Finding Quantiles

Xunyu Zhou/Oxford

Based on Papers with Hanqing Jin, Zuoquan Xu (Oxford), and Xuedong He (Columbia)

11th January 2010/Fields Institute

Portfolio Selection Models

Fundamental Assumptions

Portfolio Selection Models

Fundamental Assumptions

■ Economy: A linear pricing rule (existence of a pricing kernel)

Portfolio Selection Models

Fundamental Assumptions

- Economy: A linear pricing rule (existence of a pricing kernel)
- Agent: "the more money (initial endowment) the better (w.r.t. her criterion)"

$$\label{eq:local_equation} \begin{aligned} & \underset{X}{\text{Max}} & & Eu(X) \\ & \text{Subject to} & & E[\rho X] = x_0, \\ & & & X \geq 0 \end{aligned}$$

$$\label{eq:local_equation} \begin{aligned} & \underset{X}{\text{Max}} & & Eu(X) \\ & \text{Subject to} & & E[\rho X] = x_0, \\ & & & X \geq 0 \end{aligned}$$

where

■ X: terminal payoff (cash flow) – an \mathcal{F}_T random variable

$$\label{eq:local_equation} \begin{array}{ll} \mathop{\rm Max}_X & Eu(X) \\ \mathop{\rm Subject\ to} & E[\rho X] = x_0, \\ & X \geq 0 \end{array}$$

- X: terminal payoff (cash flow) an \mathcal{F}_T random variable
- $lacksquare u(\cdot)$: utility function (typically concave)

$$\label{eq:local_equation} \begin{array}{ll} \mathop{\rm Max}_X & Eu(X) \\ \mathop{\rm Subject\ to} & E[\rho X] = x_0, \\ & X \geq 0 \end{array}$$

- X: terminal payoff (cash flow) an \mathcal{F}_T random variable
- $lack u(\cdot)$: utility function (typically concave)
- lacksquare ho: pricing kernel an \mathcal{F}_T random variable

$$\label{eq:local_equation} \begin{array}{ll} \mathop{\rm Max}_X & Eu(X) \\ \mathop{\rm Subject\ to} & E[\rho X] = x_0, \\ & X \geq 0 \end{array}$$

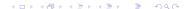
- X: terminal payoff (cash flow) an \mathcal{F}_T random variable
- lacksquare $u(\cdot)$: utility function (typically concave)
- ightharpoonup ho: pricing kernel an \mathcal{F}_T random variable
- $\blacksquare x_0$: initial wealth

$$\label{eq:local_equation} \begin{array}{ll} \mathop{\rm Max}_X & Eu(X) \\ \mathop{\rm Subject\ to} & E[\rho X] = x_0, \\ & X \geq 0 \end{array}$$

where

- X: terminal payoff (cash flow) an \mathcal{F}_T random variable
- lacksquare $u(\cdot)$: utility function (typically concave)
- ullet ho: pricing kernel an \mathcal{F}_T random variable
- $\blacksquare x_0$: initial wealth

Merton (1971); abundant research thereafter



$$\begin{array}{ll} \underset{X}{\operatorname{Min}} & \operatorname{Var}(X) \\ \operatorname{Subject to} & E[\rho X] = x_0, \\ & E[X] = z, \\ & X \geq 0 \end{array}$$

$$\begin{array}{ll} \underset{X}{\operatorname{Min}} & \operatorname{Var}(X) \\ \operatorname{Subject to} & E[\rho X] = x_0, \\ & E[X] = z, \\ & X \geq 0 \end{array}$$

where

lacksquare X: terminal payoff

$$\begin{array}{ll} \underset{X}{\operatorname{Min}} & \operatorname{Var}(X) \\ \operatorname{Subject to} & E[\rho X] = x_0, \\ & E[X] = z, \\ & X \geq 0 \end{array}$$

- X: terminal payoff
- ho: pricing kernel

$$\begin{array}{ll} \underset{X}{\operatorname{Min}} & \operatorname{Var}(X) \\ \operatorname{Subject to} & E[\rho X] = x_0, \\ & E[X] = z, \\ & X \geq 0 \end{array}$$

- X: terminal payoff
- lacksquare ho: pricing kernel
- $\blacksquare x_0$: initial wealth

$$\begin{array}{ll} \underset{X}{\operatorname{Min}} & \operatorname{Var}(X) \\ \operatorname{Subject to} & E[\rho X] = x_0, \\ & E[X] = z, \\ & X \geq 0 \end{array}$$

- X: terminal payoff
- ρ : pricing kernel
- $\blacksquare x_0$: initial wealth
- z: targeted mean payoff

$$\begin{array}{ll} \underset{X}{\operatorname{Min}} & \operatorname{Var}(X) \\ \operatorname{Subject to} & E[\rho X] = x_0, \\ & E[X] = z, \\ & X \geq 0 \end{array}$$

where

- X: terminal payoff
- ho: pricing kernel
- x₀: initial wealth
- z: targeted mean payoff

