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Portfolio Selection Models

Fundamental Assumptions

Economy: A linear pricing rule (existence of a pricing kernel)

Agent: “the more money (initial endowment) the better
(w.r.t. her criterion)”
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Expected Utility Maximisation

Max
X

Eu(X)

Subject to E[ρX] = x0,

X ≥ 0
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Expected Utility Maximisation

Max
X

Eu(X)

Subject to E[ρX] = x0,

X ≥ 0

where

X: terminal payoff (cash flow) – an FT random variable

u(·): utility function (typically concave)

ρ: pricing kernel – an FT random variable

x0: initial wealth

Merton (1971); abundant research thereafter
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Mean–Variance Portfolio Selection

Min
X

Var(X)

Subject to E[ρX] = x0,

E[X] = z,

X ≥ 0

where

X: terminal payoff

ρ: pricing kernel

x0: initial wealth

z: targeted mean payoff

Markowitz (1952); abundant research thereafter
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Goal Achieving

Max
X

P (X ≥ b)

Subject to E[ρX] = x0,

X ≥ 0

where

X: terminal payoff

b: goal

ρ: pricing kernel

x0: initial wealth

Kulldorff (1993), Heath (1993), Browne (1999), Föllmer and
Leukert (1999), Spivak and Cvitanić (1999), etc.
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Yaari’s Dual Theory

Max
X

∫ ∞
0 T (P (X > x))dx

Subject to E[ρX] = x0,

X ≥ 0
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Yaari’s Dual Theory

Max
X

∫ ∞
0 T (P (X > x))dx

Subject to E[ρX] = x0,

X ≥ 0

where

T : [0, 1] → [0, 1] (nonlinear) function

X: terminal payoff

ρ: pricing kernel

x0: initial wealth

Yaari (1987) - the criterion only
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Yaari’s Dual Theory (Cont’d)

Expected utility Eu(X) =
∫ ∞
0 u(x)dFX(x)
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Yaari’s Dual Theory (Cont’d)

Expected utility Eu(X) =
∫ ∞
0 u(x)dFX(x)

Yaari’s dual criterion
∫ ∞
0 T (P (X > x))dx ≡

∫ ∞
0 xd [−T (1 − FX(x))]

Both are some sort of “distortions”

u(·): distortion in payment
T (·): distortion in distribution function

Yaari’s criterion
∫ ∞
0 T (P (X > x))dx ≡

∫ ∞
0 (T ◦ P )(X > x)dx: Choquet

expectation under capacity T ◦ P - non-expected utility

Risk averse iff T is convex (Yaari 1987)
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Lopes’ SP/A Model

Max
X

∫ ∞
0 T (P (X > x))dx

Subject to P (X ≥ A) ≥ α

E[ρX] = x0,

X ≥ 0
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Lopes’ SP/A Model

Max
X

∫ ∞
0 T (P (X > x))dx

Subject to P (X ≥ A) ≥ α

E[ρX] = x0,

X ≥ 0

where

T : [0, 1] → [0, 1] (nonlinear) function

A ≥ 0: aspiration level

α: confidence level

ρ: pricing kernel

x0: initial wealth

Lopes (1987) - criterion; Lopes and Oden (1999)- single period
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Lopes’ SP/A Model (Cont’d)

S: Security; P: Potential; A: Aspiration
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In Lopes (1987)

T (y) = wyqs+1 + (1 − w)
[

1 − (1 − y)qp+1
]

where 0 < w < 1, qs, qp > 0
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Lopes’ SP/A Model (Cont’d)

S: Security; P: Potential; A: Aspiration

In Lopes (1987)

T (y) = wyqs+1 + (1 − w)
[

1 − (1 − y)qp+1
]

where 0 < w < 1, qs, qp > 0

yqs+1: convex or risk averse (security)

1 − (1 − y)qp+1: concave or risk seeking (potential)

A: goal (aspiration)

