Incomplete-market equilibria with exponential utilities

Gordan Žitković
Department of Mathematics
University of Texas at Austin

Fields Institure, January, 2010

GE - AN EXCHANGE-ECONOMY MODEL

1. Primitives:
1.1 Commodity space: $\mathbb{R}_{+}^{C}, C \in \mathbb{N}$,
1.2 Agents (households, consumers):
$i=1, \ldots, I, I \in \mathbb{N}$,
1.2.1 a preference relation \preceq_{i}^{i},
1.2.2 an initial endowment $e^{i} \in \mathbb{R}_{++}^{C}$,
2. Price systems: $p \in P^{C}$, where
$P^{C}=\left\{p \in \mathbb{R}_{+}^{C}:|p|_{L^{1}}=1\right\}$.
3. Budgets:

$$
B^{i}(p)=\left\{x \in \mathbb{R}_{+}^{C}: p \cdot x \leq p \cdot e^{i}\right\}
$$

4. Demand correspondences:
(assumed to be functions)

$$
\begin{aligned}
\Delta^{i}(p)= & \left\{x \in \mathbb{R}_{+}^{C}: y \preceq^{i} x\right. \\
& \left.\forall y \in B^{i}(p)\right\}
\end{aligned}
$$

5. $p^{*} \in P^{C}$ is an equilibrium price if

$$
\sum_{i=1}^{I} \Delta^{i}\left(p^{*}\right)=0
$$

GE - AN EXCHANGE-ECONOMY MODEL

1. Primitives:
1.1 Commodity space: $\mathbb{R}_{+}^{C}, C \in \mathbb{N}$,
1.2 Agents (households, consumers):
$i=1, \ldots, I, I \in \mathbb{N}$,
1.2.1 a preference relation \preceq_{i}^{i},
1.2.2 an initial endowment $e^{i} \in \mathbb{R}_{++}^{C}$,
2. Price systems: $p \in P^{C}$, where $P^{C}=\left\{p \in \mathbb{R}_{+}^{C}:|p|_{L^{1}}=1\right\}$.
3. Budgets:

$$
B^{i}(p)=\left\{x \in \mathbb{R}_{+}^{C}: p \cdot x \leq p \cdot e^{i}\right\}
$$

4. Demand correspondences: (assumed to be functions)

$$
\begin{aligned}
\Delta^{i}(p)= & \left\{x \in \mathbb{R}_{+}^{C}: y \preceq^{i} x\right. \\
& \left.\forall y \in B^{i}(p)\right\}
\end{aligned}
$$

5. $p^{*} \in P^{C}$ is an equilibrium price if

$$
\sum_{i=1}^{I} \Delta^{i}\left(p^{*}\right)=0
$$

History + Results

SOME HISTORY
Walras (1874), Debreu (1970,1972), E. Dierker (1972), H. Dierker (1974), Smale (1974), Balasco (1976, 1988)

History + results

Some history

Walras (1874), Debreu (1970,1972), E. Dierker (1972), H. Dierker (1974), Smale (1974), Balasco $(1976,1988)$

Classical results

1. Under minimal regularity assumptions, an equilibrium p^{*} always exists.
2. In general, the set of all equilibria is not even countable.
3. Generically (over all economies, appropriately parametrized by a subset of \mathbb{R}^{n}), the set of equilibria is finite.
4. Every equilibrium allocation is Pareto optimal.

The GEI model

Incompleteness

1. A budget set of the form $B^{i}(p)=\left\{x \in \mathbb{R}_{+}^{C}: p \cdot x \leq p \cdot e^{i}\right\}$ implies that "If it's affordable, it's available."
2. When transfer of the "consumption good" is possible only through a system of markets, not every transaction is implementable in general.
3. The generalization of the GE model - called the GEI model - deals with this case.

The GEI model

Incompleteness

1. A budget set of the form $B^{i}(p)=\left\{x \in \mathbb{R}_{+}^{C}: p \cdot x \leq p \cdot e^{i}\right\}$ implies that "If it's affordable, it's available."
2. When transfer of the "consumption good" is possible only through a system of markets, not every transaction is implementable in general.
3. The generalization of the GE model - called the GEI model - deals with this case.

Literature cross-SECtion
Diamond (1967), Radner (1972), Hart (1975), Grossman (1975), Cass $(1984,1985)$, Geanakoplos and Polemarchakis (1986), Duffie (1987)

The GEI model

Incompleteness

1. A budget set of the form $B^{i}(p)=\left\{x \in \mathbb{R}_{+}^{C}: p \cdot x \leq p \cdot e^{i}\right\}$ implies that "If it's affordable, it's available."
2. When transfer of the "consumption good" is possible only through a system of markets, not every transaction is implementable in general.
3. The generalization of the GE model - called the GEI model - deals with this case.

LITERATURE CROSS-SECTION

Diamond (1967), Radner (1972), Hart (1975), Grossman (1975), Cass $(1984,1985)$, Geanakoplos and Polemarchakis (1986), Duffie (1987)

Results

1. Equilibria exist only generically,
2. Generic local uniqueness may fail,
3. Equilibrium allocations are generically not Pareto optimal.

The stochastic model

Information

A filtered probability space $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \in[0, T]}, \mathbb{P}\right.$) (where \mathbb{P} is used only to fix the family of negligible sets).

Agents
$I \in \mathbb{N}$ agents, each of which is characterized by

1. a random endowment $\mathcal{E}^{i} \in \mathcal{F}_{T}$,
2. a utility function $U: \operatorname{Dom}(U) \rightarrow \mathbb{R},(\operatorname{Dom}(U)=\mathbb{R}$ or $\operatorname{Dom}(U)=(0, \infty))$
3. a subjective probability measure $\mathbb{P}^{i} \sim \mathbb{P}$.
(Note: 2. and 3. define the preference relation ζ^{2} by

$$
X \preceq^{i} Y \Leftrightarrow \mathbb{E}^{\mathbb{P}^{i}}\left[U^{i}(X)\right] \leq \mathbb{E}^{\mathbb{P}^{i}}\left[U^{i}(Y)\right],
$$

in the manner of Alt, von Neumann and Morgenstern.)

