INCOMPLETE-MARKET EQUILIBRIA WITH EXPONENTIAL UTILITIES

Gordan Žitković

Department of Mathematics University of Texas at Austin

Fields Institure, January, 2010

GE - AN EXCHANGE-ECONOMY MODEL

1. Primitives:

- 1.1 Commodity space: \mathbb{R}^{C}_{+} , $C \in \mathbb{N}$,
- 1.2 Agents (households, consumers): $i = 1, \dots, I, I \in \mathbb{N},$
 - 1.2.1 a preference relation \leq^{i}_{i} , 1.2.2 an initial endowment $e^{i} \in \mathbb{R}^{C}_{++}$,
- 2. Price systems: $p \in P^C$, where $P^C = \{p \in \mathbb{R}^C_+ : |p|_{L^1} = 1\}.$
- 3. Budgets:

$$B^i(p)=\{x\in \mathbb{R}^C_+\,:\,p\cdot x\leq p\cdot e^i\},$$

4. Demand correspondences: (assumed to be functions)

$$egin{aligned} & \Delta^i(p) = \{x \in \mathbb{R}^C_+ \, : \, y \preceq^i x, \ & orall \, y \in B^i(p) \}, \end{aligned}$$

5. $p^* \in P^C$ is an equilibrium price if

$$\sum_{i=1}^{I} \Delta^{i}(p^{*}) = 0.$$

GE - AN EXCHANGE-ECONOMY MODEL

1. Primitives:

- 1.1 Commodity space: \mathbb{R}^{C}_{+} , $C \in \mathbb{N}$,
- 1.2 Agents (households, consumers): $i = 1, \dots, I, I \in \mathbb{N},$
 - 1.2.1 a preference relation \leq^{i} , 1.2.2 an initial endowment $e^{i} \in \mathbb{R}^{C}_{++}$,
- 2. Price systems: $p \in P^C$, where $P^C = \{p \in \mathbb{R}^C_+ : |p|_{L^1} = 1\}.$
- 3. Budgets:

$$B^i(p) = \{x \in \mathbb{R}^C_+ \ : \ p \cdot x \leq p \cdot e^i\},$$

4. Demand correspondences: (assumed to be functions)

$$egin{aligned} & \Delta^i(p) = \{x \in \mathbb{R}^C_+ \, : \, y \preceq^i x, \ & orall \, y \in B^i(p) \}, \end{aligned}$$

5. $p^* \in P^C$ is an equilibrium price if

$$\sum_{i=1}^{I} \Delta^i(p^*) = 0.$$

HISTORY + RESULTS

Some history

Walras (1874), Debreu (1970,1972), E. Dierker (1972), H. Dierker (1974), Smale (1974), Balasco (1976, 1988)

Some history

Walras (1874), Debreu (1970,1972), E. Dierker (1972), H. Dierker (1974), Smale (1974), Balasco (1976, 1988)

CLASSICAL RESULTS

- 1. Under minimal regularity assumptions, an equilibrium p^* always exists.
- 2. In general, the set of all equilibria is not even countable.
- Generically (over all economies, appropriately parametrized by a subset of ℝⁿ), the set of equilibria is finite.
- 4. Every equilibrium allocation is Pareto optimal.

The GEI model

Incompleteness

1. A budget set of the form $B^i(p)=\{x\in \mathbb{R}^C_+\,:\, p\cdot x\leq p\cdot e^i\}$ implies that

"If it's affordable, it's available."

- 2. When transfer of the "consumption good" is possible only through a system of markets, not every transaction is implementable in general.
- 3. The generalization of the GE model called the GEI model deals with this case.

The GEI model

Incompleteness

1. A budget set of the form $B^i(p)=\{x\in \mathbb{R}^C_+\,:\, p\cdot x\leq p\cdot e^i\}$ implies that

"If it's affordable, it's available."

- 2. When transfer of the "consumption good" is possible only through a system of markets, not every transaction is implementable in general.
- 3. The generalization of the GE model called the GEI model deals with this case.

LITERATURE CROSS-SECTION

Diamond (1967), Radner (1972), Hart (1975), Grossman (1975), Cass (1984,1985), Geanakoplos and Polemarchakis (1986), Duffie (1987)

The GEI model

Incompleteness

1. A budget set of the form $B^i(p) = \{x \in \mathbb{R}^C_+ \, : \, p \cdot x \leq p \cdot e^i\}$ implies that

"If it's affordable, it's available."

- 2. When transfer of the "consumption good" is possible only through a system of markets, not every transaction is implementable in general.
- 3. The generalization of the GE model called the GEI model deals with this case.

LITERATURE CROSS-SECTION

Diamond (1967), Radner (1972), Hart (1975), Grossman (1975), Cass (1984,1985), Geanakoplos and Polemarchakis (1986), Duffie (1987)

Results

- 1. Equilibria exist only generically,
- 2. Generic local uniqueness may fail,
- 3. Equilibrium allocations are generically not Pareto optimal.

The stochastic model

INFORMATION

A filtered probability space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \in [0,T]}, \mathbb{P})$ (where \mathbb{P} is used only to fix the family of negligible sets).

Agents

 $I \in \mathbb{N}$ agents, each of which is characterized by

- 1. a random endowment $\mathcal{E}^i \in \mathcal{F}_T$,
- 2. a utility function $U : \text{Dom}(U) \to \mathbb{R}$, $(\text{Dom}(U) = \mathbb{R} \text{ or } \text{Dom}(U) = (0, \infty))$

3. a subjective probability measure $\mathbb{P}^i \sim \mathbb{P}$.