An instantiation of behavioural economics/finance theory
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Kahneman and Tversky’s Prospect Theory

Max
X

∫ ∞
0 T+ (P (u+ ((X − B)+) > x)) dx

−
∫ ∞
0 T− (P (u− ((X − B)−) > x)) dx

Subject to E[ρX] = x0
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Kahneman and Tversky’s Prospect Theory

Max
X

∫ ∞
0 T+ (P (u+ ((X − B)+) > x)) dx

−
∫ ∞
0 T− (P (u− ((X − B)−) > x)) dx

Subject to E[ρX] = x0

where

B: reference point in wealth (possibly random)

X: terminal payoff

T± : [0, 1] → [0, 1] probability distortions

u+(x)1x≥0 − u−(x)1x<0: overall utility function

ρ: pricing kernel

x0: initial endowment

Kahneman and Tversky (1979, 1991), Berkelaar, Kouwenberg and
Post (2004), Jin and Zhou (2008)
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Prospect Theory

Reference point (Kahneman and Tversky 1979) or customary
wealth (Markowitz 1952)
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Prospect Theory

Reference point (Kahneman and Tversky 1979) or customary
wealth (Markowitz 1952)

S-shaped utility function (risk-averse on gains, risk-seeking on
losses)

Probability distortions

Backbone of behavioral economics/finance theory
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Approaches

Expected utility and mean-variance: stochastic control/HJB,
martingale/convex duality
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Approaches

Expected utility and mean-variance: stochastic control/HJB,
martingale/convex duality

Goal achieving (still expected utility): HJB

Non-expected utility maximisation (Yaari’s dual model, SP/A
model and prospect model): ???

Nonconcave in X: convex duality fails
Nonlinear expectation with Choquet integration:
time-consistency or HJB fails
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Questions

Can we

solve the non-expected utility maximisation models (Yaari,
SP/A, prospect theory); and
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Questions

Can we

solve the non-expected utility maximisation models (Yaari,
SP/A, prospect theory); and

establish/develop a unified framework/approach to solve all
the six models (expected and non expected, and many others)
once and for all

YES WE CAN! All it takes: A new perspective

Xunyu Zhou/Oxford Finding Quantiles



Commonality in Six Models

Preference measures

Expected Utility:
∫ ∞
0 u(x)dFX(x)
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Commonality in Six Models

Preference measures

Expected Utility:
∫ ∞
0 u(x)dFX(x)

Mean Variance: −
[∫ ∞

0 x2dFX(x) − z2
]

Goal Achieving:
∫ ∞
0 1(x≥b)dFX(x)

Yaari:
∫ ∞
0 xd {−T [1 − FX(x)]}

SP/A:
∫ ∞
0 xd {−T [1 − FX(x)]}

Prospect Theory:
∫ ∞
B

u+(x − B)d {−T+ (1 − FX(x))} −
∫ B

−∞ u−(B − x)d {T− (FX(x))}
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Commonality in Six Models (Cont’d)

Commonality:
∫ ∞
−∞ u(x)d [T (FX(x))] where u(·) and

T : [0, 1] → [0, 1] nonlinear (Quiggin 1982: rank dependent
utility)
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Commonality in Six Models (Cont’d)

Commonality:
∫ ∞
−∞ u(x)d [T (FX(x))] where u(·) and

T : [0, 1] → [0, 1] nonlinear (Quiggin 1982: rank dependent
utility)
Law invariant
Note

∫ ∞

−∞
u(x)d [T (FX(x))] =

∫ 1

0
u

(

F−1
X (z)

)

d (T (z))

=

∫ 1

0
u

(

F−1
X (z)

)

T ′(z)dz

(

= E
[

u(G(Z))T ′(Z)
]

)

where Z ∼ U(0, 1) and G = F−1
X (quantile function)
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T : [0, 1] → [0, 1] nonlinear (Quiggin 1982: rank dependent
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Law invariant
Note
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0
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)
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=

