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Portfolio Selection Models

Fundamental Assumptions
m Economy: A linear pricing rule (existence of a pricing kernel)

m Agent: “the more money (initial endowment) the better
(w.r.t. her criterion)”
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Expected Utility Maximisation
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X>0
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Expected Utility Maximisation

M)?x Fu(X)
Subject to  E[pX] = =y,
X>0

where
m X: terminal payoff (cash flow) — an Fp random variable
m u(-): utility function (typically concave)
m p: pricing kernel — an Fr random variable
m o initial wealth
Merton (1971); abundant research thereafter
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Mean—Variance Portfolio Selection

MXin Var(X)

Subject to  E[pX] = =,
EX]| =z,
X>0

where
m X: terminal payoff
m p: pricing kernel
m o initial wealth

m z: targeted mean payoff
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Mean—Variance Portfolio Selection

MXin Var(X)

Subject to  E[pX] = =,
EX]| =z,
X>0

where
m X: terminal payoff
m p: pricing kernel
m o initial wealth
m z: targeted mean payoff

Markowitz (1952); abundant research thereafter
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Goal Achieving

Max P(X >b)
Subject to  E[pX] = xy,
X>0

where
m X: terminal payoff
m b: goal
m p: pricing kernel

m zo: initial wealth
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Goal Achieving

Max P(X > b)
Subject to  E[pX] = =,
X>0

where
m X: terminal payoff
m b: goal
m p: pricing kernel
m zo: initial wealth

Kulldorff (1993), Heath (1993), Browne (1999), Folimer and
Leukert (1999), Spivak and Cvitani¢ (1999), etc.
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Yaari's Dual Theory

M)?x oS T(P(X > x))da
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X >0
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Yaari's Dual Theory

M)?x oS T(P(X > x))da
Subject to  E[pX] = xo,
X >0

where
m 7 :]0,1] — [0,1] (nonlinear) function
m X: terminal payoff
m p: pricing kernel
m o initial wealth
Yaari (1987) - the criterion only
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Yaari's Dual Theory (Cont'd)

m Expected utility Bu(X) = [ u(2)dFx (z)
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Yaari's Dual Theory (Cont'd)

m Expected utility Fu(X fo z)dFx ()
m Yaari's dual criterion

[ET(P(X > a))de = [ wd [-T(1 - Fx(x))]
m Both are some sort of “distortions”

m u(-): distortion in payment
m T'(): distortion in distribution function

m Yaari's criterion
S T(P(X > x))dx = [°(T o P)(X > x)dz: Choquet
expectation under capacity T o P - non-expected utility

m Risk averse iff T"is convex (Yaari 1987)
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Lopes’ SP/A Model

M)?X oS T(P(X > x))de
Subjectto P(X > A) > «
ElpX] = o,
X>0

where
m 7 :[0,1] — [0, 1] (nonlinear) function
m A > 0: aspiration level
m o: confidence level
m p: pricing kernel
m zo: initial wealth
Lopes (1987) - criterion; Lopes and Oden (1999)- single period
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Lopes' SP/A Model (Cont'd)

m S: Security; P: Potential; A: Aspiration

Xunyu Zhou/Oxford Finding Quantiles



Lopes' SP/A Model (Cont'd)

m S: Security; P: Potential; A: Aspiration
m In Lopes (1987)

T(y) = wy® ' + (1 —w) [1 - (1 —y)»*]

where 0 <w <1, ¢s,q, >0

Xunyu Zhou/Oxford Finding Quantiles



Lopes' SP/A Model (Cont'd)

m S: Security; P: Potential; A: Aspiration
m In Lopes (1987)

T(y) = wy® ' + (1 —w) [1 - (1 —y)»*]

where 0 <w <1, ¢s,q, >0
m y%tL: convex or risk averse (security)

Xunyu Zhou/Oxford Finding Quantiles



Lopes' SP/A Model (Cont'd)

m S: Security; P: Potential; A: Aspiration
m In Lopes (1987)