(Note: 2. and 3. define the preference relation \preceq^i by

 $X \preceq^{i} Y \Leftrightarrow \mathbb{E}^{\mathbb{P}^{i}}[U^{i}(X)] \leq \mathbb{E}^{\mathbb{P}^{i}}[U^{i}(Y)],$

in the manner of Alt, von Neumann and Morgenstern.)

Completeness constraints

A set S of $\{\mathcal{F}_t\}_{t \in [0,T]}$ -semimartingales (possibly several-dimensional): the allowed asset-price dynamics.

INFORMATION

A filtered probability space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \in [0,T]}, \mathbb{P})$ (where \mathbb{P} is used only to fix the family of negligible sets).

Agents

- $I \in \mathbb{N}$ agents, each of which is characterized by
 - 1. a random endowment $\mathcal{E}^i \in \mathcal{F}_T$,
 - 2. a utility function $U : \text{Dom}(U) \to \mathbb{R}$, $(\text{Dom}(U) = \mathbb{R} \text{ or } \text{Dom}(U) = (0, \infty))$
 - 3. a subjective probability measure $\mathbb{P}^i \sim \mathbb{P}$.

(Note: 2. and 3. define the preference relation \preceq^i by

$$X \preceq^i Y \; \Leftrightarrow \; \mathbb{E}^{\mathbb{P}^i}[U^i(X)] \leq \mathbb{E}^{\mathbb{P}^i}[U^i(Y)],$$

in the manner of Alt, von Neumann and Morgenstern.)

COMPLETENESS CONSTRAINTS

A set S of $\{\mathcal{F}_t\}_{t \in [0,T]}$ -semimartingales (possibly several-dimensional): the allowed asset-price dynamics.

INFORMATION

A filtered probability space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \in [0,T]}, \mathbb{P})$ (where \mathbb{P} is used only to fix the family of negligible sets).

Agents

 $I \in \mathbb{N}$ agents, each of which is characterized by

- 1. a random endowment $\mathcal{E}^i \in \mathcal{F}_T$,
- 2. a utility function $U : \text{Dom}(U) \to \mathbb{R}$, $(\text{Dom}(U) = \mathbb{R} \text{ or } \text{Dom}(U) = (0, \infty))$

3. a subjective probability measure $\mathbb{P}^i \sim \mathbb{P}$.

(Note: 2. and 3. define the preference relation \preceq^i by

 $X \preceq^i Y \; \Leftrightarrow \; \mathbb{E}^{\mathbb{P}^i}[U^i(X)] \leq \mathbb{E}^{\mathbb{P}^i}[U^i(Y)],$

in the manner of Alt, von Neumann and Morgenstern.)

Completeness constraints

A set S of $\{\mathcal{F}_t\}_{t\in[0,T]}$ -semimartingales (possibly several-dimensional): the allowed asset-price dynamics.

(For simplicity, assume that a numéraire asset $\{B_t\}_{t \in [0,T]}$, with $B_t \equiv 1$, always exists.)

Problem

Does there exist $S \in S$ such that

$$\sum_{i\in I} \hat{\pi}^i_t(S) = 0, ext{ for all } t\in [0,T]$$
, a.s,

where $\hat{\pi}^{i}(S) = \arg \max_{\pi \in Adm} \mathbb{E}^{\mathbb{P}^{i}}[U^{i}(\mathcal{E}^{i} + \int_{0}^{T} \pi_{u} dS_{u})]$ denotes the optimal trading strategy for the agent *i* when the market dynamics is given by *S*, and *Adm* is an appropriate admissibility set.

(For simplicity, assume that a numeraire asset $\{B_t\}_{t \in [0,T]}$, with $B_t \equiv 1$, always exists.)

Problem

Does there exist $S \in S$ such that

$$\sum_{i\in I} \hat{\pi}^i_t(S) = 0, ext{ for all } t\in [0,T]$$
, a.s,

where $\hat{\pi}^{i}(S) = \operatorname{argmax}_{\pi \in Adm} \mathbb{E}^{\mathbb{P}^{i}}[U^{i}(\mathcal{E}^{i} + \int_{0}^{T} \pi_{u} dS_{u})]$ denotes the optimal trading strategy for the agent *i* when the market dynamics is given by *S*, and *Adm* is an appropriate admissibility set.

Problem

If such an S exists, is it unique?

(For simplicity, assume that a numeraire asset $\{B_t\}_{t \in [0,T]}$, with $B_t \equiv 1$, always exists.)

Problem

Does there exist $S \in S$ such that

$$\sum_{i\in I} \hat{\pi}^i_t(S) = 0, ext{ for all } t\in [0,T]$$
, a.s,

where $\hat{\pi}^{i}(S) = \operatorname{argmax}_{\pi \in Adm} \mathbb{E}^{\mathbb{P}^{i}}[U^{i}(\mathcal{E}^{i} + \int_{0}^{T} \pi_{u} dS_{u})]$ denotes the optimal trading strategy for the agent *i* when the market dynamics is given by *S*, and *Adm* is an appropriate admissibility set.

Problem

If such an S exists, is it unique?

Problem

If such an S exists, can we do better then just prove existence, i.e., can we characterize it analytically or numerically?