∫ 1

0
u

(
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)
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(

= E
[
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)

where Z ∼ U(0, 1) and G = F−1
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We change decision variable from X (r.v.) to G (quantile)
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Commonality in Six Models (Cont’d)

Commonality:
∫ ∞
−∞ u(x)d [T (FX(x))] where u(·) and

T : [0, 1] → [0, 1] nonlinear (Quiggin 1982: rank dependent
utility)
Law invariant
Note

∫ ∞

−∞
u(x)d [T (FX(x))] =

∫ 1

0
u

(

F−1
X (z)

)

d (T (z))

=

∫ 1

0
u

(

F−1
X (z)

)

T ′(z)dz

(

= E
[

u(G(Z))T ′(Z)
]

)

where Z ∼ U(0, 1) and G = F−1
X (quantile function)

We change decision variable from X (r.v.) to G (quantile)
... by which we recover linear expectation and concavity (if
u(·) is concave)!
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Budget Constraint

Express E [ρX] = x0 in terms of quantiles
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Budget Constraint

Express E [ρX] = x0 in terms of quantiles

Difficulty: E [ρX] is not law-invariant

Way out: think duality (performance vs. cost)

One may substitute X in preference measures by any r.v. Y –
so long as the distribution remains unchanged

... which one is the cheapest?

Consider minY ∼X E [ρY ]

Unique optimal Y = G(Z) where Z := 1 − Fρ(ρ) ∼ U(0, 1)
and G is quantile of X, provided that ρ has no atom (Dybvig
1988, Jin and Zhou 2008)
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Budget Constraint

Express E [ρX] = x0 in terms of quantiles

Difficulty: E [ρX] is not law-invariant

Way out: think duality (performance vs. cost)

One may substitute X in preference measures by any r.v. Y –
so long as the distribution remains unchanged

... which one is the cheapest?

Consider minY ∼X E [ρY ]

Unique optimal Y = G(Z) where Z := 1 − Fρ(ρ) ∼ U(0, 1)
and G is quantile of X, provided that ρ has no atom (Dybvig
1988, Jin and Zhou 2008)

Hence

E[ρX] = x0 ⇔ E
[

F−1
ρ (1 − Z)G(Z)

]

= x0

⇔

∫ 1

0
F−1

ρ (1 − z)G(z)dz = x0
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A General Portfolio Selection Model

Max
G(·)

∫ 1
0 u(G(z))T ′(z)dz

Subject to
∫ 1
0 F−1

ρ (1 − z)G(z)dz = x0

G(·) ∈ G ∩ M

where
G = {G : [0, 1) → R

+, nondecreasing, left continuous, G(0+) > −∞}

and M specifies some other constraints
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A General Portfolio Selection Model

Max
G(·)

∫ 1
0 u(G(z))T ′(z)dz

Subject to
∫ 1
0 F−1

ρ (1 − z)G(z)dz = x0

G(·) ∈ G ∩ M

where
G = {G : [0, 1) → R

+, nondecreasing, left continuous, G(0+) > −∞}

and M specifies some other constraints

Also covers models involving VaR/CVaR
objectives/constraints, mean–variance and many others

Solvable by Lagrange!

If G∗(·) is optimal then X∗ = G∗(1 − Fρ(ρ)): optimal
terminal cash flow is anti-comonotonic w.r.t. pricing kernel ρ
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Example 1. Goal Achieving

Max P (X ≥ b)
s.t. E[ρX] = x0

X ≥ 0

where b > 0, and 0 < x0 < bE[ρ]
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Example 1. Goal Achieving

Max P (X ≥ b)
s.t. E[ρX] = x0

X ≥ 0

where b > 0, and 0 < x0 < bE[ρ]