COMPLETENESS CONSTRAINTS
A set \mathcal{S} of $\left\{\mathcal{F}_{t}\right\}_{t \in[0, T] \text {-semimartingales (possibly several-dimensional): the allowed }}$ asset-price dynamics.

The stochastic model

Information

A filtered probability space $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \in[0, T]}, \mathbb{P}\right.$) (where \mathbb{P} is used only to fix the family of negligible sets).

Agents

$I \in \mathbb{N}$ agents, each of which is characterized by

1. a random endowment $\mathcal{E}^{i} \in \mathcal{F}_{T}$,
2. a utility function $U: \operatorname{Dom}(U) \rightarrow \mathbb{R},(\operatorname{Dom}(U)=\mathbb{R}$ or $\operatorname{Dom}(U)=(0, \infty))$
3. a subjective probability measure $\mathbb{P}^{i} \sim \mathbb{P}$.
(Note: 2. and 3. define the preference relation \preceq^{i} by

$$
X \preceq^{i} Y \Leftrightarrow \mathbb{E}^{\mathbb{P}^{i}}\left[U^{i}(X)\right] \leq \mathbb{E}^{\mathbb{P}^{i}}\left[U^{i}(Y)\right],
$$

in the manner of Alt, von Neumann and Morgenstern.)

The stochastic model

Information

A filtered probability space $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \in[0, T]}, \mathbb{P}\right.$) (where \mathbb{P} is used only to fix the family of negligible sets).

Agents

$I \in \mathbb{N}$ agents, each of which is characterized by

1. a random endowment $\mathcal{E}^{i} \in \mathcal{F}_{T}$,
2. a utility function $U: \operatorname{Dom}(U) \rightarrow \mathbb{R},(\operatorname{Dom}(U)=\mathbb{R}$ or $\operatorname{Dom}(U)=(0, \infty))$
3. a subjective probability measure $\mathbb{P}^{i} \sim \mathbb{P}$.
(Note: 2 . and 3 . define the preference relation \preceq^{i} by

$$
X \preceq^{i} Y \Leftrightarrow \mathbb{E}^{\mathbb{P}^{i}}\left[U^{i}(X)\right] \leq \mathbb{E}^{\mathbb{P}^{i}}\left[U^{i}(Y)\right],
$$

in the manner of Alt, von Neumann and Morgenstern.)

Completeness constraints

A set \mathcal{S} of $\left\{\mathcal{F}_{t}\right\}_{t \in[0, T] \text {-semimartingales (possibly several-dimensional): the allowed }}$ asset-price dynamics.

The equilibrium problem

(For simplicity, assume that a numéraire asset $\left\{B_{t}\right\}_{t \in[0, T]}$, with $B_{t} \equiv 1$, always exists.)

Problem

Does there exist $S \in \mathcal{S}$ such that

$$
\sum_{i \in I} \hat{\pi}_{t}^{i}(S)=0, \text { for all } t \in[0, T], \text { a.s, }
$$

where $\hat{\pi}^{i}(S)=\operatorname{argmax}_{\pi \in \operatorname{Adm}} \mathbb{E}^{\mathbb{P}^{i}}\left[U^{i}\left(\mathcal{E}^{i}+\int_{0}^{T} \pi_{u} d S_{u}\right)\right]$ denotes the optimal trading strategy for the agent i when the market dynamics is given by S, and Adm is an appropriate admissibility set.

The equilibrium problem

(For simplicity, assume that a numéraire asset $\left\{B_{t}\right\}_{t \in[0, T]}$, with $B_{t} \equiv 1$, always exists.)

Problem

Does there exist $S \in \mathcal{S}$ such that

$$
\sum_{i \in I} \hat{\pi}_{t}^{i}(S)=0, \text { for all } t \in[0, T], \text { a.s, }
$$

where $\hat{\pi}^{i}(S)=\operatorname{argmax}_{\pi \in \operatorname{Adm}} \mathbb{E}^{\mathbb{P}^{i}}\left[U^{i}\left(\mathcal{E}^{i}+\int_{0}^{T} \pi_{u} d S_{u}\right)\right]$ denotes the optimal trading strategy for the agent i when the market dynamics is given by S, and Adm is an appropriate admissibility set.

Problem

If such an S exists, is it unique?

The equilibrium problem

(For simplicity, assume that a numéraire asset $\left\{B_{t}\right\}_{t \in[0, T]}$, with $B_{t} \equiv 1$, always exists.)

Problem

Does there exist $S \in \mathcal{S}$ such that

$$
\sum_{i \in I} \hat{\pi}_{t}^{i}(S)=0, \text { for all } t \in[0, T] \text {, a.s, }
$$

where $\hat{\pi}^{i}(S)=\operatorname{argmax}_{\pi \in A d m} \mathbb{E}^{\mathbb{P}^{i}}\left[U^{i}\left(\mathcal{E}^{i}+\int_{0}^{T} \pi_{u} d S_{u}\right)\right]$ denotes the optimal trading strategy for the agent i when the market dynamics is given by S, and Adm is an appropriate admissibility set.

Problem

If such an S exists, is it unique?

Problem

If such an S exists, can we do better then just prove existence, i.e., can we characterize it analytically or numerically?

The equilibrium problem

(For simplicity, assume that a numéraire asset $\left\{B_{t}\right\}_{t \in[0, T]}$, with $B_{t} \equiv 1$, always exists.)

Problem

Does there exist $S \in \mathcal{S}$ such that

$$
\sum_{i \in I} \hat{\pi}_{t}^{i}(S)=0, \text { for all } t \in[0, T] \text {, a.s, }
$$

where $\hat{\pi}^{i}(S)=\operatorname{argmax}_{\pi \in A d m} \mathbb{E}^{\mathbb{P}^{i}}\left[U^{i}\left(\mathcal{E}^{i}+\int_{0}^{T} \pi_{u} d S_{u}\right)\right]$ denotes the optimal trading strategy for the agent i when the market dynamics is given by S, and Adm is an appropriate admissibility set.

Problem

If such an S exists, is it unique?

Problem

If such an S exists, can we do better then just prove existence, i.e., can we characterize it analytically or numerically?

Problem

It such an S exists and is unique, is it stable with respect to perturbations in the problem primitives?