(For simplicity, assume that a numeraire asset $\{B_t\}_{t \in [0,T]}$, with $B_t \equiv 1$, always exists.)

Problem

Does there exist $S \in S$ such that

$$\sum_{i\in I} \hat{\pi}^i_t(S) = 0, ext{ for all } t\in [0,T]$$
, a.s,

where $\hat{\pi}^{i}(S) = \operatorname{argmax}_{\pi \in Adm} \mathbb{E}^{\mathbb{P}^{i}}[U^{i}(\mathcal{E}^{i} + \int_{0}^{T} \pi_{u} dS_{u})]$ denotes the optimal trading strategy for the agent *i* when the market dynamics is given by *S*, and *Adm* is an appropriate admissibility set.

Problem

If such an S exists, is it unique?

Problem

If such an S exists, can we do better then just prove existence, i.e., can we characterize it analytically or numerically?

Problem

It such an S exists and is unique, is it stable with respect to perturbations in the problem primitives?

1. Unconstrained case. S contains all $\{\mathcal{F}_t\}_{t \in [0,T]}$ -semimartingales.

- 1. Unconstrained case. S contains all $\{\mathcal{F}_t\}_{t \in [0,T]}$ -semimartingales.
- 2. Constraints on the number of assets. S is the set of all d-dimensional $\{\mathcal{F}_t\}_{t\in[0,T]}$ -semimartingales. If d < n, where n is the spanning number of the filtration, no complete markets are allowed.

- 1. Unconstrained case. S contains all $\{\mathcal{F}_t\}_{t \in [0,T]}$ -semimartingales.
- 2. Constraints on the number of assets. S is the set of all d-dimensional $\{\mathcal{F}_t\}_{t\in[0,T]}$ -semimartingales. If d < n, where n is the spanning number of the filtration, no complete markets are allowed.
- Information-constrained markets. Let {G_t}_{t∈[0,T]} be a sub-filtration of {F_t}_{t∈[0,T]}, and let S be the class of all {G_t}_{t∈[0,T]}-semimartingales.

- 1. Unconstrained case. S contains all $\{\mathcal{F}_t\}_{t \in [0,T]}$ -semimartingales.
- 2. Constraints on the number of assets. S is the set of all d-dimensional $\{\mathcal{F}_t\}_{t\in[0,T]}$ -semimartingales. If d < n, where n is the spanning number of the filtration, no complete markets are allowed.
- Information-constrained markets. Let {G_t}_{t∈[0,T]} be a sub-filtration of {F_t}_{t∈[0,T]}, and let S be the class of all {G_t}_{t∈[0,T]}-semimartingales.
- 4. Partial-equilibrium models. Let $\{S_t^L\}_{t \in [0,T]}$ be a *d*-dimensional semimartingale. *S* is some sub-collection of the set of all *m*-dimensional $\{\mathcal{F}_t\}_{t \in [0,T]}$ -semimartingales such that its first d < m components coincide with S^L . We ask for market clearing only for the last m d components.

- 1. Unconstrained case. S contains all $\{\mathcal{F}_t\}_{t \in [0,T]}$ -semimartingales.
- 2. Constraints on the number of assets. S is the set of all d-dimensional $\{\mathcal{F}_t\}_{t\in[0,T]}$ -semimartingales. If d < n, where n is the spanning number of the filtration, no complete markets are allowed.
- Information-constrained markets. Let {G_t}_{t∈[0,T]} be a sub-filtration of {F_t}_{t∈[0,T]}, and let S be the class of all {G_t}_{t∈[0,T]}-semimartingales.
- 4. Partial-equilibrium models. Let $\{S_t^L\}_{t \in [0,T]}$ be a *d*-dimensional semimartingale. *S* is some sub-collection of the set of all *m*-dimensional $\{\mathcal{F}_t\}_{t \in [0,T]}$ -semimartingales such that its first d < m components coincide with S^L . We ask for market clearing only for the last m d components.
- 5. Dividend-paying assets. Let S denote the set of all semimartingales $\{S_t\}_{t \in [0,T]}$ with $S_T = D$, for some $D \in \mathcal{F}_T$.

- 1. Unconstrained case. S contains all $\{\mathcal{F}_t\}_{t \in [0,T]}$ -semimartingales.
- 2. Constraints on the number of assets. S is the set of all d-dimensional $\{\mathcal{F}_t\}_{t\in[0,T]}$ -semimartingales. If d < n, where n is the spanning number of the filtration, no complete markets are allowed.
- Information-constrained markets. Let {G_t}_{t∈[0,T]} be a sub-filtration of {F_t}_{t∈[0,T]}, and let S be the class of all {G_t}_{t∈[0,T]}-semimartingales.
- 4. Partial-equilibrium models. Let $\{S_t^L\}_{t \in [0,T]}$ be a *d*-dimensional semimartingale. *S* is some sub-collection of the set of all *m*-dimensional $\{\mathcal{F}_t\}_{t \in [0,T]}$ -semimartingales such that its first d < m components coincide with S^L . We ask for market clearing only for the last m d components.
- 5. Dividend-paying assets. Let S denote the set of all semimartingales $\{S_t\}_{t \in [0,T]}$ with $S_T = D$, for some $D \in \mathcal{F}_T$.
- 6. "Marketed-Set Constrained" markets Let V be a subspace of $\mathbb{L}^0(\mathcal{F}_T)$, and let S be the collection of all finite dimensional semimartingales $\{S_t\}_{t \in [0,T]}$ such that

$$\{x+\int_0^T\pi_t\,dS_t\,:\,x\in\mathbb{R},\pi\in Adm\}=V.$$

7. Markets with "fast-and-slow" information. Let $\{\mathcal{F}_t\}_{t\in[0,T]}$ be generated by two orthogonal martingales M^1 and M^2 , and let S be the collection of all processes of the form

$$S_t = A_t + M_t^1,$$

where A is any predictable process of finite variation.