Markowitz (1952); abundant research thereafter

$$\begin{array}{ll} \underset{X}{\text{Max}} & P(X \geq b) \\ \text{Subject to} & E[\rho X] = x_0, \\ & X \geq 0 \end{array}$$

$$\begin{array}{ll} \underset{X}{\text{Max}} & P(X \geq b) \\ \text{Subject to} & E[\rho X] = x_0, \\ & X \geq 0 \end{array}$$

where

■ X: terminal payoff

$$\begin{aligned} & \underset{X}{\text{Max}} & & P(X \geq b) \\ & \text{Subject to} & & E[\rho X] = x_0, \\ & & & X \geq 0 \end{aligned}$$

- X: terminal payoff
- b: goal

$$\begin{array}{ll} \mathop{\rm Max}_X & P(X \geq b) \\ \mathop{\rm Subject\ to} & E[\rho X] = x_0, \\ & X \geq 0 \end{array}$$

- X: terminal payoff
- b: goal
- lacksquare ho: pricing kernel

$$\begin{aligned} & \underset{X}{\text{Max}} & & P(X \geq b) \\ & \text{Subject to} & & E[\rho X] = x_0, \\ & & & X \geq 0 \end{aligned}$$

- X: terminal payoff
- **■** *b*: goal
- \bullet ρ : pricing kernel
- $\blacksquare x_0$: initial wealth

$$\begin{aligned} & \underset{X}{\text{Max}} & & P(X \geq b) \\ & \text{Subject to} & & E[\rho X] = x_0, \\ & & & X \geq 0 \end{aligned}$$

where

- X: terminal payoff
- b: goal
- lacksquare ho: pricing kernel
- x₀: initial wealth

Kulldorff (1993), Heath (1993), Browne (1999), Föllmer and Leukert (1999), Spivak and Cvitanić (1999), etc.

$$\begin{array}{ll} \mathop{\rm Max}_X & \int_0^\infty T(P(X>x)) dx \\ \mathop{\rm Subject\ to} & E[\rho X] = x_0, \\ & X \geq 0 \end{array}$$

$$\label{eq:max_X} \begin{aligned} & \underset{X}{\text{Max}} & & \int_{0}^{\infty} T(P(X>x)) dx \\ & \text{Subject to} & & E[\rho X] = x_{0}, \\ & & & X \geq 0 \end{aligned}$$

where

lacksquare T:[0,1]
ightarrow [0,1] (nonlinear) function

$$\label{eq:linear_equation} \begin{array}{ll} \underset{X}{\text{Max}} & \int_{0}^{\infty}T(P(X>x))dx \\ \text{Subject to} & E[\rho X]=x_{0}, \\ & X\geq 0 \end{array}$$

- lacksquare T:[0,1]
 ightarrow [0,1] (nonlinear) function
- lacksquare X: terminal payoff

$$\label{eq:linear_equation} \begin{array}{ll} \underset{X}{\text{Max}} & \int_{0}^{\infty}T(P(X>x))dx \\ \text{Subject to} & E[\rho X]=x_{0}, \\ & X\geq 0 \end{array}$$

- $T:[0,1] \rightarrow [0,1]$ (nonlinear) function
- X: terminal payoff
- ρ : pricing kernel

$$\label{eq:max_X} \begin{aligned} & \underset{X}{\text{Max}} & & \int_{0}^{\infty} T(P(X>x)) dx \\ & \text{Subject to} & & E[\rho X] = x_{0}, \\ & & X \geq 0 \end{aligned}$$

- lacksquare T:[0,1]
 ightarrow [0,1] (nonlinear) function
- X: terminal payoff
- lacksquare ho: pricing kernel
- $\blacksquare x_0$: initial wealth

$$\label{eq:max_X} \begin{aligned} & \underset{X}{\text{Max}} & & \int_{0}^{\infty} T(P(X>x)) dx \\ & \text{Subject to} & & E[\rho X] = x_{0}, \\ & & X \geq 0 \end{aligned}$$

where

- lacksquare T:[0,1]
 ightarrow [0,1] (nonlinear) function
- X: terminal payoff
- lacksquare ho: pricing kernel
- $\blacksquare x_0$: initial wealth

Yaari (1987) - the criterion only

■ Expected utility $Eu(X) = \int_0^\infty u(x) dF_X(x)$

- Expected utility $Eu(X) = \int_0^\infty u(x) dF_X(x)$
- Yaari's dual criterion $\int_0^\infty T(P(X>x))dx \equiv \int_0^\infty xd\left[-T(1-F_X(x))\right]$

- Expected utility $Eu(X) = \int_0^\infty u(x) dF_X(x)$
- Yaari's dual criterion $\int_0^\infty T(P(X>x))dx \equiv \int_0^\infty xd\left[-T(1-F_X(x))\right]$
- Both are some sort of "distortions"

- Expected utility $Eu(X) = \int_0^\infty u(x) dF_X(x)$
- Yaari's dual criterion $\int_0^\infty T(P(X>x))dx \equiv \int_0^\infty xd\left[-T(1-F_X(x))\right]$
- Both are some sort of "distortions"
 - $\mathbf{u}(\cdot)$: distortion in payment

