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The Problem

e We assume that the population of interest is heterogenous, or it
can be represented as a non-standard density. The posterior
distribution can be multimodal.

e MCMC sampling from multimodal distributions can be extremely
difficult as the chain can get trapped in one mode due to low
probability regions between the modes.

Some approaches:

e Gelman and Rubin (1992); Geyer and Thompson (1995); Neal
(1996); Richardson and Green (1997); Kou et al. (2006).

e One possible approach is to approximate the multimodal posterior
distribution with a mixture of Gaussians in West (1993) who shows
that such an approximation may be useful for computation even if
the posterior is skewed and not necessarily multimodal.

o Adaptive MCMC algorithms based on the same natural approach
have been developed by Giordani and Kohn (2006), Andrieu and
Thoms (2008) and Craiu et al. (2009).
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Regional AdaPTive Sampler (RAPT) in Craiu et al. (2009)

e Assume that one has reasonable knowledge about regions where
different sampling regions are needed.

e One could use sophisticated methods to detect the modes of a
multimodal distribution (see Sminchisescu and Triggs (2001), Neal
(2001)), but it is not clear how to use such techniques for defining
the desired partition of the sample sample.

e Simply, assume the sample space S = S1 U Sz. RAPT's proposal
Q(/)(X,,7 )= Z /\fj)Q;(Xn, Y for j=1,2,
i=1

where Q; and the mixture weights )\Ej) are adapted.

e The regions remain unchanged.
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Regional Adaptive with Online Recursion (RAPTOR)

e We consider a different framework allowing the regions to evolve as
the simulation proceeds.

o The regional adaptive random walk Metropolis algorithm proposed
here relies on the approximation of the target distribution 7 with a
mixture of Gaussians.

e The partition of the sample space used for RAPTOR is defined
based on the mixture parameters which are updated using the
simulated samples.

e The algorithm 7 in Andrieu and Thoms (2008) differs from
RAPTOR in a few important aspects.
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RAPTOR - Recursive Adaptation

o Assume that 7 has K modes in the sample space S C RY.
Consider its approximation by the mixture model

& (x ZBU)Nd X M ):0 ): (1)

Jj=1

where Z]K:]_ BY =1 and Ng(x, p, L) is the probability density of a
d-variate Gaussian distribution with mean p and covariance matrix
3.

e We are facing an online setting in which the parameters need to be
updated each time new data are added to the sample.

e Suppose that at time n — 1 the current parameter estimates are

Nn—1 = {ﬁn l,un I,Z(,f 1} and the available samples are
1<j<k
{X()7X17 e ,Xn—l}-
e We define the mixture indicator Z, such that given xj,
P(Zy = | Xnyma-1) = A
G _ /BgllNd(Xmﬂn 172g)1)

)= - — V1<i<nl<j<K. (2)
Z,K:l ﬁrgllNd(Xnaunlthyll)
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e The recursive estimator 7, = {ﬁ,, s Mn ,Z(J)}
1<j<K
ﬂ(j) 1 zn: 0 RAPTOR
G — — V.
n+1 — !

1D = p )+ oD (x0 — 1)),

29 =59, + o0 (1= 1) 0 — 1) 00 — )T — £,
(3)

(0]
where 'yw Z”io 57 and pn is a non-increasing positive sequence.
e Sample Mean and Sample Covariance: given {xp, X1, ,Xn}
1
<w> _ o <w> <w>
Hn = Hn—1 +n+1(” I’Lﬂl)7

£ =2 oy (0 e — i) — )T - 5 ).
®)
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e Suppose that the K-partition of the sample space
N={s® 8@ ... 8" satisfying S =SV USSP U...uSK
and SO NSY =@ for i #j.

e Denote the projection of 7 on the set A by
ma(x) = w(x)la(x)/ [, 7(y)dy. We try to find an “optimal”
estimator of K-partition minimizing

RAPTOR

) 0]
D% )KL(TS(’)’ Na )‘

where Ni (x) = Ng(x, ), DY (defined in Eq. (1)) and the
Kullback Leibler d|vergence KL(f,g) = [ log(f(x)/g(x))f(x)dx

e With this aim, we define

SV = {x €S:arg made(X pt 0y _J} (5)



RAPTOR - Definition of Regions

A mixture normal distribution
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RAPTOR - Definition of the Proposal Distribution

e At each time n, the sample {xo, x1,- -, Xn} is obtained, the
corresponding parameter estimators {ug), PRL j=12,--- K},
U=, L= are computed. The recursive estimates can
determine the recursive region partition {S(l),8(2), e ,S(K)}.

o Propose the value y,i1 from the Proposal distribution

K
Qn(xn, dy) =(1 — ) Z Ty (Xa) Na(y; Xn, sdig))dy—i—
j=1

aNg(y; xn, saZ5"” ) dy,

where sy =2.382/d, 9 =59 4 ely, 5 = 5> +ely, and
a=1/3.

e Accept or reject ypi1 for xp+1 according to Metropolis acceptance

; m(y)a(y,x)
rate min(1, Z25725)-

e Compute the recursive parameter estimators indexed by n + 1.
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(A1): There is a compact set S C R? such that the target density 7 is
continuous on &S, positive on the interior of S, and zero outside of S.
(A2): The sequence {pj : j > 1} is positive and non-increasing.

(A3): Forall k=1,2,--- K,

Theoretical Results

/
. K
P(limsup SL>JF’) E piy; =0)=1.

i— 00 1 .
21 =i

Theorem

a) Assuming (A1-2), the RAPTOR algorithm is ergodic to 7.

b) Assuming (A2-3), the adaptive parameters ud

probability for any j € {1,2,--- ,K}.

, ):S,J converge in



A Fish-Bone-Shaped Distribution

A fish-bone shaped mixed Gaussian distribution
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A Square-Shaped Distribution

Sample generated by RAPTOR
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o The efficiency of RAPT algorithm is strongly dependent on the
decomposition of the state space. If a good decomposition is
chosen, the algorithm can perform very well.

e The recursive region study provides a simple way to solve the
problem how to decompose the state space for RAPT. But, it takes
more time on the computation as the number of modes is large.

e The performance of both algorithms also depends on the pattern of
the target distribution.

Summary

e Using the mixing parameters {Aj(.i) 11 <i,j < K} for the local
adaptive sampler for RAPTOR, it performs better where

(1)
i : K (i) .
;{1 dl(/‘) if > d” >0

AD(n) = (6)

otherwise

Nh—nM

with clj.(i)(n) is the average square jump distance up to iteration n
computed every time the accepted proposal was generated from jth
regional proposal and the current state of the chain was in S;.
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