T(y) = wy ™ + (1 —w) [1 — (1 —y)?™']

where 0 <w <1, ¢s,q, >0
m y%tL: convex or risk averse (security)
m 1—(1—y)%*L: concave or risk seeking (potential)

Xunyu Zhou/Oxford Finding Quantiles



Lopes' SP/A Model (Cont'd)

S: Security; P: Potential; A: Aspiration
m In Lopes (1987)

T(y) = wy ™ + (1 —w) [1 — (1 —y)?™']

where 0 <w <1, ¢s,q, >0
m y%tL: convex or risk averse (security)
1 — (1 —y)% ™! concave or risk seeking (potential)

A: goal (aspiration)

Xunyu Zhou/Oxford Finding Quantiles



Lopes' SP/A Model (Cont'd)

S: Security; P: Potential; A: Aspiration
m In Lopes (1987)

T(y) = wy ™ + (1 —w) [1 — (1 —y)?™']

where 0 <w <1, ¢s,q, >0
m y%tL: convex or risk averse (security)

1 — (1 —y)% ™! concave or risk seeking (potential)

A: goal (aspiration)
An instantiation of behavioural economics/finance theory
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Kahneman and Tversky's Prospect Theory

Max Jo" T (P (ug (X = B)4) > x)) da

— S T- (P (u- (X = B)-) > x))dx
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Kahneman and Tversky's Prospect Theory

Max  JS T (P (uy (X = B)y) > ) da

— S T- (P (u- (X = B)-) > x))dx
Subject to  E[pX] = x¢

where
m B: reference point in wealth (possibly random)
m X: terminal payoff
m T4 :[0,1] — [0, 1] probability distortions
m Uy (2)1y>0 — u—()1y<0: overall utility function
m p: pricing kernel
m z(: initial endowment

Kahneman and Tversky (1979, 1991), Berkelaar, Kouwenberg and
Post (2004), Jin and Zhou (2008)
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Prospect Theory

m Reference point (Kahneman and Tversky 1979) or customary
wealth (Markowitz 1952)
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Prospect Theory

Reference point (Kahneman and Tversky 1979) or customary
wealth (Markowitz 1952)

S-shaped utility function (risk-averse on gains, risk-seeking on
losses)

Probability distortions

m Backbone of behavioral economics/finance theory
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Approaches

m Expected utility and mean-variance: stochastic control /HJB,
martingale/convex duality
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Approaches

m Expected utility and mean-variance: stochastic control /HJB,
martingale/convex duality

m Goal achieving (still expected utility): HJB
m Non-expected utility maximisation (Yaari's dual model, SP/A
model and prospect model): ?77?
m Nonconcave in X: convex duality fails

m Nonlinear expectation with Choquet integration:
time-consistency or HJB fails
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Questions

Can we

m solve the non-expected utility maximisation models (Yaari,
SP/A, prospect theory); and
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Questions

Can we

m solve the non-expected utility maximisation models (Yaari,
SP/A, prospect theory); and

m establish/develop a unified framework/approach to solve all
the six models (expected and non expected, and many others)
once and for all

YES WE CAN! All it takes: A new perspective
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Commonality in Six Models

Preference measures
m Expected Utility: [ u(z)dFx (z)
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Commonality in Six Models

Preference measures

m Expected Utility: [ u(z)dFx (z)

m Mean Variance: — [fooo 22dFx(z) — 22]

m Goal Achieving: [° 1,54 dFx ()

m Yaari: [(¥ad{-T[1— Fx(z)]}

m SP/A: [P xd{-T[1 - Fx(z)]}

m Prospect Theory: [ uy(z — B)d{-T4 (1 — Fx(x))} —
JEu (B = 2)d{T- (Fx(x))}
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Commonality in Six Models (Cont'd)

m Commonality: [~ u(z)d [T(Fx(z))] where u(-) and
T :[0,1] — [0,1] nonlinear (Quiggin 1982: rank dependent
utility)
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m Commonality: [~ u(z)d [T(Fx(z))] where u(-) and
T :[0,1] — [0,1] nonlinear (Quiggin 1982: rank dependent
utility)
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= Note