7. Markets with "fast-and-slow" information. Let $\{\mathcal{F}_t\}_{t \in [0,T]}$ be generated by two orthogonal martingales M^1 and M^2 , and let S be the collection of all processes of the form

$$S_t = A_t + M_t^1$$

where A is any predictable process of finite variation.

Examples:

▶ M¹ = B, M² = W, where B and W are independent Brownian motions. The information in B is "fast", and that in W is "slow".

7. Markets with "fast-and-slow" information. Let $\{\mathcal{F}_t\}_{t\in[0,T]}$ be generated by two orthogonal martingales M^1 and M^2 , and let S be the collection of all processes of the form

$$S_t = A_t + M_t^1$$
,

where A is any predictable process of finite variation.

Examples:

- $M^1 = B$, $M^2 = W$, where B and W are independent Brownian motions. The information in B is "fast", and that in W is "slow".
- $M^1 = B$ (Brownian motion), $M^2 = N_t t$ (1-jump compensated Poisson process) so that a "typical" element of S is given by

$$S_t = \int_0^t \lambda_u \, du + B_t.$$

 M^2 models an unpredictable catastrophic rare event (credit event, natural disaster, etc.)

Analysis

Representative-agent/Direct analysis

Uses the fact that equilibrium allocations are Pareto optimal; works (essentially) only for complete markets.

Literature in continuous time:

- Complete markets: Bank, Cvitanić, Dana, Duffie, Huang, Karatzas, Lakner, Lehoczky, Malamud, Riedel, Shreve, Ž., etc.
- "Incomplete" markets: Basak and Cuoco '98 (incompleteness from restrictions in stock-market participation, logarithmic utility), Cheridito, Horst, Hugonnier, Mueller, Munk, Pirvu, etc.

ANALYSIS

Representative-agent/Direct analysis

Uses the fact that equilibrium allocations are Pareto optimal; works (essentially) only for complete markets.

Literature in continuous time:

- Complete markets: Bank, Cvitanić, Dana, Duffie, Huang, Karatzas, Lakner, Lehoczky, Malamud, Riedel, Shreve, Ž., etc.
- "Incomplete" markets: Basak and Cuoco '98 (incompleteness from restrictions in stock-market participation, logarithmic utility), Cheridito, Horst, Hugonnier, Mueller, Munk, Pirvu, etc.

Excess-demand approach

Introduced in the early 20th century. Only recently applied in continuous time (Anthropelos and \check{Z} (2008, 2009), \check{Z} (2009), Zhao and \check{Z} (2009))

- 1. Establish good topological properties of the excess demand function $S\mapsto \sum_i \hat{\pi}^i(S),$ and then
- 2. use a suitable fixed-point-type theorem to show existence (Brouwer, KKM, degree-based, etc.)

Primitives

1. Information: $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \in [0,T]}, \mathbb{P})$, usual conditions.

A PARTIAL-EQUILIBRIUM PRICING MODEL (Anthropelos and Ž (2008))

Primitives

- 1. Information: $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \in [0,T]}, \mathbb{P})$, usual conditions.
- 2. Agents: $\mathcal{E}^i \in \mathcal{F}_T$, i = 1, ..., I, $U^i(x) = -\exp(-\gamma^i x)$, $x \in \mathbb{R}$, $\gamma^i > 0$, i = 1, ..., I, $\mathbb{P}^i = \mathbb{P}$ (without loss of generality),

A PARTIAL-EQUILIBRIUM PRICING MODEL (Anthropelos and Ž (2008))

Primitives

- 1. Information: $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \in [0,T]}, \mathbb{P})$, usual conditions.
- 2. Agents: $\mathcal{E}^i \in \mathcal{F}_T$, i = 1, ..., I, $U^i(x) = -\exp(-\gamma^i x)$, $x \in \mathbb{R}$, $\gamma^i > 0$, i = 1, ..., I, $\mathbb{P}^i = \mathbb{P}$ (without loss of generality),
- 3. Completeness constraints: Let $\{S_t^L\}_{t\in[0,T]}$ be a locally bounded finite-dimensional semimartingale (NFLVR), and let $(B_1, \ldots B_n) \in (\mathbb{L}^{\infty})^n$ be a "bundle" of contingent claims. For $p \in \mathbb{R}$ and $k = 1, \ldots, n$ define the processes

$$S^k_t(p) = egin{cases} p, & t < T, \ B_k, & t = T \end{cases}$$
 , and set $\mathcal{S} = \{(S^L, S^1(p), \dots, S^n(p)) \ : \ p \in \mathbb{R}\}.$