Examples of Completeness Constraints

1. Unconstrained case. \mathcal{S} contains all $\left\{\mathcal{F}_{t}\right\}_{t \in[0, T] \text {-semimartingales. }}$

Examples of Completeness Constraints

1. Unconstrained case. \mathcal{S} contains all $\left\{\mathcal{F}_{t}\right\}_{t \in[0, T] \text {-semimartingales. }}$
2. Constraints on the number of assets. \mathcal{S} is the set of all d-dimensional $\left\{\mathcal{F}_{t}\right\}_{t \in[0, T] \text {-semimartingales. If } d<n \text {, where } n \text { is the spanning number of the }}$ filtration, no complete markets are allowed.

Examples of Completeness Constraints

1. Unconstrained case. \mathcal{S} contains all $\left\{\mathcal{F}_{t}\right\}_{t \in[0, T]^{-} \text {-semimartingales. }}$
2. Constraints on the number of assets. \mathcal{S} is the set of all d-dimensional $\left\{\mathcal{F}_{t}\right\}_{t \in[0, T] \text {-semimartingales. If } d<n \text {, where } n \text { is the spanning number of the }}$ filtration, no complete markets are allowed.
3. Information-constrained markets. Let $\left\{\mathcal{G}_{t}\right\}_{t \in[0, T]}$ be a sub-filtration of $\left\{\mathcal{F}_{t}\right\}_{t \in[0, T]}$, and let \mathcal{S} be the class of all $\left\{\mathcal{G}_{t}\right\}_{t \in[0, T]}$-semimartingales.

Examples of Completeness Constraints

1. Unconstrained case. \mathcal{S} contains all $\left\{\mathcal{F}_{t}\right\}_{t \in[0, T] \text {-semimartingales. }}$
2. Constraints on the number of assets. \mathcal{S} is the set of all d-dimensional $\left\{\mathcal{F}_{t}\right\}_{t \in[0, T] \text {-semimartingales. If } d<n \text {, where } n \text { is the spanning number of the }}$ filtration, no complete markets are allowed.
3. Information-constrained markets. Let $\left\{\mathcal{G}_{t}\right\}_{t \in[0, T]}$ be a sub-filtration of $\left\{\mathcal{F}_{t}\right\}_{t \in[0, T]}$, and let \mathcal{S} be the class of all $\left\{\mathcal{G}_{t}\right\}_{t \in[0, T] \text {-semimartingales. }}$
4. Partial-equilibrium models. Let $\left\{S_{t}^{L}\right\}_{t \in[0, T]}$ be a d-dimensional semimartingale. \mathcal{S} is some sub-collection of the set of all m-dimensional $\left\{\mathcal{F}_{t}\right\}_{t \in[0, T] \text {-semimartingales }}$ such that its first $d<m$ components coincide with S^{L}. We ask for market clearing only for the last $m-d$ components.

Examples of Completeness Constraints

1. Unconstrained case. \mathcal{S} contains all $\left\{\mathcal{F}_{t}\right\}_{t \in[0, T] \text {-semimartingales. }}$
2. Constraints on the number of assets. \mathcal{S} is the set of all d-dimensional $\left\{\mathcal{F}_{t}\right\}_{t \in[0, T] \text {-semimartingales. If } d<n \text {, where } n \text { is the spanning number of the }}$ filtration, no complete markets are allowed.
3. Information-constrained markets. Let $\left\{\mathcal{G}_{t}\right\}_{t \in[0, T]}$ be a sub-filtration of $\left\{\mathcal{F}_{t}\right\}_{t \in[0, T]}$, and let \mathcal{S} be the class of all $\left\{\mathcal{G}_{t}\right\}_{t \in[0, T] \text {-semimartingales. }}$
4. Partial-equilibrium models. Let $\left\{S_{t}^{L}\right\}_{t \in[0, T]}$ be a d-dimensional semimartingale. \mathcal{S} is some sub-collection of the set of all m-dimensional $\left\{\mathcal{F}_{t}\right\}_{t \in[0, T] \text {-semimartingales }}$ such that its first $d<m$ components coincide with S^{L}. We ask for market clearing only for the last $m-d$ components.
5. Dividend-paying assets. Let \mathcal{S} denote the set of all semimartingales $\left\{S_{t}\right\}_{t \in[0, T]}$ with $S_{T}=D$, for some $D \in \mathcal{F}_{T}$.

Examples of Completeness Constraints

1. Unconstrained case. \mathcal{S} contains all $\left\{\mathcal{F}_{t}\right\}_{t \in[0, T] \text {-semimartingales. }}$
2. Constraints on the number of assets. \mathcal{S} is the set of all d-dimensional $\left\{\mathcal{F}_{t}\right\}_{t \in[0, T] \text {-semimartingales. If } d<n \text {, where } n \text { is the spanning number of the }}$ filtration, no complete markets are allowed.
3. Information-constrained markets. Let $\left\{\mathcal{G}_{t}\right\}_{t \in[0, T]}$ be a sub-filtration of $\left\{\mathcal{F}_{t}\right\}_{t \in[0, T]}$, and let \mathcal{S} be the class of all $\left\{\mathcal{G}_{t}\right\}_{t \in[0, T] \text {-semimartingales. }}$
4. Partial-equilibrium models. Let $\left\{S_{t}^{L}\right\}_{t \in[0, T]}$ be a d-dimensional semimartingale. \mathcal{S} is some sub-collection of the set of all m-dimensional $\left\{\mathcal{F}_{t}\right\}_{t \in[0, T] \text {-semimartingales }}$ such that its first $d<m$ components coincide with S^{L}. We ask for market clearing only for the last $m-d$ components.
5. Dividend-paying assets. Let \mathcal{S} denote the set of all semimartingales $\left\{S_{t}\right\}_{t \in[0, T]}$ with $S_{T}=D$, for some $D \in \mathcal{F}_{T}$.
6. "Marketed-Set Constrained" markets Let V be a subspace of $\mathbb{L}^{0}\left(\mathcal{F}_{T}\right)$, and let \mathcal{S} be the collection of all finite dimensional semimartingales $\left\{S_{t}\right\}_{t \in[0, T]}$ such that

$$
\left\{x+\int_{0}^{T} \pi_{t} d S_{t}: x \in \mathbb{R}, \pi \in A d m\right\}=V
$$

Examples of Completeness Constraints

7. Markets with "fast-and-slow" information. Let $\left\{\mathcal{F}_{t}\right\}_{t \in[0, T]}$ be generated by two orthogonal martingales M^{1} and M^{2}, and let \mathcal{S} be the collection of all processes of the form

$$
S_{t}=A_{t}+M_{t}^{1}
$$

where A is any predictable process of finite variation.