- Expected utility $Eu(X) = \int_0^\infty u(x) dF_X(x)$
- Yaari's dual criterion $\int_0^\infty T(P(X>x))dx \equiv \int_0^\infty xd\left[-T(1-F_X(x))\right]$
- Both are some sort of "distortions"
 - $\mathbf{u}(\cdot)$: distortion in payment
 - lacksquare $T(\cdot)$: distortion in distribution function

- Expected utility $Eu(X) = \int_0^\infty u(x) dF_X(x)$
- Yaari's dual criterion $\int_0^\infty T(P(X>x))dx \equiv \int_0^\infty xd\left[-T(1-F_X(x))\right]$
- Both are some sort of "distortions"
 - $\mathbf{u}(\cdot)$: distortion in payment
 - lacksquare $T(\cdot)$: distortion in distribution function
- Yaari's criterion $\int_0^\infty T(P(X>x))dx \equiv \int_0^\infty (T\circ P)(X>x)dx \text{: Choquet expectation under capacity } T\circ P \text{ non-expected utility}$

- Expected utility $Eu(X) = \int_0^\infty u(x) dF_X(x)$
- Yaari's dual criterion $\int_0^\infty T(P(X>x))dx \equiv \int_0^\infty xd\left[-T(1-F_X(x))\right]$
- Both are some sort of "distortions"
 - $\mathbf{u}(\cdot)$: distortion in payment
 - lacksquare $T(\cdot)$: distortion in distribution function
- Yaari's criterion $\int_0^\infty T(P(X>x))dx \equiv \int_0^\infty (T\circ P)(X>x)dx$: Choquet expectation under capacity $T\circ P$ non-expected utility
- Risk averse iff *T* is convex (Yaari 1987)

Lopes' SP/A Model

$$\begin{array}{ll} \underset{X}{\operatorname{Max}} & \int_{0}^{\infty} T(P(X>x)) dx \\ \operatorname{Subject to} & P(X \geq A) \geq \alpha \\ & E[\rho X] = x_{0}, \\ & X > 0 \end{array}$$

$$\begin{array}{ll} \mathop{\rm Max}_X & \int_0^\infty T(P(X>x)) dx \\ \mathop{\rm Subject\ to} & P(X\geq A) \geq \alpha \\ & E[\rho X] = x_0, \\ & X>0 \end{array}$$

where

lacksquare T:[0,1]
ightarrow [0,1] (nonlinear) function

$$\begin{array}{ll} \mathop{\rm Max}_X & \int_0^\infty T(P(X>x)) dx \\ \mathop{\rm Subject\ to} & P(X\geq A) \geq \alpha \\ & E[\rho X] = x_0, \\ & X \geq 0 \end{array}$$

- lacksquare T:[0,1]
 ightarrow [0,1] (nonlinear) function
- $A \ge 0$: aspiration level

$$\begin{array}{ll} \underset{X}{\operatorname{Max}} & \int_{0}^{\infty}T(P(X>x))dx \\ \operatorname{Subject to} & P(X\geq A)\geq\alpha \\ & E[\rho X]=x_{0}, \\ & X\geq0 \end{array}$$

- lacksquare T:[0,1]
 ightarrow [0,1] (nonlinear) function
- \blacksquare $A \ge 0$: aspiration level
- lacksquare α : confidence level

$$\begin{array}{ll} \underset{X}{\operatorname{Max}} & \int_{0}^{\infty}T(P(X>x))dx \\ \operatorname{Subject to} & P(X\geq A)\geq\alpha \\ & E[\rho X]=x_{0}, \\ & X\geq0 \end{array}$$

- lacksquare T:[0,1]
 ightarrow [0,1] (nonlinear) function
- $A \ge 0$: aspiration level
- lacksquare α : confidence level
- ρ : pricing kernel

$$\begin{array}{ll} \underset{X}{\operatorname{Max}} & \int_{0}^{\infty}T(P(X>x))dx \\ \operatorname{Subject to} & P(X\geq A)\geq\alpha \\ & E[\rho X]=x_{0}, \\ & X>0 \end{array}$$

- lacksquare T:[0,1]
 ightarrow [0,1] (nonlinear) function
- $A \ge 0$: aspiration level
- lacksquare α : confidence level
- ho: pricing kernel
- $\blacksquare x_0$: initial wealth

$$\begin{array}{ll} \underset{X}{\operatorname{Max}} & \int_{0}^{\infty}T(P(X>x))dx \\ \operatorname{Subject to} & P(X\geq A)\geq\alpha \\ & E[\rho X]=x_{0}, \\ & X\geq0 \end{array}$$

where

- lacksquare T:[0,1]
 ightarrow [0,1] (nonlinear) function
- $A \ge 0$: aspiration level
- lacksquare α : confidence level
- lacksquare ho: pricing kernel
- $\blacksquare x_0$: initial wealth

Lopes (1987) - criterion; Lopes and Oden (1999)- single period

S: Security; **P**: Potential; **A**: Aspiration

- **S**: Security; **P**: Potential; **A**: Aspiration
- In Lopes (1987)

$$T(y) = wy^{q_s+1} + (1-w)\left[1 - (1-y)^{q_p+1}\right]$$

- **S**: Security; **P**: Potential; **A**: Aspiration
- In Lopes (1987)

$$T(y) = wy^{q_s+1} + (1-w)\left[1 - (1-y)^{q_p+1}\right]$$

where $0 < w < 1, q_s, q_p > 0$

• y^{q_s+1} : convex or risk averse (**security**)

