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GE - an exchange-economy model
1. Primitives:

1.1 Commodity space: RC+, C 2 N,
1.2 Agents (households, consumers):

i = 1; : : : ; I, I 2 N,
1.2.1 a preference relation �i,
1.2.2 an initial endowment ei 2 RC++,

2. Price systems: p 2 PC , where
PC = fp 2 RC+ : jpjL1 = 1g.

3. Budgets:

B
i(p) = fx 2 RC+ : p � x � p � eig;

4. Demand correspondences:
(assumed to be functions)

�i(p) = fx 2 RC+ : y �i
x;

8 y 2 B
i(p)g;

5. p� 2 PC is an equilibrium price if

IX
i=1

�i(p�) = 0:
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History + results

Some history
Walras (1874), Debreu (1970,1972), E. Dierker
(1972), H. Dierker (1974), Smale (1974), Balasco
(1976, 1988)

Classical results

1. Under minimal regularity assumptions, an
equilibrium p� always exists.

2. In general, the set of all equilibria is not even
countable.

3. Generically (over all economies, appropriately
parametrized by a subset of Rn), the set of
equilibria is finite.

4. Every equilibrium allocation is Pareto optimal.
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The GEI model

Incompleteness

1. A budget set of the form Bi(p) = fx 2 RC+ : p � x � p � eig implies that

“If it’s affordable, it’s available.”

2. When transfer of the “consumption good” is possible only through a system of
markets, not every transaction is implementable in general.

3. The generalization of the GE model - called the GEI model - deals with this case.

Literature cross-section
Diamond (1967), Radner (1972), Hart (1975), Grossman (1975), Cass (1984,1985),
Geanakoplos and Polemarchakis (1986), Duffie (1987)

Results

1. Equilibria exist only generically,

2. Generic local uniqueness may fail,

3. Equilibrium allocations are generically not Pareto optimal.
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The stochastic model

Information
A filtered probability space (
;F ; fFtgt2[0;T ];P) (where P is used only to fix the family
of negligible sets).

Agents
I 2 N agents, each of which is characterized by

1. a random endowment Ei 2 FT ,

2. a utility function U : Dom(U)! R, (Dom(U) = R or Dom(U) = (0;1))

3. a subjective probability measure Pi � P.

(Note: 2: and 3: define the preference relation �i by

X �i
Y , E

P
i

[U i(X)] � E
P
i

[U i(Y )];

in the manner of Alt, von Neumann and Morgenstern.)

Completeness constraints
A set S of fFtgt2[0;T ]-semimartingales (possibly several-dimensional): the allowed
asset-price dynamics.
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The equilibrium problem

(For simplicity, assume that a numéraire asset fBtgt2[0;T ], with Bt � 1, always exists.)

Problem
Does there exist S 2 S such thatX

i2I

�̂
i
t(S) = 0; for all t 2 [0; T ], a.s,

where �̂i(S) = argmax�2Adm E
P
i

[U i(Ei +
R T
0
�u dSu)] denotes the optimal trading

strategy for the agent i when the market dynamics is given by S, and Adm is an
appropriate admissibility set.

Problem
If such an S exists, is it unique?

Problem
If such an S exists, can we do better then just prove existence, i.e., can we characterize
it analytically or numerically?

Problem
It such an S exists and is unique, is it stable with respect to perturbations in the
problem primitives?
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Examples of Completeness Constraints

1. Unconstrained case. S contains all fFtgt2[0;T ]-semimartingales.

2. Constraints on the number of assets. S is the set of all d-dimensional
fFtgt2[0;T ]-semimartingales. If d < n, where n is the spanning number of the
filtration, no complete markets are allowed.

3. Information-constrained markets. Let fGtgt2[0;T ] be a sub-filtration of fFtgt2[0;T ],
and let S be the class of all fGtgt2[0;T ]-semimartingales.

4. Partial-equilibrium models. Let fSLt gt2[0;T ] be a d-dimensional semimartingale. S
is some sub-collection of the set of all m-dimensional fFtgt2[0;T ]-semimartingales
such that its first d < m components coincide with SL. We ask for market
clearing only for the last m� d components.

5. Dividend-paying assets. Let S denote the set of all semimartingales fStgt2[0;T ]
with ST = D, for some D 2 FT .

6. “Marketed-Set Constrained” markets Let V be a subspace of L0(FT ), and let S be
the collection of all finite dimensional semimartingales fStgt2[0;T ] such that

fx+

Z T

0

�t dSt : x 2 R; � 2 Admg = V:
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Examples of Completeness Constraints

7. Markets with “fast-and-slow” information. Let fFtgt2[0;T ] be generated by two
orthogonal martingales M1 and M2, and let S be the collection of all processes of
the form

St = At +M
1
t ;

where A is any predictable process of finite variation.