Examples of Completeness Constraints

7. Markets with "fast-and-slow" information. Let $\left\{\mathcal{F}_{t}\right\}_{t \in[0, T]}$ be generated by two orthogonal martingales M^{1} and M^{2}, and let \mathcal{S} be the collection of all processes of the form

$$
S_{t}=A_{t}+M_{t}^{1}
$$

where A is any predictable process of finite variation.
Examples:

- $M^{1}=B, M^{2}=W$, where B and W are independent Brownian motions. The information in B is "fast", and that in W is "slow".

Examples of Completeness Constraints

7. Markets with "fast-and-slow" information. Let $\left\{\mathcal{F}_{t}\right\}_{t \in[0, T]}$ be generated by two orthogonal martingales M^{1} and M^{2}, and let \mathcal{S} be the collection of all processes of the form

$$
S_{t}=A_{t}+M_{t}^{1}
$$

where A is any predictable process of finite variation.
Examples:

- $M^{1}=B, M^{2}=W$, where B and W are independent Brownian motions. The information in B is "fast", and that in W is "slow".
- $M^{1}=B$ (Brownian motion), $M^{2}=N_{t}-t$ (1-jump compensated Poisson process) so that a "typical" element of S is given by

$$
S_{t}=\int_{0}^{t} \lambda_{u} d u+B_{t}
$$

M^{2} models an unpredictable catastrophic rare event (credit event, natural disaster, etc.)

Analysis

REPRESENTATIVE-AGENT/DIRECT ANALYSIS

Uses the fact that equilibrium allocations are Pareto optimal; works (essentially) only for complete markets.

Literature in continuous time:

- Complete markets: Bank, Cvitanić, Dana, Duffie, Huang, Karatzas, Lakner, Lehoczky, Malamud, Riedel, Shreve, Ž., etc.
- "Incomplete" markets: Basak and Cuoco '98 (incompleteness from restrictions in stock-market participation, logarithmic utility), Cheridito, Horst, Hugonnier, Mueller, Munk, Pirvu, etc.

Analysis

REPRESENTATIVE-AGENT/DIRECT ANALYSIS

Uses the fact that equilibrium allocations are Pareto optimal; works (essentially) only for complete markets.

Literature in continuous time:

- Complete markets: Bank, Cvitanić, Dana, Duffie, Huang, Karatzas, Lakner, Lehoczky, Malamud, Riedel, Shreve, Ž., etc.
- "Incomplete" markets: Basak and Cuoco '98 (incompleteness from restrictions in stock-market participation, logarithmic utility), Cheridito, Horst, Hugonnier, Mueller, Munk, Pirvu, etc.

ExCESS-DEMAND APPROACH

Introduced in the early 20th century. Only recently applied in continuous time (Anthropelos and Ž $(2008,2009)$, Ž (2009), Zhao and Ž (2009))

1. Establish good topological properties of the excess demand function $S \mapsto \sum_{i} \hat{\pi}^{i}(S)$, and then
2. use a suitable fixed-point-type theorem to show existence (Brouwer, KKM, degree-based, etc.)

A PARTIAL-EQUILIBRIUM PRICING MODEL (Anthropelos and Ž (2008))
Primitives

1. Information: $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \in[0, T]}, \mathbb{P}\right)$, usual conditions.

A PARTIAL-EQUILIbRIUM PRICING MODEL (Anthropelos and Ž (2008))

Primitives

1. Information: $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \in[0, T]}, \mathbb{P}\right)$, usual conditions.
2. Agents: $\mathcal{E}^{i} \in \mathcal{F}_{T}, i=1, \ldots, I, U^{i}(x)=-\exp \left(-\gamma^{i} x\right), x \in \mathbb{R}, \gamma^{i}>0$, $i=1, \ldots, I, \mathbb{P}^{i}=\mathbb{P}$ (without loss of generality),

A PARTIAL-EQUILIBRIUM PRICING MODEL (Anthropelos and Ž (2008))

Primitives

1. Information: $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \in[0, T]}, \mathbb{P}\right)$, usual conditions.
2. Agents: $\mathcal{E}^{i} \in \mathcal{F}_{T}, i=1, \ldots, I, U^{i}(x)=-\exp \left(-\gamma^{i} x\right), x \in \mathbb{R}, \gamma^{i}>0$, $i=1, \ldots, I, \mathbb{P}^{i}=\mathbb{P}$ (without loss of generality)
3. Completeness constraints: Let $\left\{S_{t}^{L}\right\}_{t \in[0, T]}$ be a locally bounded finite-dimensional semimartingale (NFLVR), and let $\left(B_{1}, \ldots B_{n}\right) \in\left(\mathbb{L}^{\infty}\right)^{n}$ be a "bundle" of contingent claims. For $p \in \mathbb{R}$ and $k=1, \ldots, n$ define the processes $S_{t}^{k}(p)=\left\{\begin{array}{ll}p, & t<T, \\ B_{k}, & t=T\end{array}\right.$, and set $\mathcal{S}=\left\{\left(S^{L}, S^{1}(p), \ldots, S^{n}(p)\right): p \in \mathbb{R}\right\}$.

A PARTIAL-EQUILIBRIUM PRICING MODEL (Anthropelos and Ž (2008))

Primitives

1. Information: $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \in[0, T]}, \mathbb{P}\right)$, usual conditions.
2. Agents: $\mathcal{E}^{i} \in \mathcal{F}_{T}, i=1, \ldots, I, U^{i}(x)=-\exp \left(-\gamma^{i} x\right), x \in \mathbb{R}, \gamma^{i}>0$, $i=1, \ldots, I, \mathbb{P}^{i}=\mathbb{P}$ (without loss of generality),
3. Completeness constraints: Let $\left\{S_{t}^{L}\right\}_{t \in[0, T]}$ be a locally bounded finite-dimensional semimartingale (NFLVR), and let $\left(B_{1}, \ldots B_{n}\right) \in\left(\mathbb{L}^{\infty}\right)^{n}$ be a "bundle" of contingent claims. For $p \in \mathbb{R}$ and $k=1, \ldots, n$ define the processes $S_{t}^{k}(p)=\left\{\begin{array}{ll}p, & t<T, \\ B_{k}, & t=T\end{array}\right.$, and set $\mathcal{S}=\left\{\left(S^{L}, S^{1}(p), \ldots, S^{n}(p)\right): p \in \mathbb{R}\right\}$.