P (X ≥ b) =
∫ ∞
0 1x≥bdF (x) =

∫ 1
0 1(F−1(z)≥b)dz

X ≥ 0 ⇔ F (0−) = 0 ⇔ G(0+) ≥ 0

Quantile formulation

Max Q(G) =
∫ 1
0 1(G(z)≥b)dz

s.t.
∫ 1
0 F−1

ρ (1 − z)G(z)dz = x0

G(0+) ≥ 0
G ∈ G
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Lagrange

Applying Lagrange multiplier λ > 0

Max
G(·)

Q(G) =
∫ 1
0

[

1(G(z)≥b) − λF−1
ρ (1 − z)G(z)

]

dz

s.t. G(0+) ≥ 0, G ∈ G
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Lagrange

Applying Lagrange multiplier λ > 0
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∫ 1
0

[

1(G(z)≥b) − λF−1
ρ (1 − z)G(z)

]

dz

s.t. G(0+) ≥ 0, G ∈ G

Maximise ϕ(x) := 1(x≥b) − λF−1
ρ (1 − z)x over x ≥ 0
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Applying Lagrange multiplier λ > 0

Max
G(·)

Q(G) =
∫ 1
0

[

1(G(z)≥b) − λF−1
ρ (1 − z)G(z)

]

dz

s.t. G(0+) ≥ 0, G ∈ G

Maximise ϕ(x) := 1(x≥b) − λF−1
ρ (1 − z)x over x ≥ 0
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−1

ρ (1−z)b≥0}
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Lagrange
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Lagrange

Applying Lagrange multiplier λ > 0

Max
G(·)

Q(G) =
∫ 1
0

[

1(G(z)≥b) − λF−1
ρ (1 − z)G(z)

]

dz

s.t. G(0+) ≥ 0, G ∈ G

Maximise ϕ(x) := 1(x≥b) − λF−1
ρ (1 − z)x over x ≥ 0

Optimal x∗ = b1{1−λF
−1

ρ (1−z)b≥0}

Optimal value ϕ(x∗) =
(

1 − λF−1
ρ (1 − z)b

)+

Optimal G∗
λ(z) = b1{1−λF−1

ρ (1−z)b≥0}

Existence of unique λ∗ > 0 binding budget constraint

X∗ = G∗
λ∗(1 − Fρ(ρ)) = b1(ρ≤(λ∗b)−1)
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Lagrange

Applying Lagrange multiplier λ > 0

Max
G(·)

Q(G) =
∫ 1
0

[

1(G(z)≥b) − λF−1
ρ (1 − z)G(z)

]

dz

s.t. G(0+) ≥ 0, G ∈ G

Maximise ϕ(x) := 1(x≥b) − λF−1
ρ (1 − z)x over x ≥ 0

Optimal x∗ = b1{1−λF
−1

ρ (1−z)b≥0}

Optimal value ϕ(x∗) =
(

1 − λF−1
ρ (1 − z)b

)+

Optimal G∗
λ(z) = b1{1−λF−1

ρ (1−z)b≥0}

Existence of unique λ∗ > 0 binding budget constraint

X∗ = G∗
λ∗(1 − Fρ(ρ)) = b1(ρ≤(λ∗b)−1)

Theorem

(He and Zhou 2009) The unique optimal solution is X∗ = b1(ρ≤c∗)

where c∗ is such that E[ρX∗] = x0. The optimal value is Fρ(c
∗).
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Example 2. Yaari’s Model

Max
∫ ∞
0 T (P (X > x)) dx

s.t. E[ρX] = x0

X ≥ 0

where T : [0, 1] → [0, 1], continuous, strictly increasing, C1 on
(0, 1), T (0) = 0, T (1) = 1
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Example 2. Yaari’s Model

Max
∫ ∞
0 T (P (X > x)) dx

s.t. E[ρX] = x0

X ≥ 0

where T : [0, 1] → [0, 1], continuous, strictly increasing, C1 on
(0, 1), T (0) = 0, T (1) = 1