- **S**: Security; **P**: Potential; **A**: Aspiration
- In Lopes (1987)

$$T(y) = wy^{q_s+1} + (1-w)\left[1 - (1-y)^{q_p+1}\right]$$

- y^{q_s+1} : convex or risk averse (**security**)
- $1 (1 y)^{q_p + 1}$: concave or risk seeking (**potential**)

- S: Security; P: Potential; A: Aspiration
- In Lopes (1987)

$$T(y) = wy^{q_s+1} + (1-w)\left[1 - (1-y)^{q_p+1}\right]$$

- y^{q_s+1} : convex or risk averse (**security**)
- $1 (1 y)^{q_p + 1}$: concave or risk seeking (**potential**)
- A: goal (aspiration)

- S: Security; P: Potential; A: Aspiration
- In Lopes (1987)

$$T(y) = wy^{q_s+1} + (1-w)\left[1 - (1-y)^{q_p+1}\right]$$

- y^{q_s+1} : convex or risk averse (**security**)
- $1 (1 y)^{q_p + 1}$: concave or risk seeking (**potential**)
- A: goal (aspiration)
- An instantiation of behavioural economics/finance theory

$$\begin{array}{ll} \operatorname*{Max}_{X} & \int_{0}^{\infty} T_{+} \left(P \left(u_{+} \left((X-B)_{+} \right) > x \right) \right) dx \\ & - \int_{0}^{\infty} T_{-} \left(P \left(u_{-} \left((X-B)_{-} \right) > x \right) \right) dx \\ \operatorname*{Subject to} & E[\rho X] = x_{0} \end{array}$$

$$\begin{array}{ll} \operatorname*{Max}_{X} & \int_{0}^{\infty} T_{+} \left(P \left(u_{+} \left((X-B)_{+} \right) > x \right) \right) dx \\ & - \int_{0}^{\infty} T_{-} \left(P \left(u_{-} \left((X-B)_{-} \right) > x \right) \right) dx \\ \operatorname*{Subject to} & E[\rho X] = x_{0} \end{array}$$

where

■ *B*: reference point in wealth (possibly random)

$$\begin{array}{ll} \operatorname{Max}_{X} & \int_{0}^{\infty} T_{+} \left(P \left(u_{+} \left((X - B)_{+} \right) > x \right) \right) dx \\ & - \int_{0}^{\infty} T_{-} \left(P \left(u_{-} \left((X - B)_{-} \right) > x \right) \right) dx \\ \operatorname{Subject to} & E[\rho X] = x_{0} \end{array}$$

- B: reference point in wealth (possibly random)
- X: terminal payoff

$$\begin{array}{ll} \operatorname{Max}_{X} & \int_{0}^{\infty} T_{+} \left(P \left(u_{+} \left((X - B)_{+} \right) > x \right) \right) dx \\ & - \int_{0}^{\infty} T_{-} \left(P \left(u_{-} \left((X - B)_{-} \right) > x \right) \right) dx \\ \operatorname{Subject to} & E[\rho X] = x_{0} \end{array}$$

- B: reference point in wealth (possibly random)
- X: terminal payoff
- $T_{\pm}:[0,1] \rightarrow [0,1]$ probability distortions

$$\begin{array}{ll} \operatorname{Max}_{X} & \int_{0}^{\infty} T_{+} \left(P \left(u_{+} \left((X - B)_{+} \right) > x \right) \right) dx \\ & - \int_{0}^{\infty} T_{-} \left(P \left(u_{-} \left((X - B)_{-} \right) > x \right) \right) dx \\ \operatorname{Subject to} & E[\rho X] = x_{0} \end{array}$$

- B: reference point in wealth (possibly random)
- X: terminal payoff
- lacksquare $T_{\pm}:[0,1]
 ightarrow [0,1]$ probability distortions
- $u_+(x)\mathbf{1}_{x\geq 0}-u_-(x)\mathbf{1}_{x< 0}$: overall utility function

$$\begin{array}{ll} \operatorname{Max}_{X} & \int_{0}^{\infty} T_{+} \left(P \left(u_{+} \left((X - B)_{+} \right) > x \right) \right) dx \\ & - \int_{0}^{\infty} T_{-} \left(P \left(u_{-} \left((X - B)_{-} \right) > x \right) \right) dx \\ \operatorname{Subject to} & E[\rho X] = x_{0} \end{array}$$

- B: reference point in wealth (possibly random)
- X: terminal payoff
- $T_{\pm}:[0,1] \rightarrow [0,1]$ probability distortions
- $u_+(x)\mathbf{1}_{x\geq 0}-u_-(x)\mathbf{1}_{x< 0}$: overall utility function
- lacksquare ho: pricing kernel

$$\begin{array}{ll} \operatorname{Max}_{X} & \int_{0}^{\infty} T_{+} \left(P \left(u_{+} \left((X - B)_{+} \right) > x \right) \right) dx \\ & - \int_{0}^{\infty} T_{-} \left(P \left(u_{-} \left((X - B)_{-} \right) > x \right) \right) dx \\ \operatorname{Subject to} & E[\rho X] = x_{0} \end{array}$$

