N}
$$

EM-Algorithm

- The expected complete data log-likelihood is:

$$
\sum_{i=1}^{N} \sum_{k=1}^{T} \tau_{i k} \log P\left(r_{i k} \mid t_{i}=k\right)+\sum_{i=1}^{N} \sum_{k=1}^{T} \tau_{i k} \log \pi_{k}
$$

Where $\tau_{i k}=P\left(t_{i}=k \mid r_{i k}\right)$

- E-Step:

$$
\tau_{i k} \doteq P\left(t_{i}=k \mid r_{i k}\right)=\frac{P\left(r_{i k} \mid t_{i}=k\right) \pi_{k}}{\sum_{k^{\prime}=1}^{T} P\left(r_{i k^{\prime}} \mid t_{i}=k^{\prime}\right) \pi_{k^{\prime}}}
$$

- M-Step

$$
\pi_{k}^{n e w}=\frac{\sum_{i=1}^{N} \tau_{i k}}{N}
$$

- For beta regression, solve the weighted beta regression problem:

$$
\underset{\beta_{0,1}, \theta_{0,1}}{\operatorname{argmax}} \sum_{i=1}^{N} \sum_{k=1}^{T} \tau_{i k} \log P\left(r_{i} \mid t_{i}=k\right)
$$

Simulation

- 500,000 reads, 36 bp.

Simulation

- 500,000 reads, 36 bp.
- 3437 isoforms from the 150 genes with the highest number of isoforms (28-68) from the Ensembl database.

Simulation

- 500,000 reads, 36 bp.
- 3437 isoforms from the 150 genes with the highest number of isoforms (28-68) from the Ensembl database.
- $\mu($ length $)=\Phi^{-1}\left(\frac{\text { length }-500}{5000}\right)$

Simulation

- 500,000 reads, 36 bp.
- 3437 isoforms from the 150 genes with the highest number of isoforms (28-68) from the Ensembl database.
- $\mu($ length $)=\Phi^{-1}\left(\frac{\text { length }-500}{5000}\right)$
- $\phi($ length $)=4 \Phi^{-1}\left(\frac{\text { length }-500}{5000}\right)$

Simulation

- 500,000 reads, 36 bp.
- 3437 isoforms from the 150 genes with the highest number of isoforms (28-68) from the Ensembl database.
- $\mu($ length $)=\Phi^{-1}\left(\frac{\text { length }-500}{5000}\right)$
- $\phi($ length $)=4 \Phi^{-1}\left(\frac{\text { length }-500}{5000}\right)$
- Most isoforms have small sample proportions $\left(\pi_{k} \sim 10^{-5}\right)$, some larger (~ 0.001).

Simulation

- 500,000 reads, 36 bp.
- 3437 isoforms from the 150 genes with the highest number of isoforms (28-68) from the Ensembl database.
- $\mu($ length $)=\Phi^{-1}\left(\frac{\text { length }-500}{5000}\right)$
- $\phi($ length $)=4 \Phi^{-1}\left(\frac{\text { length }-500}{5000}\right)$
- Most isoforms have small sample proportions $\left(\pi_{k} \sim 10^{-5}\right)$, some larger (~0.001).
- Recall:

$$
\begin{gathered}
t_{i} \sim \operatorname{multinomial}\left(\pi_{1}, \ldots, \pi_{T}\right) \\
r_{i} \mid t_{i}=k \sim \operatorname{beta}\left(\mu_{k}, \phi_{k}\right)
\end{gathered}
$$

Simulation

- 500,000 reads, 36 bp.
- 3437 isoforms from the 150 genes with the highest number of isoforms (28-68) from the Ensembl database.
- $\mu($ length $)=\Phi^{-1}\left(\frac{\text { length }-500}{5000}\right)$
- $\phi($ length $)=4 \Phi^{-1}\left(\frac{\text { length }-500}{5000}\right)$
- Most isoforms have small sample proportions $\left(\pi_{k} \sim 10^{-5}\right)$, some larger (~0.001).
- Recall:

$$
\begin{gathered}
t_{i} \sim \operatorname{multinomial}\left(\pi_{1}, \ldots, \pi_{T}\right) \\
r_{i} \mid t_{i}=k \sim \operatorname{beta}\left(\mu_{k}, \phi_{k}\right)
\end{gathered}
$$

- Beta regression: natural cubic splines expansion on log(length), 4 equally spaced knots.