Primitives

- 1. Information: $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \in [0,T]}, \mathbb{P})$, usual conditions.
- 2. Agents: $\mathcal{E}^i \in \mathcal{F}_T$, i = 1, ..., I, $U^i(x) = -\exp(-\gamma^i x)$, $x \in \mathbb{R}$, $\gamma^i > 0$, i = 1, ..., I, $\mathbb{P}^i = \mathbb{P}$ (without loss of generality),
- Completeness constraints: Let {S_t^L}_{t∈[0,T]} be a locally bounded finite-dimensional semimartingale (NFLVR), and let (B₁,...B_n) ∈ (L[∞])ⁿ be a "bundle" of contingent claims. For p ∈ R and k = 1,..., n define the processes

$$S^k_t(p) = egin{cases} p, & t < T, \ B_k, & t = T \end{cases}$$
 , and set $\mathcal{S} = \{(S^L, S^1(p), \dots, S^n(p)) \, : \, p \in \mathbb{R}\}.$

EXISTENCE AND UNIQUENESS RESULTS

Let $\Delta^i(p) \in \mathbb{R}^n$ denote the optimal quantity of $(B_1, \ldots, B_n) \in \mathbb{R}^n$ for the agent *i* in the market $S(p) = (S^L, S^1(p), \ldots, S^n(p))$. Then,

- 1. Δ^i is the Legendre transform of the (buyer's, conditional) indifference price of (B_1, \ldots, B_n) .
- 2. There exists a unique equilibrium $S = S(p^*) \in S$ and p^* can be characterized as a minimum of a functional involving conditional indifference prices.

A PARTIAL-EQUILIBRIUM PRICING MODEL (Anthropelos and Ž (2009))

A QUESTION OF STABILITY

- 1. Let's generalize the exponential-utility assumption: each agent uses a convex measure of risk ρ^i with the acceptance set $\mathcal{A}^i = \{X \in \mathbb{L}^{\infty}(\mathcal{F}_T) : \rho^i(X) \leq 0\}$.
- 2. The results about existence and uniqueness of the equilibrium still hold.
- 3. Question: is the equilibrium stable? Would it change dramatically if we replaced ρ^i by a "nearby" $\hat{\rho}^i$, i = 1, ..., I?

A PARTIAL-EQUILIBRIUM PRICING MODEL (Anthropelos and Ž (2009))

A QUESTION OF STABILITY

- 1. Let's generalize the exponential-utility assumption: each agent uses a convex measure of risk ρ^i with the acceptance set $\mathcal{A}^i = \{X \in \mathbb{L}^{\infty}(\mathcal{F}_T) : \rho^i(X) \leq 0\}$.
- 2. The results about existence and uniqueness of the equilibrium still hold.
- 3. Question: is the equilibrium stable? Would it change dramatically if we replaced ρ^i by a "nearby" $\hat{\rho}^i$, i = 1, ..., I?

KURATOWSKI CONVERGENCE

A sequence $\{C_n\}_{n\in\mathbb{N}}$ of closed subsets of \mathbb{R}^d converges to $C\subseteq\mathbb{R}^d$ in the Kuratowski sense - denoted by $C_n\xrightarrow{K} C$ - if

$$\mathsf{Ls}\ C_n \subseteq C \subseteq \mathsf{Li}\ C_n,\tag{1}$$

Li
$$C_n = \{c \in \mathbb{R}^d : c = \lim c_k, c_k \in C_k, \text{ eventually}\}$$

Ls $C_n = \{c \in \mathbb{R}^d : c = \lim c_k, c_k \in C_k, \text{ infinitely often}\}.$ (2)

A good first-order intuition for regular-enough $\{C_n\}_{n \in \mathbb{N}}$: sets converge in the Kuratowski sense if their "boundaries converge pointwise".

A STABILITY RESULT

1. For an acceptance set A, define its *B*-projection by

$$\mathcal{A}(B) = \left\{ (m, \alpha_1, \dots, \alpha_n) \in \mathbb{R}^{n+1} : \\ \exists \pi \in Adm, \ m + \alpha_1 B_1 + \dots + \alpha B_n + \int_0^T \pi_u \, dS_u^L \in \mathcal{A} \right\}.$$

A STABILITY RESULT

1. For an acceptance set A, define its *B*-projection by

$$\mathcal{A}(B) = \left\{ (m, \alpha_1, \dots, \alpha_n) \in \mathbb{R}^{n+1} : \\ \exists \pi \in Adm, \ m + \alpha_1 B_1 + \dots + \alpha B_n + \int_0^T \pi_u \, dS_u^L \in \mathcal{A} \right\}.$$

- 2. Let (A_n^1, \ldots, A_n^I) be a sequence of *I*-tuples of acceptance sets such that for $i = 1, \ldots, I$, we have
 - 2.1 $\mathcal{A}_n^i(B) \stackrel{K}{\longrightarrow} \mathcal{A}^i(B)$, and
 - 2.2 the sets $\{\mathcal{A}_n^i(B)\}_{n\in\mathbb{N}}$ are uniformly strictly convex.
 - 2.3 a number of smaller, "non-triviality", assumptions,

Then $p_n \to p$, where p_n is the unique equilibrium price for the setup with agent primitives $(\mathcal{A}_n^1, \ldots, \mathcal{A}_n^I)$, and p is the unique equilibrium price for $(\mathcal{A}^1, \ldots, \mathcal{A}^I)$

A STABILITY RESULT

1. For an acceptance set A, define its *B*-projection by

$$\mathcal{A}(B) = \left\{ (m, \alpha_1, \dots, \alpha_n) \in \mathbb{R}^{n+1} : \\ \exists \pi \in Adm, \ m + \alpha_1 B_1 + \dots + \alpha B_n + \int_0^T \pi_u \, dS_u^L \in \mathcal{A} \right\}.$$