') 1
/ u(x)d [T(Fx (2))] = /0 u (Fgl(2) d(T(2)

—00
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where Z ~ U(0,1) and G = Fy' (quantile function)
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Commonality in Six Models (Cont'd)

m Commonality: [~ u(z)d [T(Fx(z))] where u(-) and
T :[0,1] — [0,1] nonlinear (Quiggin 1982: rank dependent
utility)

m Law invariant

= Note

') 1
/ u(x)d [T(Fx (2))] = /0 u (Fgl(2) d(T(2))

—00

_ /Olu (Fx'(2)) T'(2)d=
( = E [u(G(Z2)T'(2)] )

where Z ~ U(0,1) and G = Fy' (quantile function)
m We change decision variable from X (r.v.) to G (quantile)
m ... by which we recover linear expectation and concavity (if
u(+) is concave)!
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Budget Constraint

m Express E [pX]| = ¢ in terms of quantiles
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Budget Constraint

m Express E [pX]| = ¢ in terms of quantiles

m Difficulty: E [pX] is not law-invariant

m Way out: think duality (performance vs. cost)

m One may substitute X in preference measures by any r.v. Y —
so long as the distribution remains unchanged

m ... which one is the cheapest?

m Consider miny . x E [pY]

m Unique optimal Y = G(Z) where Z :=1— F,(p) ~ U(0,1)
and G is quantile of X, provided that p has no atom (Dybvig
1988, Jin and Zhou 2008)
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Budget Constraint

m Express E [pX]| = ¢ in terms of quantiles

m Difficulty: E [pX] is not law-invariant

m Way out: think duality (performance vs. cost)

m One may substitute X in preference measures by any r.v. Y —
so long as the distribution remains unchanged

.. which one is the cheapest?

Consider miny . x E [pY]

Unique optimal Y = G(Z) where Z :=1— F,(p) ~ U(0,1)
and G is quantile of X, provided that p has no atom (Dybvig
1988, Jin and Zhou 2008)

m Hence

EpX]|=zy & E[F (1—Z)G(Z)] = o

@/ 11— 2)G(2)dz =z
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A General Portfolio Selection Model

M d

8 Jo ut (2)dz

Subject to fo - z)G(z)dz = 2
G(- ) € (G N M

where
G ={G:[0,1) — R*, nondecreasing, left continuous, G(0+) > —occ}
and M specifies some other constraints
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A General Portfolio Selection Model

M d

8 Jo ut ()=

Subject to fo - z)G(z)dz = 2
G(- ) € G N M

where
G ={G:[0,1) — R*, nondecreasing, left continuous, G(0+) > —occ}

and M specifies some other constraints

m Also covers models involving VaR/CVaR
objectives/constraints, mean—variance and many others

m Solvable by Lagrange!
m If G*(-) is optimal then X* = G*(1 — F,,(p)): optimal
terminal cash flow is anti-comonotonic w.r.t. pricing kernel p
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Example 1. Goal Achieving

Max P(X >b)
st. E[pX]=uxo
X>0

where b > 0, and 0 < zg < bE|p]
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Max P(X >b)
st. E[pX]=uxo
X>0

where b > 0, and 0 < zg < bE|p ]
B P(X >b) = [)7 1>pdF (x fg 1(z)>b)d2
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Example 1. Goal Achieving

Max P(X >b)
st. E[pX]=uxo
X>0

where b > 0, and 0 < zg < bE|p]
B P(X>b) = fO 1,5pdF(z) = fol l(F—l(z)Zb)dZ
B X>0&F0-)=0&G0+)>0