Quantile formulation

Max Q(G) =
∫ 1
0 G(z)T ′(1 − z)dz

s.t.
∫ 1
0 F−1

ρ (1 − z)G(z)dz = x0

G(0+) ≥ 0, G ∈ G
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Solution to Yaari’s Model

Assumption

M(z) := T ′(1−z)

F−1
ρ (1−z)

continuous on (0, 1), and ∃z0 ∈ (0, 1) such that

M(·) ↑ on (0, z0) and ↓ on (z0, 1).
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Solution to Yaari’s Model

Assumption

M(z) := T ′(1−z)

F−1
ρ (1−z)

continuous on (0, 1), and ∃z0 ∈ (0, 1) such that

M(·) ↑ on (0, z0) and ↓ on (z0, 1).

Remark

This assumption holds when ρ is lognormal and T (z) = zγ , γ > 1.
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Solution to Yaari’s Model

Assumption

M(z) := T ′(1−z)

F−1
ρ (1−z)

continuous on (0, 1), and ∃z0 ∈ (0, 1) such that

M(·) ↑ on (0, z0) and ↓ on (z0, 1).

Remark

This assumption holds when ρ is lognormal and T (z) = zγ , γ > 1.

Theorem

(He and Zhou 2009) The unique optimal solution is X∗ = b∗1ρ≤c

where c is the unique root of

h(x) := xT (Fρ(x)) − T ′(Fρ(x))

∫ x

0
ydFρ(y)

on (F−1
ρ (1 − z0), ρ̄), and b∗ > 0 is such that E[ρX∗] = x0.
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Solution to SP/A Model

Assumption

(i) u(·) strictly increasing, strictly concave, differentiable, and
satisfies Inada condition.

(ii)
F−1

ρ (z)
T ′(z) decreasing on z ∈ (0, 1).
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Solution to SP/A Model

Assumption

(i) u(·) strictly increasing, strictly concave, differentiable, and
satisfies Inada condition.

(ii)
F−1

ρ (z)
T ′(z) decreasing on z ∈ (0, 1).

Remark

This assumption holds when ρ is lognormal and T proposed by
Lopes (1987).
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Solution to SP/A Model (Cont’d)

Theorem

(He and Zhou 2009) If x0 > AE[ρ1{ρ≤F−1(α)}], then the unique
optimal solution is

X∗ = (u′)−1
(

λ∗ρ
T ′(Fρ(ρ))

)

1{ρ≥F−1(α)}

+
[

(u′)−1
(

λ∗ρ
T ′(Fρ(ρ))

)

∨ A
]

1{ρ<F−1(α)}.

where λ∗ is such that E[ρX∗] = x0.
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Example 4. Prospect Model

Max
∫ ∞
0 T+ (P (u+ ((X − B)+) > x)) dx

−
∫ ∞
0 T− (P (u− ((X − B)−) > x)) dx

s.t. E[ρX] = x0

where T± : [0, 1] → [0, 1], strictly increasing, C1 on (0, 1),
T±(0) = 0, T±(1) = 1, and both u+ and u− are concave
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Example 4. Prospect Model

Max
∫ ∞
0 T+ (P (u+ ((X − B)+) > x)) dx

−
∫ ∞
0 T− (P (u− ((X − B)−) > x)) dx

s.t. E[ρX] = x0

where T± : [0, 1] → [0, 1], strictly increasing, C1 on (0, 1),
T±(0) = 0, T±(1) = 1, and both u+ and u− are concave

Optimal solution (Jin and Zhou 2008)

X∗ = (u′
+)−1

(

λρ

T ′
+(Fρ(ρ))

)

1ρ≤c∗ −
x∗

+ − x0

E[ρ1ρ>c∗ ]
1ρ>c∗
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Additional Model 1: Coherent Risk Measure

Min
X

C(X)

Subject to E[ρX] = x0,

E[X] = z,

X bounded from below
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Subject to E[ρX] = x0,