Examples:
I M1 = B, M2 =W , where B and W are independent Brownian motions. The

information in B is “fast”, and that in W is “slow”.
I M1 = B (Brownian motion), M2 = Nt � t (1-jump compensated Poisson process)

so that a “typical” element of S is given by

St =

Z t

0

�u du+Bt:

M2 models an unpredictable catastrophic rare event (credit event, natural disaster,
etc.)
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Analysis

Representative-agent/Direct analysis
Uses the fact that equilibrium allocations are Pareto optimal; works (essentially) only
for complete markets.

Literature in continuous time:
I Complete markets: Bank, Cvitanić, Dana, Duffie, Huang, Karatzas, Lakner,

Lehoczky, Malamud, Riedel, Shreve, Ž., etc.
I “Incomplete” markets: Basak and Cuoco ’98 (incompleteness from restrictions in

stock-market participation, logarithmic utility), Cheridito, Horst, Hugonnier,
Mueller, Munk, Pirvu, etc.

Excess-demand approach
Introduced in the early 20th century. Only recently applied in continuous time
(Anthropelos and Ž (2008, 2009), Ž (2009), Zhao and Ž (2009) )

1. Establish good topological properties of the excess demand function
S 7!

P
i
�̂i(S), and then

2. use a suitable fixed-point-type theorem to show existence (Brouwer, KKM,
degree-based, etc.)
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A partial-equilibrium pricing model (Anthropelos and Ž (2008))

Primitives

1. Information: (
;F ; fFtgt2[0;T ];P), usual conditions.

2. Agents: Ei 2 FT , i = 1; : : : ; I, U i(x) = � exp(�
ix), x 2 R, 
i > 0,
i = 1; : : : ; I, Pi = P (without loss of generality),

3. Completeness constraints: Let fSLt gt2[0;T ] be a locally bounded finite-dimensional
semimartingale (NFLVR), and let (B1; : : : Bn) 2 (L1)n be a “bundle” of
contingent claims. For p 2 R and k = 1; : : : ; n define the processes

Skt (p) =

(
p; t < T;

Bk; t = T
, and set S = f(SL; S1(p); : : : ; Sn(p)) : p 2 Rg.

Existence and uniqueness results
Let �i(p) 2 Rn denote the optimal quantity of (B1; : : : ; Bn) 2 R

n for the agent i in
the market S(p) = (SL; S1(p); : : : ; Sn(p)). Then,

1. �i is the Legendre transform of the (buyer’s, conditional) indifference price of
(B1; : : : ; Bn).

2. There exists a unique equilibrium S = S(p�) 2 S and p� can be characterized as a
minimum of a functional involving conditional indifference prices.
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2. There exists a unique equilibrium S = S(p�) 2 S and p� can be characterized as a
minimum of a functional involving conditional indifference prices.



A partial-equilibrium pricing model (Anthropelos and Ž (2009))

A question of stability

1. Let’s generalize the exponential-utility assumption: each agent uses a convex
measure of risk �i with the acceptance set Ai = fX 2 L1(FT ) : �i(X) � 0g.

2. The results about existence and uniqueness of the equilibrium still hold.

3. Question: is the equilibrium stable? Would it change dramatically if we replaced �i

by a “nearby” �̂i, i = 1; : : : ; I?

Kuratowski convergence
A sequence fCngn2N of closed subsets of Rd converges to C � R

d in the Kuratowski
sense - denoted by Cn

K
�! C - if

Ls Cn � C � Li Cn; (1)

Li Cn = fc 2 Rd : c = lim ck; ck 2 Ck; eventuallyg

Ls Cn = fc 2 Rd : c = lim ck; ck 2 Ck; infinitely ofteng:
(2)

A good first-order intuition for regular-enough fCngn2N: sets converge in the
Kuratowski sense if their “boundaries converge pointwise”.
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A partial-equilibrium pricing model (Anthropelos and Ž (2009)) II

A stability result

1. For an acceptance set A, define its B-projection by

A(B) =
n
(m;�1; : : : ; �n) 2 R

n+1 :

9� 2 Adm; m+ �1B1 + � � �+ �Bn +
R T
0
�u dS

L
u 2 A

o
:

2. Let (A1
n; : : : ;A

I
n) be a sequence of I-tuples of acceptance sets such that for

i = 1; : : : ; I, we have

2.1 Ain(B)
K
�! Ai(B), and

2.2 the sets fAin(B)gn2N are uniformly strictly convex.
2.3 a number of smaller, “non-triviality”, assumptions,

Then pn ! p, where pn is the unique equilibrium price for the setup with agent
primitives (A1

n; : : : ;A
I
n), and p is the unique equilibrium price for (A1; : : : ;AI)

3. Example: If all agents are exponential-utility maximizers, the condition

in ! 
i > 0, i = 1; : : : ; I, will do.