- 2. Let (A_n^1, \ldots, A_n^I) be a sequence of *I*-tuples of acceptance sets such that for $i = 1, \ldots, I$, we have
 - 2.1 $\mathcal{A}_n^i(B) \stackrel{K}{\longrightarrow} \mathcal{A}^i(B)$, and
 - 2.2 the sets $\{\mathcal{A}_n^i(B)\}_{n\in\mathbb{N}}$ are uniformly strictly convex.
 - 2.3 a number of smaller, "non-triviality", assumptions,

Then $p_n \to p$, where p_n is the unique equilibrium price for the setup with agent primitives $(\mathcal{A}_n^1, \ldots, \mathcal{A}_n^I)$, and p is the unique equilibrium price for $(\mathcal{A}^1, \ldots, \mathcal{A}^I)$

3. Example: If all agents are exponential-utility maximizers, the condition $\gamma_n^i \to \gamma^i > 0, i = 1, \dots, I$, will do.

A STABILITY RESULT

1. For an acceptance set A, define its *B*-projection by

$$\mathcal{A}(B) = \left\{ (m, \alpha_1, \dots, \alpha_n) \in \mathbb{R}^{n+1} : \\ \exists \pi \in Adm, \ m + \alpha_1 B_1 + \dots + \alpha B_n + \int_0^T \pi_u \, dS_u^L \in \mathcal{A} \right\}.$$

- 2. Let (A_n^1, \ldots, A_n^I) be a sequence of *I*-tuples of acceptance sets such that for $i = 1, \ldots, I$, we have
 - 2.1 $\mathcal{A}_n^i(B) \xrightarrow{K} \mathcal{A}^i(B)$, and
 - 2.2 the sets $\{\mathcal{A}_n^i(B)\}_{n\in\mathbb{N}}$ are uniformly strictly convex.
 - 2.3 a number of smaller, "non-triviality", assumptions,

Then $p_n \to p$, where p_n is the unique equilibrium price for the setup with agent primitives $(\mathcal{A}_n^1, \ldots, \mathcal{A}_n^I)$, and p is the unique equilibrium price for $(\mathcal{A}^1, \ldots, \mathcal{A}^I)$

- 3. Example: If all agents are exponential-utility maximizers, the condition $\gamma_n^i \to \gamma^i > 0, i = 1, \dots, I$, will do.
- 4. Example: if the acceptance sets/risk measures are utility-based, then it is (essentially) enough that $\mathbb{P}_n^i \to \mathbb{P}^i$ in total variation, $U_n^i \to U^i$ pointwise and $x_n^i \to x^i$ for the required Kuratowski convergence + uniform strict convexity.

Primitives

1. Information: $(\Omega, \mathcal{F}, \{\mathcal{F}_t^{B,N}\}_{t \in [0,T]}, \mathbb{P})$, where $\{B_t\}_{t \in [0,T]}$ is a Brownian motion and $\{N_t\}_{t \in [0,T]}$ is a Poisson process with intensity μ stopped after the first jump.

Primitives

- Information: (Ω, F, {F_t^{B,N}}_{t∈[0,T]}, ℙ), where {B_t}_{t∈[0,T]} is a Brownian motion and {N_t}_{t∈[0,T]} is a Poisson process with intensity µ stopped after the first jump.
- 2. Agents: $\mathcal{E}^i = g^i(B_T, N_T)$, $U^i(x) = -\exp(-\gamma^i x)$, $\gamma^i > 0$, $\mathbb{P}^i = \mathbb{P}$

Primitives

 Information: (Ω, F, {F_t^{B,N}}_{t∈[0,T]}, ℙ), where {B_t}_{t∈[0,T]} is a Brownian motion and {N_t}_{t∈[0,T]} is a Poisson process with intensity µ stopped after the first jump.

2. Agents:
$$\mathcal{E}^i=g^i(B_T,N_T)$$
, $U^i(x)=-\exp(-\gamma^i x)$, $\gamma^i>$ 0, $\mathbb{P}^i=\mathbb{P}$

3. Completeness constraints: We let S be the collection of all processes of the form $S_t = A_u + B_t$, where A ranges through the class of all $\{\mathcal{F}_t^{N,B}\}_{t \in [0,T]}$ -predictable FV processes.

Primitives

 Information: (Ω, F, {F_t^{B,N}}_{t∈[0,T]}, ℙ), where {B_t}_{t∈[0,T]} is a Brownian motion and {N_t}_{t∈[0,T]} is a Poisson process with intensity µ stopped after the first jump.

2. Agents:
$$\mathcal{E}^i=g^i(B_T,N_T)$$
, $U^i(x)=-\exp(-\gamma^i x)$, $\gamma^i>$ 0, $\mathbb{P}^i=\mathbb{P}$

3. Completeness constraints: We let S be the collection of all processes of the form $S_t = A_u + B_t$, where A ranges through the class of all $\{\mathcal{F}_t^{N,B}\}_{t \in [0,T]}$ -predictable FV processes.

AN EXECUTIVE DECISION

Restrict your search to only those D which admit the representation of the form

$$A_t = \int_0^t \lambda(u, B_u, N_{u-}) \, du + B_t,$$

where $\lambda : [0,T] \times \mathbb{R} \times \{0,1\} \to \mathbb{R}$ belongs to the (anisotropic) Hölder space

$$C^{lpha}\Big([0,T] imes \mathbb{R} imes \{0,1\}\Big).$$

(Note: C^{α} can be viewed as a parameter space for a convenient parametrization of the (subset of) the completeness constraint S.)