Xunyu Zhou/Oxford Finding Quantiles



Example 1. Goal Achieving

Max P(X >b)
st. E[pX]=uxo
X>0

where b > 0, and 0 < zg < bE|p]
B P(X>b) = fO 1,5pdF(z) = fol l(F—l(z)Zb)dZ
B X>0&F0-)=0&G0+)>0

m Quantile formulation

Max Q fo G(2)>b) A%

s.t. fo 11 - 2)G(2)dz =z
G(0+) >0
GeG
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IIg!HgIIIIIIIIIIIIIIIIIIIIIIIIIII

m Applying Lagrange multiplier A > 0

I\/I(a§< QG fo (LG50 — )\Fp_l(l - 2)G(2)] dz

s.t. Gm)zo,GeG
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m Applying Lagrange multiplier A > 0

I\/I(a§< QG fo (LG50 — )\Fp_l(l - 2)G(2)] dz

s.t. Gm)zo,GeG
m Maximise () 1= 1(;>p) — AF;l(l — z)x over z > 0
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m Applying Lagrange multiplier A > 0

I\/I(a§< QG fo (LG50 — )\Fp_l(l - 2)G(2)] dz

s.t. Gm)zo,GeG

m Maximise () 1= 1(;>p) — AF;l(l — z)x over z > 0
m Optimal z* = bl{l—AF,jl(l—z)bzo}

Xunyu Zhou/Oxford Finding Quantiles
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m Applying Lagrange multiplier A > 0

I\/I(a§< QG fo (LG50 — )\Fp_l(l - 2)G(2)] dz

s.t. Gm)zo,GeG
m Maximise () 1= 1(;>p) — AF;l(l — z)x over z > 0
m Optimal z* = bl{l—AF,jl(l—z)bzo}

= Optimal value p(z*) = (1 — AF, (1 - z)b)Jr

Xunyu Zhou/Oxford Finding Quantiles



II!!HgIIIIIIIIIIIIIIIIIIIIIIIIIII

m Applying Lagrange multiplier A > 0

I\/I(a§< QG fo (LG50 — )\Fp_l(l - 2)G(2)] dz

s.t. Gm)zo,GeG
m Maximise () 1= 1(;>p) — AF;l(l — z)x over z > 0
m Optimal z* = bl{l_)\F;1(l_Z)bZO}
= Optimal value p(z*) = (1 — AF, (1 - z)b)Jr
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m Applying Lagrange multiplier A > 0

I\/I(a§< QG fo (LG50 — )\Fp_l(l - 2)G(2)] dz

s.t. Gm)zo,GeG
m Maximise () 1= 1(;>p) — AF;l(l — z)x over z > 0
m Optimal z* = bl{l—AFgl(l—z)bzo}
= Optimal value p(z*) = (1 — AF, (1 - z)b)Jr
m Optimal G (2) = bl{l—AFp_l(l—z)bZO}
m Existence of unique A* > 0 binding budget constraint
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m Applying Lagrange multiplier A > 0
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s.t. Gm)zo,GeG
m Maximise () 1= 1(;>p) — AF;l(l — z)x over z > 0
m Optimal z* = bl{l—AFgl(l—z)bzo}
= Optimal value p(z*) = (1 — AF, (1 - z)b)Jr
m Optimal G (2) = bl{l—AFp_l(l—z)bZO}
m Existence of unique A* > 0 binding budget constraint
B X" =GN (1= Fy(p) =blpcpmp -1
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II!!HgIIIIIIIIIIIIIIIIIIIIIIIIIII

m Applying Lagrange multiplier A > 0

|\/|(a§< QG fo (LG50 — )\Fp_l(l - 2)G(2)] dz

s.t. Gm)zo,GeG
m Maximise () 1= 1(;>p) — AF;l(l — z)x over z > 0
m Optimal z* = bl{l_)\F;1(1_Z)bZO}
= Optimal value p(z*) = (1 — AF, (1 - z)b)Jr
m Optimal G (2) = bl{l—AFp_l(l—z)bZO}
m Existence of unique A* > 0 binding budget constraint
B X" =GN (1= Fy(p) =blpcpmp -1

(He and Zhou 2009) The unique optimal solution is X* = b1 (,<.x)
where c¢* is such that E[pX*] = xzo. The optimal value is F,(c").
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Example 2. Yaari's Model