4. Example: if the acceptance sets/risk measures are utility-based, then it is
(essentially) enough that Pin ! P

i in total variation, U i
n ! U i pointwise and

xin ! xi for the required Kuratowski convergence + uniform strict convexity.
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A fast-and slow model (Ž (2009))

Primitives

1. Information: (
;F ; fFB;N
t gt2[0;T ];P), where fBtgt2[0;T ] is a Brownian motion

and fNtgt2[0;T ] is a Poisson process with intensity � stopped after the first jump.

2. Agents: Ei = gi(BT ; NT ), U i(x) = � exp(�
ix), 
i > 0, Pi = P

3. Completeness constraints: We let S be the collection of all processes of the form
St = Au +Bt, where A ranges through the class of all fFN;B

t gt2[0;T ]-predictable
FV processes.

An executive decision
Restrict your search to only those D which admit the representation of the form

At =

Z t

0

�(u;Bu; Nu�) du+Bt;

where � : [0; T ]� R� f0; 1g ! R belongs to the (anisotropic) Hölder space

C
�
�
[0; T ]� R� f0; 1g

�
:

(Note: C� can be viewed as a parameter space for a convenient parametrization of the (subset
of) the completeness constraint S.)
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A fast-and slow model (Ž (2009)) - the analysis

Step I
Express the agent i’s optimal portfolio (we drop i from the notation) in the form

�̂t(�) =
1


�(t; Bt; Nt�)� ux(t; Bt; Nt�);

where u solves the semi-linear system of two interacting PDEs8<
: 0 = ut +

1
2
uxx � �ux +

1
2

�
2 � �




�
exp(�
un)� 1

�
u(T; �; �) = g:

where un(t; x; 0) = u(t; x; 1)� u(t; x; 0), un(t; x; 1) = 0.

Step II
Write the market-clearing condition 0 =

PI

i=1
�̂it(�) in the form F (�) = �, where

F (�) = �


IX
i=1

u
i
x(�); and

1

�

=

IX
i=1

1


i
:
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A fast-and slow model (Ž (2009)) - the analysis II

Step III
Show that the mapping

� 7! u
i
x(�)

is Lipschitz in C� (use Schauder theory and Hölder interpolation).

(If you are curious, here is a (crude) estimate

L(R) = C T
1+�
2+� exp

�
exp

�
2 + 2
ijjgijj0 + TR

2 + 2�T
��
�

�
�
jjgijj2+� + (1 + T )(1 +R

2)
�6+4�

:

of the Lipschitz constant.)

Step IV
Pick T small enough and apply the Banach fixed-point theorem to the function F .

Conjecture: small T is not needed (use of a properly weighted Hölder space)

Bonus
The fact that the Banach fixed-point theorem applies allows for efficient computation
algorithms to be used.
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Another fast-and slow model (Zhao and Ž (2009))

Primitives

1. Information: (
;F ; fFB;W
t gt2[0;T ];P), where fBtgt2[0;T ] and fWtgt2[0;T ] are

independent Brownian motions

2. Agents: Ei = gi(BT ;WT ), U i(x) = � exp(�
ix), 
i > 0, Pi = P

3. Completeness constraints: We let S be the collection of all processes of the form
St = Au +Bt, where A ranges through the class of all fFB;W

t gt2[0;T ]-predictable
FV processes.

An executive decision
Restrict your search to only those A which admit the representation of the form

At =

Z t

0

�(u;Bu;Wu) du+Bt;

where � : [0; T ]� R
2 ! R belongs to the (anisotropic) Hölder space

C
�([0; T ]� R

2):
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Another fast-and slow model (Zhao and Ž (2009)) - Analysis

A parabolic system
It can be shown that � 2 C� is an equilibrium market-price-of-risk if and only if
� = �


PI

i=1
uix, where (u1; : : : ; uI) solves the following quasilinear parabolic system of

I equations:(
uit +

1
2
�ui + �
uix

�PI

k=1
ukx

�
+ �
2

2
i

�PI

k=1
ukx

�2
� 
i

2

�
uiy

�2
= 0;

ui(T; x; y) = gi(x; y);

Existence and uniqueness
A delicate analysis based on the use of Schauder’s fixed-point theorem on an appropriately-
tuned domain yields existence. Uniqueness follows from classical energy estimates.

Backward SDEs
Once can rephrase the above in the language of BSDE: we obtain a coupled system of
nonlinear BSDEs with quadratic growth. Existence can be obtained in fair generality.
General uniqueness is still unavailable.
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