- B: reference point in wealth (possibly random)
- X: terminal payoff
- $T_{\pm}:[0,1] \rightarrow [0,1]$ probability distortions
- $u_+(x)\mathbf{1}_{x\geq 0} u_-(x)\mathbf{1}_{x<0}$: overall utility function
- lacksquare ho: pricing kernel
- $\blacksquare x_0$: initial endowment

$$\begin{array}{ll} \operatorname{Max}_{X} & \int_{0}^{\infty} T_{+} \left(P \left(u_{+} \left((X - B)_{+} \right) > x \right) \right) dx \\ & - \int_{0}^{\infty} T_{-} \left(P \left(u_{-} \left((X - B)_{-} \right) > x \right) \right) dx \\ \operatorname{Subject to} & E[\rho X] = x_{0} \end{array}$$

where

- B: reference point in wealth (possibly random)
- X: terminal payoff
- $T_{\pm}:[0,1] \rightarrow [0,1]$ probability distortions
- $u_+(x)\mathbf{1}_{x\geq 0} u_-(x)\mathbf{1}_{x<0}$: overall utility function
- ho: pricing kernel
- x₀: initial endowment

Kahneman and Tversky (1979, 1991), Berkelaar, Kouwenberg and Post (2004), Jin and Zhou (2008)

 Reference point (Kahneman and Tversky 1979) or customary wealth (Markowitz 1952)

- Reference point (Kahneman and Tversky 1979) or customary wealth (Markowitz 1952)
- *S*-shaped utility function (risk-averse on gains, risk-seeking on losses)

- Reference point (Kahneman and Tversky 1979) or customary wealth (Markowitz 1952)
- *S*-shaped utility function (risk-averse on gains, risk-seeking on losses)
- Probability distortions

- Reference point (Kahneman and Tversky 1979) or customary wealth (Markowitz 1952)
- S-shaped utility function (risk-averse on gains, risk-seeking on losses)
- Probability distortions
- Backbone of behavioral economics/finance theory

Approaches¹

■ Expected utility and mean-variance: stochastic control/HJB, martingale/convex duality

- Expected utility and mean-variance: stochastic control/HJB, martingale/convex duality
- Goal achieving (still expected utility): HJB

- Expected utility and mean-variance: stochastic control/HJB, martingale/convex duality
- Goal achieving (still expected utility): HJB
- Non-expected utility maximisation (Yaari's dual model, SP/A model and prospect model): ???

- Expected utility and mean-variance: stochastic control/HJB, martingale/convex duality
- Goal achieving (still expected utility): HJB
- Non-expected utility maximisation (Yaari's dual model, SP/A model and prospect model): ???
 - Nonconcave in *X*: convex duality fails

- Expected utility and mean-variance: stochastic control/HJB, martingale/convex duality
- Goal achieving (still expected utility): HJB
- Non-expected utility maximisation (Yaari's dual model, SP/A model and prospect model): ???
 - Nonconcave in *X*: convex duality fails
 - Nonlinear expectation with Choquet integration: time-consistency or HJB fails

Questions

Can we

 solve the non-expected utility maximisation models (Yaari, SP/A, prospect theory); and

Questions

Can we

- solve the non-expected utility maximisation models (Yaari, SP/A, prospect theory); and
- establish/develop a unified framework/approach to solve all the six models (expected and non expected, and many others) once and for all

Questions

Can we

- solve the non-expected utility maximisation models (Yaari, SP/A, prospect theory); and
- establish/develop a unified framework/approach to solve all the six models (expected and non expected, and many others) once and for all

YES WE CAN! All it takes: A new perspective

Preference measures

■ Expected Utility: $\int_0^\infty u(x)dF_X(x)$

Preference measures

- Expected Utility: $\int_0^\infty u(x)dF_X(x)$
- Mean Variance: $-\left[\int_0^\infty x^2 dF_X(x) z^2\right]$

Preference measures

- Expected Utility: $\int_0^\infty u(x)dF_X(x)$
- Mean Variance: $-\left[\int_0^\infty x^2 dF_X(x) z^2\right]$
- Goal Achieving: $\int_0^\infty \mathbf{1}_{(x \ge b)} dF_X(x)$

Preference measures

- Expected Utility: $\int_0^\infty u(x)dF_X(x)$
- Mean Variance: $-\left[\int_0^\infty x^2 dF_X(x) z^2\right]$
- Goal Achieving: $\int_0^\infty \mathbf{1}_{(x \ge b)} dF_X(x)$
- Yaari: $\int_0^\infty xd \{-T [1 F_X(x)]\}$

Commonality in Six Models

Preference measures

- Expected Utility: $\int_0^\infty u(x)dF_X(x)$
- Mean Variance: $-\left[\int_0^\infty x^2 dF_X(x) z^2\right]$
- Goal Achieving: $\int_0^\infty \mathbf{1}_{(x \ge b)} dF_X(x)$
- Yaari: $\int_0^\infty xd \{-T [1 F_X(x)]\}$
- SP/A: $\int_0^\infty xd \{-T[1-F_X(x)]\}$