Max [°T (P(X > z))dx
st.  E[pX] ==
X >0

where T': [0,1] — [0, 1], ontmuous strictly increasing, C! on

(0,1), T(0) = 0, T(1)
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Example 2. Yaari's Model

Max [°T (P(X > z))dx
st. EpX] ==
X >0

where T': [0,1] — [0, 1], ontmuous strictly increasing, C! on

(0,1), T(0) = 0, T(1)

Quantile formulation

Max Q G) = fol G(2)T'(1 - 2)dz
s.t. fo b 11 -2)G(2)dz =
G(0+) >0, GeG
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Solution to Yaari's Model

M(z) = %% continuous on (0,1), and 329 € (0,1) such that
M(-) 7 on (0,20) and | on (z0,1).
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Solution to Yaari's Model

M(z) = %% continuous on (0,1), and 329 € (0,1) such that
M(-) 7 on (0,20) and | on (z0,1).

This assumption holds when p is lognormal and T'(z) = z7,v > 1.
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Solution to Yaari's Model

Assumption

M(z) := Fjﬂ;glfi) continuous on (0, 1), and 3z¢ € (0,1) such that

M(-) 1 on (0,z0) and | on (zp,1).

Remark

This assumption holds when p is lognormal and T'(z) = z7,v > 1.

Theorem

(He and Zhou 2009) The unique optimal solution is X* = b*1,<.
where c is the unique root of

h(z) = 2T (Fy()) — T'(Fy(x)) /O " ydF,()

on (F; (1 — z0),p), and b* > 0 is such that E[pX*] =
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Solution to SP/A Model

(i) wu(-) strictly increasing, strictly concave, differentiable, and
satisfies Inada condition.

(i) I_’;% decreasing on z € (0,1).
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Solution to SP/A Model

(i) wu(-) strictly increasing, strictly concave, differentiable, and
satisfies Inada condition.

(ii) E% decreasing on z € (0,1).

This assumption holds when p is lognormal and T' proposed by
Lopes (1987).
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Solution to SP/A Model (Cont'd)

Theorem

(He and Zhou 2009) If o > AE[pl{,<p-1(a)}), then the unique
optimal solution is

Xt = @) (win ) Lozrron
* [(“1)71 (WMW) v A} Lip<r-1(a)}-

where \* is such that E[pX*]| = xg.
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Example 4. Prospect Model

Max f0°°T+(P(u+((X B)+) x))dx

—Jo T-(P(u-((X = B)-) > ) dx
st. EpX]|=ux9

where Ti [0,
T:(0)=0, Ty

] — [0, 1], strictly increasing, C* on (0,1),
1) =1, and both u4 and u_ are concave

1
(
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Example 4. Prospect Model

Max f0°°T+(P(u+((X B)+) x))dx

—Jo T-(P(u-((X = B)-) > ) dx
st. EpX]|=ux9

where Ti [0,
T:(0)=0, Ty

1] — [0, 1], strictly increasing, C* on (0,1),
(1) =1, and both u4 and u_ are concave
Optimal solution (Jin and Zhou 2008)

_ Ap i — x
X* — (o 1<>1<C*_+1 o
WO\ T EG) ) Y T Bplae]
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Additional Model 1: Coherent Risk Measure

MXin C(X)
Subject to  E[pX] = xo,
E[X] = z,

X bounded from below

Xunyu Zhou/Oxford Finding Quantiles



Additional Model 1: Coherent Risk Measure

MXin C(X)
Subject to  E[pX] = xo,
E[X] = z,

X bounded from below

where
m C: a law invariant coherent risk measure on LB(Q), Fr, P)
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MXin C(X)
Subject to  E[pX] = xo,
E[X] = z,

X bounded from below

where
m C: a law invariant coherent risk measure on LB(Q), Fr, P)

m p: pricing kernel
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Additional Model 1: Coherent Risk Measure

MXin C(X)
Subject to  E[pX] = xo,
E[X] = z,

X bounded from below

where
m C: a law invariant coherent risk measure on LB(Q), Fr, P)
m p: pricing kernel

m o initial wealth
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Additional Model 1: Coherent Risk Measure