Existence and uniqueness results

Let $\Delta^{i}(p) \in \mathbb{R}^{n}$ denote the optimal quantity of $\left(B_{1}, \ldots, B_{n}\right) \in \mathbb{R}^{n}$ for the agent i in the market $S(p)=\left(S^{L}, S^{1}(p), \ldots, S^{n}(p)\right)$. Then,

1. Δ^{i} is the Legendre transform of the (buyer's, conditional) indifference price of $\left(B_{1}, \ldots, B_{n}\right)$.
2. There exists a unique equilibrium $S=S\left(p^{*}\right) \in \mathcal{S}$ and p^{*} can be characterized as a minimum of a functional involving conditional indifference prices.

A PARTIAL-EQUILIBRIUM PRICING MODEL (Anthropelos and Ž (2009))

A QUEStion of stability

1. Let's generalize the exponential-utility assumption: each agent uses a convex measure of risk ρ^{i} with the acceptance set $\mathcal{A}^{i}=\left\{X \in \mathbb{L}^{\infty}\left(\mathcal{F}_{T}\right): \rho^{i}(X) \leq 0\right\}$.
2. The results about existence and uniqueness of the equilibrium still hold.
3. Question: is the equilibrium stable? Would it change dramatically if we replaced ρ^{i} by a "nearby" $\hat{\rho}^{i}, i=1, \ldots, I$?

A PARTIAL-EQUILIBRIUM PRICING MODEL (Anthropelos and Ž (2009))

A QUEStion of Stability

1. Let's generalize the exponential-utility assumption: each agent uses a convex measure of risk ρ^{i} with the acceptance set $\mathcal{A}^{i}=\left\{X \in \mathbb{L}^{\infty}\left(\mathcal{F}_{T}\right): \rho^{i}(X) \leq 0\right\}$.
2. The results about existence and uniqueness of the equilibrium still hold.
3. Question: is the equilibrium stable? Would it change dramatically if we replaced ρ^{i} by a "nearby" $\hat{\rho}^{i}, i=1, \ldots, I$?

Kuratowski convergence

A sequence $\left\{C_{n}\right\}_{n \in \mathbb{N}}$ of closed subsets of \mathbb{R}^{d} converges to $C \subseteq \mathbb{R}^{d}$ in the Kuratowski sense - denoted by $C_{n} \xrightarrow{K} C$ - if

$$
\begin{equation*}
\operatorname{Ls} C_{n} \subseteq C \subseteq \operatorname{Li} C_{n}, \tag{1}
\end{equation*}
$$

$$
\begin{align*}
\text { Li } C_{n} & =\left\{c \in \mathbb{R}^{d}: c=\lim c_{k}, c_{k} \in C_{k}, \text { eventually }\right\} \\
\text { Ls } C_{n} & =\left\{c \in \mathbb{R}^{d}: c=\lim c_{k}, c_{k} \in C_{k}, \text { infinitely often }\right\} . \tag{2}
\end{align*}
$$

A good first-order intuition for regular-enough $\left\{C_{n}\right\}_{n \in \mathbb{N}}$: sets converge in the Kuratowski sense if their "boundaries converge pointwise".

A PARTIAL-EQUILIBRIUM PRICING MODEL (Anthropelos and Ž (2009)) II

A Stability result

1. For an acceptance set \mathcal{A}, define its B-projection by

$$
\begin{aligned}
& \mathcal{A}(B)=\left\{\left(m, \alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}^{n+1}:\right. \\
&\left.\exists \pi \in A d m, m+\alpha_{1} B_{1}+\cdots+\alpha B_{n}+\int_{0}^{T} \pi_{u} d S_{u}^{L} \in \mathcal{A}\right\} .
\end{aligned}
$$

A Partial-EQuilibrium pricing model (Anthropelos and ž (2009)) II

A stability result

1. For an acceptance set \mathcal{A}, define its B-projection by

$$
\begin{aligned}
& \mathcal{A}(B)=\left\{\left(m, \alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}^{n+1}:\right. \\
&\left.\exists \pi \in A d m, m+\alpha_{1} B_{1}+\cdots+\alpha B_{n}+\int_{0}^{T} \pi_{u} d S_{u}^{L} \in \mathcal{A}\right\} .
\end{aligned}
$$

2. Let $\left(\mathcal{A}_{n}^{1}, \ldots, \mathcal{A}_{n}^{I}\right)$ be a sequence of I-tuples of acceptance sets such that for $i=1, \ldots, I$, we have
$2.1 \mathcal{A}_{n}^{i}(B) \xrightarrow{K} \mathcal{A}^{i}(B)$, and
2.2 the sets $\left\{\mathcal{A}_{n}^{i}(B)\right\}_{n \in \mathbb{N}}$ are uniformly strictly convex.
2.3 a number of smaller, "non-triviality", assumptions,

Then $p_{n} \rightarrow p$, where p_{n} is the unique equilibrium price for the setup with agent primitives $\left(\mathcal{A}_{n}^{1}, \ldots, \mathcal{A}_{n}^{I}\right)$, and p is the unique equilibrium price for $\left(\mathcal{A}^{1}, \ldots, \mathcal{A}^{I}\right)$

A Partial-equilibrium pricing model (Anthropelos and ž (2009)) II

A STABILITY RESULT

1. For an acceptance set \mathcal{A}, define its B-projection by

$$
\begin{aligned}
& \mathcal{A}(B)=\left\{\left(m, \alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}^{n+1}:\right. \\
&\left.\exists \pi \in A d m, m+\alpha_{1} B_{1}+\cdots+\alpha B_{n}+\int_{0}^{T} \pi_{u} d S_{u}^{L} \in \mathcal{A}\right\}
\end{aligned}
$$