Simulation

- 500,000 reads, 36 bp.
- 3437 isoforms from the 150 genes with the highest number of isoforms (28-68) from the Ensembl database.
- $\mu($ length $)=\phi^{-1}\left(\frac{\text { length }-500}{5000}\right)$
- $\phi($ length $)=4 \Phi^{-1}\left(\frac{\text { length }-500}{5000}\right)$
- Most isoforms have small sample proportions ($\pi_{k} \sim 10^{-5}$), some larger (~ 0.001).
- Recall:

$$
\begin{gathered}
t_{i} \sim \operatorname{multinomial}\left(\pi_{1}, \ldots, \pi_{T}\right) \\
r_{i} \mid t_{i}=k \sim \operatorname{beta}\left(\mu_{k}, \phi_{k}\right)
\end{gathered}
$$

- Beta regression: natural cubic splines expansion on log(length), 4 equally spaced knots.
- Bowtie (Langmead (2009)) for read alignment. Reads with > 200 mappable locations are discarded. Obtain $\sim 15,000,000$ alignments.

Simulation Results

With Fragmentation Estimation

Uniform Fragmentation

(14 estimated abundances >0.002)

Fitted Model

Final Thoughts

- Fragmentation estimations improves isoform abundances estimation accuracies.

Final Thoughts

- Fragmentation estimations improves isoform abundances estimation accuracies.
- Computational aspects:

Final Thoughts

- Fragmentation estimations improves isoform abundances estimation accuracies.
- Computational aspects:
- E-step and updates for π_{k} : sparse matrix manipulation.

Final Thoughts

- Fragmentation estimations improves isoform abundances estimation accuracies.
- Computational aspects:
- E-step and updates for π_{k} : sparse matrix manipulation.
- Beta regression: slow.

Final Thoughts

- Fragmentation estimations improves isoform abundances estimation accuracies.
- Computational aspects:
- E-step and updates for π_{k} : sparse matrix manipulation.
- Beta regression: slow.
- Trick: ECM algorithm.

Final Thoughts

- Fragmentation estimations improves isoform abundances estimation accuracies.
- Computational aspects:
- E-step and updates for π_{k} : sparse matrix manipulation.
- Beta regression: slow.
- Trick: ECM algorithm.
- Future work: read errors, GC-content bias.

Reference

- Ferrari, S, \& Cribari-Neto, F. (2004) Beta Regression for Modelling Rates and Proportions. Journal of Applied Statistics, 31(7):199-815

Reference

- Ferrari, S, \& Cribari-Neto, F. (2004) Beta Regression for Modelling Rates and Proportions. Journal of Applied Statistics, 31(7):199-815
- Langmead B, Trapnell C, Pop M, Salzberg SL.(2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25.

Reference

- Ferrari, S, \& Cribari-Neto, F. (2004) Beta Regression for Modelling Rates and Proportions. Journal of Applied Statistics, 31(7):199-815
- Langmead B, Trapnell C, Pop M, Salzberg SL.(2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25.
- IGV: Integrative Genomics Viewer.
http://www.broadinstitute.org/igv/

Reference

- Ferrari, S, \& Cribari-Neto, F. (2004) Beta Regression for Modelling Rates and Proportions. Journal of Applied Statistics, 31(7):199-815
- Langmead B, Trapnell C, Pop M, Salzberg SL.(2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25.
- IGV: Integrative Genomics Viewer.

```
http://www.broadinstitute.org/igv/
```

- Li, B. et. al. (2010) RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics, 26(4):493-500.