MXin C(X)
Subject to  E[pX] = xo,
E[X] = z,

X bounded from below

where
m C: a law invariant coherent risk measure on LB(Q), Fr, P)
m p: pricing kernel
m o initial wealth

m z: targeted mean payoff
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Quantile Formulation

m Representation
C(X) = sup AVQR,(X)u(dz)
neM J0,1]

where M is a subset of probability measures on [0 1],
AVQR.(X):=1 [FVQR,(X)ds = -1 [7 G
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Quantile Formulation

m Representation

C(X) = sup AVQR,(X)u(dz)
neM J0,1]

where M is a subset of probability measures on [0 1],
AVQR.(X):=1 [FVQR,(X)ds = -1 [7 G
m Minimax

inf sup = sup inf
G(-) pnemM neM G(-)

Xunyu Zhou/Oxford Finding Quantiles



Quantile Formulation

m Representation

C(X) = sup AVQR,(X)u(dz)
neM J0,1]

where M is a subset of probability measures on [0 1],
AVQR.(X):=1 [FVQR,(X)ds = -1 [7 G
m Minimax

inf sup = sup inf
G(-) pnemM neM G(-)

m For each y € M solve a quantile model!
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Quantile Formulation

m Representation

C(X) = sup AVQR,(X)u(dz)
neM J0,1]

where M is a subset of probability measures on [0 1],
AVQR.(X):=1 [FVQR,(X)ds = -1 [7 G
m Minimax
P tie
m For each y € M solve a quantile model!
m Explicit solution when C' is comonotonic (M is a singleton)

w . (=c)zo—z [k Fy ' (1-2)dz
R £ (o A =

zZ—Tg
+fc1* [1-F, T(1-2)]d= L<rta-cr)
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Quantile Formulation

m Representation

C(X) = sup AVQR,(X)u(dz)
neM J0,1]

where M is a subset of probability measures on [0 1],
AVQR.(X):=1 [FVQR,(X)ds = -1 [7 G
m Minimax

inf sup = sup inf
G(-) pnemM neM G(-)

For each ©1 € M solve a quantile model!
Explicit solution when C'is comonotonic (M is a singleton)

X* .= (1—c*)z0—2 fcl* Fgl(lfz)dz
’ fcl* [I—Fp_l(l—z)]dz
z2—xg
T IE, (e tesh e

m He, Jin, and Zhou (2009)
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Additional Model 2: “Distorted” Optimal Stopping

MTax IS T(P(u(Sr) > x))da
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Additional Model 2: “Distorted” Optimal Stopping

MTax IS T(P(u(Sr) > x))da

where

m S;: a martingale (w.l.0.g)
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Additional Model 2: “Distorted” Optimal Stopping

MTax IS T(P(u(Sr) > x))da

where
m S;: a martingale (w.l.0.g)

m u(-): utility or payoff function (convex/concave/S-shaped)
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Additional Model 2: “Distorted” Optimal Stopping

MTax IS T(P(u(Sr) > x))da

where
m S;: a martingale (w.l.0.g)
m u(-): utility or payoff function (convex/concave/S-shaped)
m 7 :[0,1] — [0, 1] (nonlinear) function
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Quantile Formulation

m Take quantile of S; as decision variable
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Quantile Formulation

m Take quantile of S; as decision variable

m Instead of finding the optimal stopping time, find the
distribution of the optimal stopped price
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m Instead of finding the optimal stopping time, find the
distribution of the optimal stopped price

m How to recover 7* from the distribution of S,;+? — Skorohod
embedding!
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embedding!
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probability problem

m It does not have a unique solution in general

m We have solved various cases
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Quantile Formulation

m Take quantile of S; as decision variable

m Instead of finding the optimal stopping time, find the
distribution of the optimal stopped price

m How to recover 7* from the distribution of S,;+? — Skorohod
embedding!