2. Let $\left(\mathcal{A}_{n}^{1}, \ldots, \mathcal{A}_{n}^{I}\right)$ be a sequence of I-tuples of acceptance sets such that for $i=1, \ldots, I$, we have
$2.1 \mathcal{A}_{n}^{i}(B) \xrightarrow{K} \mathcal{A}^{i}(B)$, and
2.2 the sets $\left\{\mathcal{A}_{n}^{i}(B)\right\}_{n \in \mathbb{N}}$ are uniformly strictly convex.
2.3 a number of smaller, "non-triviality", assumptions,

Then $p_{n} \rightarrow p$, where p_{n} is the unique equilibrium price for the setup with agent primitives $\left(\mathcal{A}_{n}^{1}, \ldots, \mathcal{A}_{n}^{I}\right)$, and p is the unique equilibrium price for $\left(\mathcal{A}^{1}, \ldots, \mathcal{A}^{I}\right)$
3. Example: If all agents are exponential-utility maximizers, the condition $\gamma_{n}^{i} \rightarrow \gamma^{i}>0, i=1, \ldots, I$, will do.

A PARTIAL-EQUILIBRIUM PRICING MODEL (Anthropelos and Ž (2009)) II

A STABILITY RESULT

1. For an acceptance set \mathcal{A}, define its B-projection by

$$
\begin{aligned}
& \mathcal{A}(B)=\left\{\left(m, \alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}^{n+1}:\right. \\
& \left.\quad \exists \pi \in A d m, m+\alpha_{1} B_{1}+\cdots+\alpha B_{n}+\int_{0}^{T} \pi_{u} d S_{u}^{L} \in \mathcal{A}\right\} .
\end{aligned}
$$

2. Let $\left(\mathcal{A}_{n}^{1}, \ldots, \mathcal{A}_{n}^{I}\right)$ be a sequence of I-tuples of acceptance sets such that for $i=1, \ldots, I$, we have
$2.1 \mathcal{A}_{n}^{i}(B) \xrightarrow{K} \mathcal{A}^{i}(B)$, and
2.2 the sets $\left\{\mathcal{A}_{n}^{i}(B)\right\}_{n \in \mathbb{N}}$ are uniformly strictly convex.
2.3 a number of smaller, "non-triviality", assumptions,

Then $p_{n} \rightarrow p$, where p_{n} is the unique equilibrium price for the setup with agent primitives $\left(\mathcal{A}_{n}^{1}, \ldots, \mathcal{A}_{n}^{I}\right)$, and p is the unique equilibrium price for $\left(\mathcal{A}^{1}, \ldots, \mathcal{A}^{I}\right)$
3. Example: If all agents are exponential-utility maximizers, the condition $\gamma_{n}^{i} \rightarrow \gamma^{i}>0, i=1, \ldots, I$, will do.
4. Example: if the acceptance sets/risk measures are utility-based, then it is (essentially) enough that $\mathbb{P}_{n}^{i} \rightarrow \mathbb{P}^{i}$ in total variation, $U_{n}^{i} \rightarrow U^{i}$ pointwise and $x_{n}^{i} \rightarrow x^{i}$ for the required Kuratowski convergence + uniform strict convexity.

A FAST-AND SLOW MODEL (Ž (2009))

Primitives

1. Information: $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}^{B, N}\right\}_{t \in[0, T]}, \mathbb{P}\right)$, where $\left\{B_{t}\right\}_{t \in[0, T]}$ is a Brownian motion and $\left\{N_{t}\right\}_{t \in[0, T]}$ is a Poisson process with intensity μ stopped after the first jump.

A FAST-AND SLOW MODEL (Ž (2009))

Primitives

1. Information: $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}^{B, N}\right\}_{t \in[0, T]}, \mathbb{P}\right)$, where $\left\{B_{t}\right\}_{t \in[0, T]}$ is a Brownian motion and $\left\{N_{t}\right\}_{t \in[0, T]}$ is a Poisson process with intensity μ stopped after the first jump.
2. Agents: $\mathcal{E}^{i}=g^{i}\left(B_{T}, N_{T}\right), U^{i}(x)=-\exp \left(-\gamma^{i} x\right), \gamma^{i}>0, \mathbb{P}^{i}=\mathbb{P}$

A FAST-AND SLOW MODEL (Ž (2009))

Primitives

1. Information: $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}^{B, N}\right\}_{t \in[0, T]}, \mathbb{P}\right)$, where $\left\{B_{t}\right\}_{t \in[0, T]}$ is a Brownian motion and $\left\{N_{t}\right\}_{t \in[0, T]}$ is a Poisson process with intensity μ stopped after the first jump.
2. Agents: $\mathcal{E}^{i}=g^{i}\left(B_{T}, N_{T}\right), U^{i}(x)=-\exp \left(-\gamma^{i} x\right), \gamma^{i}>0, \mathbb{P}^{i}=\mathbb{P}$
3. Completeness constraints: We let \mathcal{S} be the collection of all processes of the form $S_{t}=A_{u}+B_{t}$, where A ranges through the class of all $\left\{\mathcal{F}_{t}^{N, B}\right\}_{t \in[0, T] \text { - predictable }}$ FV processes.

A FAST-AND SLOW MODEL (Ž (2009))

Primitives

1. Information: $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}^{B, N}\right\}_{t \in[0, T]}, \mathbb{P}\right)$, where $\left\{B_{t}\right\}_{t \in[0, T]}$ is a Brownian motion and $\left\{N_{t}\right\}_{t \in[0, T]}$ is a Poisson process with intensity μ stopped after the first jump.
2. Agents: $\mathcal{E}^{i}=g^{i}\left(B_{T}, N_{T}\right), U^{i}(x)=-\exp \left(-\gamma^{i} x\right), \gamma^{i}>0, \mathbb{P}^{i}=\mathbb{P}$
3. Completeness constraints: We let \mathcal{S} be the collection of all processes of the form $S_{t}=A_{u}+B_{t}$, where A ranges through the class of all $\left\{\mathcal{F}_{t}^{N, B}\right\}_{t \in[0, T] \text { - predictable }}$ FV processes.