A fast-and slow model $(\check{Z} (2009))$ - the analysis

Step I

Express the agent i's optimal portfolio (we drop i from the notation) in the form

$$\hat{\pi}_t(\lambda) = rac{1}{\gamma} \lambda(t, {B}_t, {N}_{t-}) - u_x(t, {B}_t, {N}_{t-}),$$

where u solves the semi-linear system of two interacting PDEs

$$\left\{egin{array}{l} 0=u_t+rac{1}{2}u_{xx}-\lambda u_x+rac{1}{2\gamma}\lambda^2-rac{\mu}{\gamma}\Big(\exp(-\gamma u_n)-1\Big)\ u(T,\cdot,\cdot)=g. \end{array}
ight.$$

where $u_n(t, x, 0) = u(t, x, 1) - u(t, x, 0)$, $u_n(t, x, 1) = 0$.

A fast-and slow model $(\tilde{Z} (2009))$ - the analysis

Step I

Express the agent i's optimal portfolio (we drop i from the notation) in the form

$$\hat{\pi}_t(\lambda) = rac{1}{\gamma} \lambda(t, {B}_t, {N}_{t-}) - u_x(t, {B}_t, {N}_{t-}),$$

where u solves the semi-linear system of two interacting PDEs

$$\left\{ egin{array}{l} 0=u_t+rac{1}{2}u_{xx}-\lambda u_x+rac{1}{2\gamma}\lambda^2-rac{\mu}{\gamma}\Big(\exp(-\gamma u_n)-1\Big)\ u(T,\cdot,\cdot)=g. \end{array}
ight.$$

where $u_n(t, x, 0) = u(t, x, 1) - u(t, x, 0)$, $u_n(t, x, 1) = 0$.

Step II

Write the market-clearing condition $0 = \sum_{i=1}^{I} \hat{\pi}_{t}^{i}(\lambda)$ in the form $F(\lambda) = \lambda$, where

$$F(\lambda) = ar{\gamma} \sum_{i=1}^{I} u^i_x(\lambda), ext{ and } rac{1}{ar{\gamma}} = \sum_{i=1}^{I} rac{1}{\gamma^i}$$

A fast-and slow model (ž (2009)) - the analysis II

Step III

Show that the mapping

$$\lambda\mapsto u^i_x(\lambda)$$

is Lipschitz in C^{α} (use Schauder theory and Hölder interpolation).

(If you are curious, here is a (crude) estimate

$$\begin{split} L(R) &= C \, T^{\frac{1+\alpha}{2+\alpha}} \exp \Big(\exp \Big(2 + 2\gamma^i ||g^i||_0 + TR^2 + 2\mu T \Big) \Big) \times \\ & \times \left(||g^i||_{2+\alpha} + (1+T)(1+R^2) \right)^{6+4\alpha} \end{split}$$

of the Lipschitz constant.)

A fast-and slow model (\check{Z} (2009)) - the analysis II

Step III

Show that the mapping

$$\lambda\mapsto u^i_x(\lambda)$$

is Lipschitz in C^{α} (use Schauder theory and Hölder interpolation).

(If you are curious, here is a (crude) estimate

$$\begin{split} L(R) &= C \, T^{\frac{1+\alpha}{2+\alpha}} \exp \left(\left. \exp \left(2 + 2 \gamma^i ||g^i||_0 + T R^2 + 2 \mu T \right) \right) \times \right. \\ & \left. \times \left(\left||g^i||_{2+\alpha} + (1+T)(1+R^2) \right)^{6+4\alpha} \right. \end{split}$$

of the Lipschitz constant.)

Step IV

Pick T small enough and apply the Banach fixed-point theorem to the function F. Conjecture: small T is not needed (use of a properly weighted Hölder space)

A fast-and slow model (ž (2009)) - the analysis II

Step III

Show that the mapping

$$\lambda\mapsto u^i_x(\lambda)$$

is Lipschitz in C^{α} (use Schauder theory and Hölder interpolation).

(If you are curious, here is a (crude) estimate

$$\begin{split} L(R) &= C \, T^{\frac{1+\alpha}{2+\alpha}} \exp \left(\left. \exp \left(2 + 2 \gamma^i ||g^i||_0 + T R^2 + 2 \mu T \right) \right) \times \right. \\ & \left. \times \left(\left||g^i||_{2+\alpha} + (1+T)(1+R^2) \right)^{6+4\alpha} \right. \end{split}$$

of the Lipschitz constant.)

Step IV

Pick T small enough and apply the Banach fixed-point theorem to the function F.

Conjecture: small T is not needed (use of a properly weighted Hölder space)

Bonus

The fact that the Banach fixed-point theorem applies allows for efficient computation algorithms to be used.