Commonality in Six Models

Preference measures

- Expected Utility: $\int_0^\infty u(x)dF_X(x)$
- Mean Variance: $-\left[\int_0^\infty x^2 dF_X(x) z^2\right]$
- Goal Achieving: $\int_0^\infty \mathbf{1}_{(x \ge b)} dF_X(x)$
- Yaari: $\int_0^\infty xd \{-T [1 F_X(x)]\}$
- SP/A: $\int_0^\infty xd \{-T[1-F_X(x)]\}$
- Prospect Theory: $\int_{B}^{\infty} u_{+}(x-B)d\left\{-T_{+}\left(1-F_{X}(x)\right)\right\} \int_{-\infty}^{B} u_{-}(B-x)d\left\{T_{-}\left(F_{X}(x)\right)\right\}$

■ Commonality: $\int_{-\infty}^{\infty} u(x) d\left[T(F_X(x))\right]$ where $u(\cdot)$ and $T: [0,1] \to [0,1]$ nonlinear (Quiggin 1982: rank dependent utility)

- Commonality: $\int_{-\infty}^{\infty} u(x) d\left[T(F_X(x))\right]$ where $u(\cdot)$ and $T: [0,1] \to [0,1]$ nonlinear (Quiggin 1982: rank dependent utility)
- Law invariant

- Commonality: $\int_{-\infty}^{\infty} u(x)d\left[T(F_X(x))\right]$ where $u(\cdot)$ and $T:[0,1] \to [0,1]$ nonlinear (Quiggin 1982: rank dependent utility)
- Law invariant
- Note

$$\int_{-\infty}^{\infty} u(x)d\left[T(F_X(x))\right] = \int_{0}^{1} u\left(F_X^{-1}(z)\right)d\left(T(z)\right)$$
$$= \int_{0}^{1} u\left(F_X^{-1}(z)\right)T'(z)dz$$
$$\left(= E\left[u(G(Z))T'(Z)\right]\right)$$

where $Z \sim U(0,1)$ and $G = F_X^{-1}$ (quantile function)

- Commonality: $\int_{-\infty}^{\infty} u(x) d\left[T(F_X(x))\right]$ where $u(\cdot)$ and $T: [0,1] \to [0,1]$ nonlinear (Quiggin 1982: rank dependent utility)
- Law invariant
- Note

$$\int_{-\infty}^{\infty} u(x)d\left[T(F_X(x))\right] = \int_0^1 u\left(F_X^{-1}(z)\right)d\left(T(z)\right)$$
$$= \int_0^1 u\left(F_X^{-1}(z)\right)T'(z)dz$$
$$\left(= E\left[u(G(Z))T'(Z)\right]\right)$$

where $Z \sim U(0,1)$ and $G = F_X^{-1}$ (quantile function)

• We change decision variable from X (r.v.) to G (quantile)

- Commonality: $\int_{-\infty}^{\infty} u(x) d\left[T(F_X(x))\right]$ where $u(\cdot)$ and $T: [0,1] \to [0,1]$ nonlinear (Quiggin 1982: rank dependent utility)
- Law invariant
- Note

$$\int_{-\infty}^{\infty} u(x)d\left[T(F_X(x))\right] = \int_0^1 u\left(F_X^{-1}(z)\right)d\left(T(z)\right)$$
$$= \int_0^1 u\left(F_X^{-1}(z)\right)T'(z)dz$$
$$\left(= E\left[u(G(Z))T'(Z)\right]\right)$$

where $Z \sim U(0,1)$ and $G = F_X^{-1}$ (quantile function)

- We change decision variable from X (r.v.) to G (quantile)
- ... by which we recover linear expectation and concavity (if $u(\cdot)$ is concave)!

• Express $E\left[\rho X\right]=x_0$ in terms of quantiles

- Express $E[\rho X] = x_0$ in terms of quantiles
- Difficulty: $E[\rho X]$ is *not* law-invariant

- Express $E[\rho X] = x_0$ in terms of quantiles
- Difficulty: $E[\rho X]$ is *not* law-invariant
- Way out: think duality (performance vs. cost)

- Express $E[\rho X] = x_0$ in terms of quantiles
- Difficulty: $E[\rho X]$ is *not* law-invariant
- Way out: think duality (performance vs. cost)
- One may substitute X in preference measures by any r.v. Y so long as the distribution remains unchanged

- **E**xpress $E[\rho X] = x_0$ in terms of quantiles
- Difficulty: $E[\rho X]$ is *not* law-invariant
- Way out: think duality (performance vs. cost)
- One may substitute X in preference measures by any r.v. Y so long as the distribution remains unchanged
- ... which one is the *cheapest*?