An executive decision

Restrict your search to only those D which admit the representation of the form

$$
A_{t}=\int_{0}^{t} \lambda\left(u, B_{u}, N_{u-}\right) d u+B_{t}
$$

where $\lambda:[0, T] \times \mathbb{R} \times\{0,1\} \rightarrow \mathbb{R}$ belongs to the (anisotropic) Hölder space

$$
C^{\alpha}([0, T] \times \mathbb{R} \times\{0,1\})
$$

(Note: C^{α} can be viewed as a parameter space for a convenient parametrization of the (subset of) the completeness constraint \mathcal{S}.)

A FAST-AND SLOW MODEL (Ž (2009)) - THE ANALYSIS

Step I

Express the agent i 's optimal portfolio (we drop i from the notation) in the form

$$
\hat{\pi}_{t}(\lambda)=\frac{1}{\gamma} \lambda\left(t, B_{t}, N_{t-}\right)-u_{x}\left(t, B_{t}, N_{t-}\right)
$$

where u solves the semi-linear system of two interacting PDEs

$$
\left\{\begin{array}{l}
0=u_{t}+\frac{1}{2} u_{x x}-\lambda u_{x}+\frac{1}{2 \gamma} \lambda^{2}-\frac{\mu}{\gamma}\left(\exp \left(-\gamma u_{n}\right)-1\right) \\
u(T, \cdot, \cdot)=g
\end{array}\right.
$$

where $u_{n}(t, x, 0)=u(t, x, 1)-u(t, x, 0), u_{n}(t, x, 1)=0$.

A FAST-AND SLOW MODEL (Ž (2009)) - THE ANALYSIS

Step I

Express the agent i 's optimal portfolio (we drop i from the notation) in the form

$$
\hat{\pi}_{t}(\lambda)=\frac{1}{\gamma} \lambda\left(t, B_{t}, N_{t-}\right)-u_{x}\left(t, B_{t}, N_{t-}\right)
$$

where u solves the semi-linear system of two interacting PDEs

$$
\left\{\begin{array}{l}
0=u_{t}+\frac{1}{2} u_{x x}-\lambda u_{x}+\frac{1}{2 \gamma} \lambda^{2}-\frac{\mu}{\gamma}\left(\exp \left(-\gamma u_{n}\right)-1\right) \\
u(T, \cdot, \cdot)=g
\end{array}\right.
$$

where $u_{n}(t, x, 0)=u(t, x, 1)-u(t, x, 0), u_{n}(t, x, 1)=0$.

Step II

Write the market-clearing condition $0=\sum_{i=1}^{I} \hat{\pi}_{t}^{i}(\lambda)$ in the form $F(\lambda)=\lambda$, where

$$
F(\lambda)=\bar{\gamma} \sum_{i=1}^{I} u_{x}^{i}(\lambda), \text { and } \frac{1}{\bar{\gamma}}=\sum_{i=1}^{I} \frac{1}{\gamma^{i}}
$$

A FAST-AND SLOW MODEL (Ž (2009)) - THE ANALYSIS II

Step III

Show that the mapping

$$
\lambda \mapsto u_{x}^{i}(\lambda)
$$

is Lipschitz in C^{α} (use Schauder theory and Hölder interpolation).
(If you are curious, here is a (crude) estimate

$$
\begin{aligned}
L(R)=C T^{\frac{1+\alpha}{2+\alpha}} \exp \left(\operatorname { e x p } \left(2+2 \gamma^{i}\left\|g^{i}\right\|_{0}\right.\right. & \left.\left.+T R^{2}+2 \mu T\right)\right) \times \\
& \times\left(\left\|g^{i}\right\|_{2+\alpha}+(1+T)\left(1+R^{2}\right)\right)^{6+4 \alpha}
\end{aligned}
$$

of the Lipschitz constant.)

A FASt-AND SLOW MODEL (Ž (2009)) - THE ANALYSIS II

Step III

Show that the mapping

$$
\lambda \mapsto u_{x}^{i}(\lambda)
$$

is Lipschitz in C^{α} (use Schauder theory and Hölder interpolation).
(If you are curious, here is a (crude) estimate

$$
\begin{aligned}
L(R)=C T^{\frac{1+\alpha}{2+\alpha}} \exp \left(\operatorname { e x p } \left(2+2 \gamma^{i}\left\|g^{i}\right\|_{0}\right.\right. & \left.\left.+T R^{2}+2 \mu T\right)\right) \times \\
& \times\left(\left\|g^{i}\right\|_{2+\alpha}+(1+T)\left(1+R^{2}\right)\right)^{6+4 \alpha}
\end{aligned}
$$

of the Lipschitz constant.)
Step IV
Pick T small enough and apply the Banach fixed-point theorem to the function F.
Conjecture: small T is not needed (use of a properly weighted Hölder space)

A FAST-AND SLOW MODEL (Ž (2009)) - THE ANALYSIS II

Step III

Show that the mapping

$$
\lambda \mapsto u_{x}^{i}(\lambda)
$$

is Lipschitz in C^{α} (use Schauder theory and Hölder interpolation).
(If you are curious, here is a (crude) estimate

$$
\begin{aligned}
L(R)=C T^{\frac{1+\alpha}{2+\alpha}} \exp \left(\operatorname { e x p } \left(2+2 \gamma^{i}\left\|g^{i}\right\|_{0}+\right.\right. & \left.\left.T R^{2}+2 \mu T\right)\right) \times \\
& \times\left(\left\|g^{i}\right\|_{2+\alpha}+(1+T)\left(1+R^{2}\right)\right)^{6+4 \alpha} .
\end{aligned}
$$

of the Lipschitz constant.)
Step IV
Pick T small enough and apply the Banach fixed-point theorem to the function F.
Conjecture: small T is not needed (use of a properly weighted Hölder space)

Bonus

The fact that the Banach fixed-point theorem applies allows for efficient computation algorithms to be used.