E[X] = z,

X bounded from below

where

C: a law invariant coherent risk measure on LB(Ω,FT , P )
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where
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Additional Model 1: Coherent Risk Measure

Min
X

C(X)

Subject to E[ρX] = x0,

E[X] = z,

X bounded from below

where

C: a law invariant coherent risk measure on LB(Ω,FT , P )

ρ: pricing kernel

x0: initial wealth
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Additional Model 1: Coherent Risk Measure

Min
X

C(X)

Subject to E[ρX] = x0,

E[X] = z,

X bounded from below

where

C: a law invariant coherent risk measure on LB(Ω,FT , P )

ρ: pricing kernel

x0: initial wealth

z: targeted mean payoff
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Quantile Formulation

Representation

C(X) = sup
µ∈M

∫

[0,1]
AV @Rz(X)µ(dz)

where M is a subset of probability measures on [0,1],
AV @Rz(X) := 1

z

∫ z

0 V @Rs(X)ds = −1
z

∫ z

0 G(s)ds
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µ∈M

∫

[0,1]
AV @Rz(X)µ(dz)

where M is a subset of probability measures on [0,1],
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z

∫ z

0 V @Rs(X)ds = −1
z

∫ z
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G(·)
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µ∈M

= sup
µ∈M

inf
G(·)
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Quantile Formulation

Representation
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µ∈M

∫
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AV @Rz(X)µ(dz)

where M is a subset of probability measures on [0,1],
AV @Rz(X) := 1

z

∫ z

0 V @Rs(X)ds = −1
z

∫ z

0 G(s)ds

Minimax
inf
G(·)

sup
µ∈M

= sup
µ∈M

inf
G(·)

For each µ ∈ M solve a quantile model!
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Quantile Formulation

Representation

C(X) = sup
µ∈M

∫

[0,1]
AV @Rz(X)µ(dz)

where M is a subset of probability measures on [0,1],
AV @Rz(X) := 1

z

∫ z

0 V @Rs(X)ds = −1
z

∫ z

0 G(s)ds

Minimax
inf
G(·)

sup
µ∈M

= sup
µ∈M

inf
G(·)

For each µ ∈ M solve a quantile model!

Explicit solution when C is comonotonic (M is a singleton)

X∗ :=
(1−c∗)x0−z

∫

1

c∗
F−1

ρ (1−z)dz
∫

1

c∗
[1−F−1

ρ (1−z)]dz

+ z−x0
∫

1

c∗
[1−F−1

ρ (1−z)]dz
1

ρ≤F−1
ρ (1−c∗)
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Quantile Formulation

Representation

C(X) = sup
µ∈M

∫

[0,1]
AV @Rz(X)µ(dz)

where M is a subset of probability measures on [0,1],
AV @Rz(X) := 1

z

∫ z

0 V @Rs(X)ds = −1
z

∫ z

0 G(s)ds

Minimax
inf
G(·)

sup
µ∈M

= sup
µ∈M

inf
G(·)

For each µ ∈ M solve a quantile model!

Explicit solution when C is comonotonic (M is a singleton)

X∗ :=
(1−c∗)x0−z

∫

1

c∗
F−1

ρ (1−z)dz
∫

1

c∗
[1−F−1

ρ (1−z)]dz

+ z−x0
∫

1

c∗
[1−F−1

ρ (1−z)]dz
1

ρ≤F−1
ρ (1−c∗)

He, Jin, and Zhou (2009)
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Additional Model 2: “Distorted” Optimal Stopping

Max
τ

∫ ∞
0 T (P (u(Sτ ) > x))dx
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Additional Model 2: “Distorted” Optimal Stopping

Max
τ

∫ ∞
0 T (P (u(Sτ ) > x))dx

where

St: a martingale (w.l.o.g)
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Additional Model 2: “Distorted” Optimal Stopping