- **E**xpress $E[\rho X] = x_0$ in terms of quantiles
- Difficulty: $E[\rho X]$ is *not* law-invariant
- Way out: think duality (performance vs. cost)
- One may substitute X in preference measures by any r.v. Y so long as the distribution remains unchanged
- ... which one is the cheapest?
- Consider $\min_{Y \sim X} E[\rho Y]$

- Express $E[\rho X] = x_0$ in terms of quantiles
- Difficulty: $E[\rho X]$ is *not* law-invariant
- Way out: think duality (performance vs. cost)
- One may substitute X in preference measures by any r.v. Y so long as the distribution remains unchanged
- ... which one is the cheapest?
- Consider $\min_{Y \sim X} E[\rho Y]$
- Unique optimal Y=G(Z) where $Z:=1-F_{\rho}(\rho)\sim U(0,1)$ and G is quantile of X, provided that ρ has no atom (Dybvig 1988, Jin and Zhou 2008)

- Express $E[\rho X] = x_0$ in terms of quantiles
- Difficulty: $E[\rho X]$ is *not* law-invariant
- Way out: think duality (performance vs. cost)
- One may substitute X in preference measures by any r.v. Y so long as the distribution remains unchanged
- ... which one is the cheapest?
- Consider $\min_{Y \sim X} E[\rho Y]$
- Unique optimal Y=G(Z) where $Z:=1-F_{\rho}(\rho)\sim U(0,1)$ and G is quantile of X, provided that ρ has no atom (Dybvig 1988, Jin and Zhou 2008)
- Hence

$$E[\rho X] = x_0 \Leftrightarrow E\left[F_\rho^{-1}(1-Z)G(Z)\right] = x_0$$

$$\Leftrightarrow \int_0^1 F_\rho^{-1}(1-z)G(z)dz = x_0$$

$$\begin{array}{ll} \underset{G(\cdot)}{\operatorname{Max}} & \int_0^1 u(G(z))T'(z)dz \\ \operatorname{Subject to} & \int_0^1 F_\rho^{-1}(1-z)G(z)dz = x_0 \\ & G(\cdot) \in \mathbb{G} \cap \mathbb{M} \end{array}$$

where

 $\mathbb{G}=\{G:[0,1)\to\mathbb{R}^+, \text{ nondecreasing, left continuous, } G(0+)>-\infty\}$ and \mathbb{M} specifies some other constraints

$$\begin{array}{ll} \underset{G(\cdot)}{\operatorname{Max}} & \int_0^1 u(G(z))T'(z)dz \\ \operatorname{Subject to} & \int_0^1 F_\rho^{-1}(1-z)G(z)dz = x_0 \\ & G(\cdot) \in \mathbb{G} \cap \mathbb{M} \end{array}$$

where

 $\mathbb{G}=\{G:[0,1)\to\mathbb{R}^+, \text{ nondecreasing, left continuous, } G(0+)>-\infty\}$ and \mathbb{M} specifies some other constraints

 Also covers models involving VaR/CVaR objectives/constraints, mean-variance and many others

$$\begin{array}{ll} \underset{G(\cdot)}{\operatorname{Max}} & \int_0^1 u(G(z))T'(z)dz \\ \operatorname{Subject to} & \int_0^1 F_\rho^{-1}(1-z)G(z)dz = x_0 \\ & G(\cdot) \in \mathbb{G} \cap \mathbb{M} \end{array}$$

where

 $\mathbb{G} = \{G : [0,1) \to \mathbb{R}^+, \text{ nondecreasing, left continuous, } G(0+) > -\infty\}$ and \mathbb{M} specifies some other constraints

- Also covers models involving VaR/CVaR objectives/constraints, mean-variance and many others
- Solvable by Lagrange!

$$\begin{array}{ll} \underset{G(\cdot)}{\operatorname{Max}} & \int_0^1 u(G(z))T'(z)dz \\ \operatorname{Subject to} & \int_0^1 F_\rho^{-1}(1-z)G(z)dz = x_0 \\ & G(\cdot) \in \mathbb{G} \cap \mathbb{M} \end{array}$$

where

 $\mathbb{G} = \{G : [0,1) \to \mathbb{R}^+, \text{ nondecreasing, left continuous, } G(0+) > -\infty\}$ and \mathbb{M} specifies some other constraints

- Also covers models involving VaR/CVaR objectives/constraints, mean-variance and many others
- Solvable by Lagrange!
- If $G^*(\cdot)$ is optimal then $X^* = G^*(1 F_{\rho}(\rho))$: optimal terminal cash flow is anti-comonotonic w.r.t. pricing kernel ρ

$$\begin{array}{ll} \text{Max} & P(X \geq b) \\ \text{s.t.} & E[\rho X] = x_0 \\ & X \geq 0 \end{array}$$

where b > 0, and $0 < x_0 < bE[\rho]$

$$\begin{array}{ll} \text{Max} & P(X \geq b) \\ \text{s.t.} & E[\rho X] = x_0 \\ & X \geq 0 \end{array}$$

where b > 0, and $0 < x_0 < bE[\rho]$

■
$$P(X \ge b) = \int_0^\infty \mathbf{1}_{x \ge b} dF(x) = \int_0^1 \mathbf{1}_{(F^{-1}(z) \ge b)} dz$$

$$\begin{array}{ll} \text{Max} & P(X \geq b) \\ \text{s.t.} & E[\rho X] = x_0 \\ & X \geq 0 \end{array}$$