m Skorohod embedding: a well studied and challenging
probability problem

m It does not have a unique solution in general
m We have solved various cases
m Xu and Zhou (2009)
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Mutual Fund Theorem

m Classical (static) mutual fund theorem based on Markowitz:
all investors hold same risky portfolio regardless their personal
risk tastes
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m Classical (static) mutual fund theorem based on Markowitz:
all investors hold same risky portfolio regardless their personal
risk tastes

® Recall X* = G*(1 — F,(p)) for all the models treated (except
the optimal stopping one)
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Mutual Fund Theorem

m Classical (static) mutual fund theorem based on Markowitz:
all investors hold same risky portfolio regardless their personal
risk tastes

® Recall X* = G*(1 — F,(p)) for all the models treated (except
the optimal stopping one)

m With deterministic investment opportunity set all the investors
(rational or behavioral) have the same risky portfolio which
they never short sell (He and Zhou 2009)
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Mutual Fund Theorem

m Classical (static) mutual fund theorem based on Markowitz:
all investors hold same risky portfolio regardless their personal
risk tastes

® Recall X* = G*(1 — F,(p)) for all the models treated (except
the optimal stopping one)

m With deterministic investment opportunity set all the investors
(rational or behavioral) have the same risky portfolio which
they never short sell (He and Zhou 2009)

m This portfolio (mutual fund) is the optimal log portfolio
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Epilogue: Finding Quantiles

m Existing criteria (neoclassical and behavioral) in portfolio
selection /optimal stopping introduce distortions in either
payments or probabilities, or both, leading to generally
non-expected maximisation models
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payments or probabilities, or both, leading to generally
non-expected maximisation models

m These distortions have various economical significance

m Yet they give rise to difficulties, especially in the dynamic
setting, for which traditional approaches fall apart
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m Existing criteria (neoclassical and behavioral) in portfolio
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payments or probabilities, or both, leading to generally
non-expected maximisation models

m These distortions have various economical significance

m Yet they give rise to difficulties, especially in the dynamic

setting, for which traditional approaches fall apart

m We propose to change the whole perspective of
continuous-time portfolio selection (including optimal
stopping for selling/buying decisions)
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m Existing criteria (neoclassical and behavioral) in portfolio
selection /optimal stopping introduce distortions in either
payments or probabilities, or both, leading to generally
non-expected maximisation models

m These distortions have various economical significance

m Yet they give rise to difficulties, especially in the dynamic
setting, for which traditional approaches fall apart

m We propose to change the whole perspective of
continuous-time portfolio selection (including optimal
stopping for selling/buying decisions)

m Instead of finding optimal random terminal cash flows or
optimal time
m finding quantiles values

m The result is magical — it sorts out the issues of nonlinear

expectation and non-concavity simultaneously
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Epilogue: Finding Quantiles

m Existing criteria (neoclassical and behavioral) in portfolio
selection /optimal stopping introduce distortions in either
payments or probabilities, or both, leading to generally
non-expected maximisation models

m These distortions have various economical significance

m Yet they give rise to difficulties, especially in the dynamic
setting, for which traditional approaches fall apart

m We propose to change the whole perspective of
continuous-time portfolio selection (including optimal
stopping for selling/buying decisions)

m Instead of finding optimal random terminal cash flows or
optimal time
m finding quantiles values

m The result is magical — it sorts out the issues of nonlinear
expectation and non-concavity simultaneously

m A new paradigm for portfolio selection, and — hopefully —
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Finding Nomura Research Fellows

m Oxford Maths Finance Group is looking for up to 2 Nomura
Research Fellows (2-year positions)
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m Oxford Maths Finance Group is looking for up to 2 Nomura
Research Fellows (2-year positions)

Affiliations with St. Hugh's College and Wadham College

Free lunch ...
Deadline: 15 February 2010
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Finding Nomura Research Fellows

m Oxford Maths Finance Group is looking for up to 2 Nomura
Research Fellows (2-year positions)

Affiliations with St. Hugh's College and Wadham College

Free lunch ...
Deadline: 15 February 2010
https://www.maths.ox.ac.uk/node/11239
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