Max
τ

∫ ∞
0 T (P (u(Sτ ) > x))dx

where

St: a martingale (w.l.o.g)

u(·): utility or payoff function (convex/concave/S-shaped)
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Additional Model 2: “Distorted” Optimal Stopping

Max
τ

∫ ∞
0 T (P (u(Sτ ) > x))dx

where

St: a martingale (w.l.o.g)

u(·): utility or payoff function (convex/concave/S-shaped)

T : [0, 1] → [0, 1] (nonlinear) function
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Quantile Formulation

Take quantile of Sτ as decision variable
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Quantile Formulation

Take quantile of Sτ as decision variable

Instead of finding the optimal stopping time, find the
distribution of the optimal stopped price
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Quantile Formulation

Take quantile of Sτ as decision variable

Instead of finding the optimal stopping time, find the
distribution of the optimal stopped price

How to recover τ∗ from the distribution of Sτ∗? – Skorohod

embedding!
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probability problem

Xunyu Zhou/Oxford Finding Quantiles



Quantile Formulation

Take quantile of Sτ as decision variable

Instead of finding the optimal stopping time, find the
distribution of the optimal stopped price

How to recover τ∗ from the distribution of Sτ∗? – Skorohod

embedding!

Skorohod embedding: a well studied and challenging
probability problem

It does not have a unique solution in general

Xunyu Zhou/Oxford Finding Quantiles



Quantile Formulation

Take quantile of Sτ as decision variable

Instead of finding the optimal stopping time, find the
distribution of the optimal stopped price

How to recover τ∗ from the distribution of Sτ∗? – Skorohod

embedding!

Skorohod embedding: a well studied and challenging
probability problem

It does not have a unique solution in general

We have solved various cases
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Quantile Formulation

Take quantile of Sτ as decision variable

Instead of finding the optimal stopping time, find the
distribution of the optimal stopped price

How to recover τ∗ from the distribution of Sτ∗? – Skorohod

embedding!

Skorohod embedding: a well studied and challenging
probability problem

It does not have a unique solution in general

We have solved various cases

Xu and Zhou (2009)
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Mutual Fund Theorem

Classical (static) mutual fund theorem based on Markowitz:
all investors hold same risky portfolio regardless their personal
risk tastes
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Mutual Fund Theorem

Classical (static) mutual fund theorem based on Markowitz:
all investors hold same risky portfolio regardless their personal
risk tastes

Recall X∗ = G∗(1 − Fρ(ρ)) for all the models treated (except
the optimal stopping one)
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Mutual Fund Theorem

Classical (static) mutual fund theorem based on Markowitz:
all investors hold same risky portfolio regardless their personal
risk tastes

Recall X∗ = G∗(1 − Fρ(ρ)) for all the models treated (except
the optimal stopping one)

With deterministic investment opportunity set all the investors
(rational or behavioral) have the same risky portfolio which
they never short sell (He and Zhou 2009)
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Mutual Fund Theorem

Classical (static) mutual fund theorem based on Markowitz:
all investors hold same risky portfolio regardless their personal
risk tastes

Recall X∗ = G∗(1 − Fρ(ρ)) for all the models treated (except
the optimal stopping one)

With deterministic investment opportunity set all the investors
(rational or behavioral) have the same risky portfolio which
they never short sell (He and Zhou 2009)

This portfolio (mutual fund) is the optimal log portfolio
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Epilogue: Finding Quantiles

Existing criteria (neoclassical and behavioral) in portfolio
selection/optimal stopping introduce distortions in either
payments or probabilities, or both, leading to generally
non-expected maximisation models
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Epilogue: Finding Quantiles

Existing criteria (neoclassical and behavioral) in portfolio
selection/optimal stopping introduce distortions in either
payments or probabilities, or both, leading to generally
non-expected maximisation models
These distortions have various economical significance
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The result is magical – it sorts out the issues of nonlinear
expectation and non-concavity simultaneously
A new paradigm for portfolio selection, and – hopefully –
beyond
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