Another fast-and slow model (Zhao and \check{Z} (2009))

Primitives

1. Information: $(\Omega, \mathcal{F}, \{\mathcal{F}_t^{B,W}\}_{t \in [0,T]}, \mathbb{P})$, where $\{B_t\}_{t \in [0,T]}$ and $\{W_t\}_{t \in [0,T]}$ are independent Brownian motions

Another fast-and slow model (Zhao and \check{Z} (2009))

Primitives

- 1. Information: $(\Omega, \mathcal{F}, \{\mathcal{F}_t^{B,W}\}_{t \in [0,T]}, \mathbb{P})$, where $\{B_t\}_{t \in [0,T]}$ and $\{W_t\}_{t \in [0,T]}$ are independent Brownian motions
- 2. Agents: $\mathcal{E}^i = g^i(B_T, W_T)$, $U^i(x) = -\exp(-\gamma^i x)$, $\gamma^i > 0$, $\mathbb{P}^i = \mathbb{P}$

ANOTHER FAST-AND SLOW MODEL (ZHAO AND Ž (2009))

Primitives

- 1. Information: $(\Omega, \mathcal{F}, \{\mathcal{F}_t^{B,W}\}_{t \in [0,T]}, \mathbb{P})$, where $\{B_t\}_{t \in [0,T]}$ and $\{W_t\}_{t \in [0,T]}$ are independent Brownian motions
- 2. Agents: $\mathcal{E}^i=g^i(B_T,W_T)$, $U^i(x)=-\exp(-\gamma^i x)$, $\gamma^i>0$, $\mathbb{P}^i=\mathbb{P}$
- 3. Completeness constraints: We let S be the collection of all processes of the form $S_t = A_u + B_t$, where A ranges through the class of all $\{\mathcal{F}_t^{B,W}\}_{t \in [0,T]}$ -predictable FV processes.

ANOTHER FAST-AND SLOW MODEL (ZHAO AND Ž (2009))

PRIMITIVES

- 1. Information: $(\Omega, \mathcal{F}, \{\mathcal{F}_t^{B,W}\}_{t \in [0,T]}, \mathbb{P})$, where $\{B_t\}_{t \in [0,T]}$ and $\{W_t\}_{t \in [0,T]}$ are independent Brownian motions
- 2. Agents: $\mathcal{E}^i = g^i(B_T, W_T)$, $U^i(x) = -\exp(-\gamma^i x)$, $\gamma^i > 0$, $\mathbb{P}^i = \mathbb{P}$
- 3. Completeness constraints: We let S be the collection of all processes of the form $S_t = A_u + B_t$, where A ranges through the class of all $\{\mathcal{F}_t^{B,W}\}_{t \in [0,T]}$ -predictable FV processes.

AN EXECUTIVE DECISION

Restrict your search to only those A which admit the representation of the form

$$A_t = \int_0^t \lambda(u, B_u, W_u) \, du + B_t,$$

where $\lambda : [0,T] \times \mathbb{R}^2 \to \mathbb{R}$ belongs to the (anisotropic) Hölder space

$$C^{lpha}([0,T] imes \mathbb{R}^2).$$

A parabolic system

It can be shown that $\lambda \in C^{\alpha}$ is an equilibrium market-price-of-risk if and only if $\lambda = \bar{\gamma} \sum_{i=1}^{I} u_x^i$, where (u^1, \ldots, u^I) solves the following quasilinear parabolic system of I equations:

$$\begin{cases} u_t^i + \frac{1}{2} \Delta u^i + \bar{\gamma} u_x^i \left(\sum_{k=1}^I u_x^k \right) + \frac{\bar{\gamma}^2}{2\gamma^i} \left(\sum_{k=1}^I u_x^k \right)^2 - \frac{\gamma^i}{2} \left(u_y^i \right)^2 = 0, \\ u^i(T, x, y) = g^i(x, y), \end{cases}$$

A parabolic system

<

It can be shown that $\lambda \in C^{\alpha}$ is an equilibrium market-price-of-risk if and only if $\lambda = \bar{\gamma} \sum_{i=1}^{I} u_x^i$, where (u^1, \ldots, u^I) solves the following quasilinear parabolic system of I equations:

$$egin{split} & \left\{u^i_t+rac{1}{2}\Delta u^i+ar\gamma u^i_xigg(\sum_{k=1}^Iu^k_xigg)+rac{ar\gamma^2}{2\gamma^i}igg(\sum_{k=1}^Iu^k_xigg)^2-rac{\gamma^i}{2}igg(u^i_yigg)^2=0,\ & u^i(T,x,y)=g^i(x,y), \end{split}
ight.$$

EXISTENCE AND UNIQUENESS

A delicate analysis based on the use of Schauder's fixed-point theorem on an appropriatelytuned domain yields existence. Uniqueness follows from classical energy estimates.

A parabolic system

It can be shown that $\lambda \in C^{\alpha}$ is an equilibrium market-price-of-risk if and only if $\lambda = \bar{\gamma} \sum_{i=1}^{I} u_x^i$, where (u^1, \ldots, u^I) solves the following quasilinear parabolic system of I equations:

$$\begin{cases} u_t^i + \frac{1}{2}\Delta u^i + \bar{\gamma}u_x^i \left(\sum_{k=1}^I u_x^k\right) + \frac{\bar{\gamma}^2}{2\gamma^i} \left(\sum_{k=1}^I u_x^k\right)^2 - \frac{\gamma^i}{2} \left(u_y^i\right)^2 = 0, \\ u^i(T, x, y) = g^i(x, y), \end{cases}$$

EXISTENCE AND UNIQUENESS

A delicate analysis based on the use of Schauder's fixed-point theorem on an appropriatelytuned domain yields existence. Uniqueness follows from classical energy estimates.

BACKWARD SDEs

Once can rephrase the above in the language of BSDE: we obtain a coupled system of nonlinear BSDEs with quadratic growth. Existence can be obtained in fair generality. General uniqueness is still unavailable.