ANOTHER FAST-AND SLOW MODEL (Zhao and Ž (2009))

Primitives

1. Information: $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}^{B, W}\right\}_{t \in[0, T]}, \mathbb{P}\right)$, where $\left\{B_{t}\right\}_{t \in[0, T]}$ and $\left\{W_{t}\right\}_{t \in[0, T]}$ are independent Brownian motions

ANOTHER FAST-AND SLOW MODEL (Zhao and Ž (2009))

Primitives

1. Information: $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}^{B, W}\right\}_{t \in[0, T]}, \mathbb{P}\right)$, where $\left\{B_{t}\right\}_{t \in[0, T]}$ and $\left\{W_{t}\right\}_{t \in[0, T]}$ are independent Brownian motions
2. Agents: $\mathcal{E}^{i}=g^{i}\left(B_{T}, W_{T}\right), U^{i}(x)=-\exp \left(-\gamma^{i} x\right), \gamma^{i}>0, \mathbb{P}^{i}=\mathbb{P}$

ANOTHER FAST-AND SLOW MODEL (Zhao AND Ž (2009))

Primitives

1. Information: $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}^{B, W}\right\}_{t \in[0, T]}, \mathbb{P}\right)$, where $\left\{B_{t}\right\}_{t \in[0, T]}$ and $\left\{W_{t}\right\}_{t \in[0, T]}$ are independent Brownian motions
2. Agents: $\mathcal{E}^{i}=g^{i}\left(B_{T}, W_{T}\right), U^{i}(x)=-\exp \left(-\gamma^{i} x\right), \gamma^{i}>0, \mathbb{P}^{i}=\mathbb{P}$
3. Completeness constraints: We let \mathcal{S} be the collection of all processes of the form $S_{t}=A_{u}+B_{t}$, where A ranges through the class of all $\left\{\mathcal{F}_{t}^{B, W}\right\}_{t \in[0, T]-\text { predictable }}$ FV processes.

ANOTHER FAST-AND SLOW MODEL (Zhao AND Ž (2009))

Primitives

1. Information: $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}^{B, W}\right\}_{t \in[0, T]}, \mathbb{P}\right)$, where $\left\{B_{t}\right\}_{t \in[0, T]}$ and $\left\{W_{t}\right\}_{t \in[0, T]}$ are independent Brownian motions
2. Agents: $\mathcal{E}^{i}=g^{i}\left(B_{T}, W_{T}\right), U^{i}(x)=-\exp \left(-\gamma^{i} x\right), \gamma^{i}>0, \mathbb{P}^{i}=\mathbb{P}$
3. Completeness constraints: We let \mathcal{S} be the collection of all processes of the form $S_{t}=A_{u}+B_{t}$, where A ranges through the class of all $\left\{\mathcal{F}_{t}^{B, W}\right\}_{t \in[0, T]}$-predictable FV processes.

An executive decision

Restrict your search to only those A which admit the representation of the form

$$
A_{t}=\int_{0}^{t} \lambda\left(u, B_{u}, W_{u}\right) d u+B_{t},
$$

where $\lambda:[0, T] \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ belongs to the (anisotropic) Hölder space

$$
C^{\alpha}\left([0, T] \times \mathbb{R}^{2}\right)
$$

Another fast-and slow model (Zhao and ž (2009)) - Analysis

A PARABOLIC SYSTEM

It can be shown that $\lambda \in C^{\alpha}$ is an equilibrium market-price-of-risk if and only if $\lambda=\bar{\gamma} \sum_{i=1}^{I} u_{x}^{i}$, where $\left(u^{1}, \ldots, u^{I}\right)$ solves the following quasilinear parabolic system of I equations:

$$
\left\{\begin{array}{l}
u_{t}^{i}+\frac{1}{2} \Delta u^{i}+\bar{\gamma} u_{x}^{i}\left(\sum_{k=1}^{I} u_{x}^{k}\right)+\frac{\bar{\gamma}^{2}}{2 \gamma^{2}}\left(\sum_{k=1}^{I} u_{x}^{k}\right)^{2}-\frac{\gamma^{i}}{2}\left(u_{y}^{i}\right)^{2}=0 \\
u^{i}(T, x, y)=g^{i}(x, y)
\end{array}\right.
$$

Another fast-and slow model (Zhao and ž (2009)) - Analysis

A PARABOLIC SYSTEM

It can be shown that $\lambda \in C^{\alpha}$ is an equilibrium market-price-of-risk if and only if $\lambda=\bar{\gamma} \sum_{i=1}^{I} u_{x}^{i}$, where $\left(u^{1}, \ldots, u^{I}\right)$ solves the following quasilinear parabolic system of I equations:

$$
\left\{\begin{array}{l}
u_{t}^{i}+\frac{1}{2} \Delta u^{i}+\bar{\gamma} u_{x}^{i}\left(\sum_{k=1}^{I} u_{x}^{k}\right)+\frac{\bar{\gamma}^{2}}{2 \gamma^{2}}\left(\sum_{k=1}^{I} u_{x}^{k}\right)^{2}-\frac{\gamma^{i}}{2}\left(u_{y}^{i}\right)^{2}=0 \\
u^{i}(T, x, y)=g^{i}(x, y)
\end{array}\right.
$$

Existence and uniqueness

A delicate analysis based on the use of Schauder's fixed-point theorem on an appropriatelytuned domain yields existence. Uniqueness follows from classical energy estimates.

Another fast-and slow model (Zhao and ž (2009)) - Analysis

A PARABOLIC SYSTEM

It can be shown that $\lambda \in C^{\alpha}$ is an equilibrium market-price-of-risk if and only if $\lambda=\bar{\gamma} \sum_{i=1}^{I} u_{x}^{i}$, where $\left(u^{1}, \ldots, u^{I}\right)$ solves the following quasilinear parabolic system of I equations:

$$
\left\{\begin{array}{l}
u_{t}^{i}+\frac{1}{2} \Delta u^{i}+\bar{\gamma} u_{x}^{i}\left(\sum_{k=1}^{I} u_{x}^{k}\right)+\frac{\bar{\gamma}^{2}}{2 \gamma^{2}}\left(\sum_{k=1}^{I} u_{x}^{k}\right)^{2}-\frac{\gamma^{i}}{2}\left(u_{y}^{i}\right)^{2}=0 \\
u^{i}(T, x, y)=g^{i}(x, y)
\end{array}\right.
$$

Existence and uniqueness

A delicate analysis based on the use of Schauder's fixed-point theorem on an appropriatelytuned domain yields existence. Uniqueness follows from classical energy estimates.

Backward SDEs

Once can rephrase the above in the language of BSDE: we obtain a coupled system of nonlinear BSDEs with quadratic growth. Existence can be obtained in fair generality. General uniqueness is still unavailable.