where b > 0, and $0 < x_0 < bE[\rho]$

- $P(X \ge b) = \int_0^\infty \mathbf{1}_{x \ge b} dF(x) = \int_0^1 \mathbf{1}_{(F^{-1}(z) \ge b)} dz$
- $X \ge 0 \Leftrightarrow F(0-) = 0 \Leftrightarrow G(0+) \ge 0$

$$\begin{array}{ll} \text{Max} & P(X \geq b) \\ \text{s.t.} & E[\rho X] = x_0 \\ & X \geq 0 \end{array}$$

where b > 0, and $0 < x_0 < bE[\rho]$

■
$$P(X \ge b) = \int_0^\infty \mathbf{1}_{x \ge b} dF(x) = \int_0^1 \mathbf{1}_{(F^{-1}(z) \ge b)} dz$$

$$X \ge 0 \Leftrightarrow F(0-) = 0 \Leftrightarrow G(0+) \ge 0$$

Quantile formulation

$$\begin{array}{ll} \operatorname{Max} & Q(G) = \int_0^1 \mathbf{1}_{(G(z) \geq b)} dz \\ \operatorname{s.t.} & \int_0^1 F_\rho^{-1} (1-z) G(z) dz = x_0 \\ & G(0+) \geq 0 \\ & G \in \mathbb{G} \end{array}$$

 $\blacksquare \ \, \text{Applying Lagrange multiplier} \ \, \lambda > 0 \\$

$$\begin{array}{ll} \underset{G(\cdot)}{\text{Max}} & Q(G) = \int_0^1 \left[\mathbf{1}_{(G(z) \geq b)} - \lambda F_\rho^{-1}(1-z)G(z)\right] dz \\ \text{s.t.} & G(0+) \geq 0, \ \ G \in \mathbb{G} \end{array}$$

■ Applying Lagrange multiplier $\lambda > 0$

$$\begin{array}{ll} \max_{G(\cdot)} & Q(G) = \int_0^1 \left[\mathbf{1}_{(G(z) \geq b)} - \lambda F_\rho^{-1}(1-z)G(z)\right] dz \\ \text{s.t.} & G(0+) \geq 0, \ \ G \in \mathbb{G} \end{array}$$

 $\qquad \text{Maximise } \varphi(x) := \mathbf{1}_{(x \geq b)} - \lambda F_{\rho}^{-1} (1-z) x \text{ over } x \geq 0$

$$\begin{array}{ll} \max_{G(\cdot)} & Q(G) = \int_0^1 \left[\mathbf{1}_{(G(z) \geq b)} - \lambda F_\rho^{-1}(1-z)G(z)\right] dz \\ \text{s.t.} & G(0+) \geq 0, \ G \in \mathbb{G} \end{array}$$

- Maximise $\varphi(x) := \mathbf{1}_{(x \ge b)} \lambda F_{\rho}^{-1} (1-z) x$ over $x \ge 0$
 - $\qquad \text{Optimal } x^* = b \mathbf{1}_{\{1-\lambda F_\rho^{-1}(1-z)b \geq 0\}}$

$$\begin{array}{ll} \underset{G(\cdot)}{\text{Max}} & Q(G) = \int_0^1 \left[\mathbf{1}_{(G(z) \geq b)} - \lambda F_\rho^{-1}(1-z)G(z)\right] dz \\ \text{s.t.} & G(0+) \geq 0, \ \ G \in \mathbb{G} \end{array}$$

- $\qquad \text{Maximise } \varphi(x) := \mathbf{1}_{(x \geq b)} \lambda F_{\rho}^{-1} (1-z) x \text{ over } x \geq 0$

 - \blacksquare Optimal value $\varphi(x^*) = \left(1 \lambda F_\rho^{-1}(1-z)b\right)^+$

$$\begin{array}{ll} \underset{G(\cdot)}{\text{Max}} & Q(G) = \int_0^1 \left[\mathbf{1}_{(G(z) \geq b)} - \lambda F_\rho^{-1}(1-z)G(z)\right] dz \\ \text{s.t.} & G(0+) \geq 0, \ \ G \in \mathbb{G} \end{array}$$

- Maximise $\varphi(x) := \mathbf{1}_{(x \ge b)} \lambda F_{\rho}^{-1} (1-z) x$ over $x \ge 0$

 - Optimal value $\varphi(x^*) = \left(1 \lambda F_\rho^{-1}(1-z)b\right)^+$
- \bullet Optimal $G^*_\lambda(z) = b \mathbf{1}_{\{1-\lambda F_\rho^{-1}(1-z)b \geq 0\}}$

$$\begin{array}{ll} \max_{G(\cdot)} & Q(G) = \int_0^1 \left[\mathbf{1}_{(G(z) \geq b)} - \lambda F_\rho^{-1}(1-z)G(z)\right] dz \\ \mathrm{s.t.} & G(0+) \geq 0, \ \ G \in \mathbb{G} \end{array}$$

- Maximise $\varphi(x) := \mathbf{1}_{(x \ge b)} \lambda F_{\rho}^{-1} (1-z) x$ over $x \ge 0$
 - Optimal $x^* = b \mathbf{1}_{\{1 \lambda F_{\rho}^{-1}(1-z)b \ge 0\}}$
 - Optimal value $\varphi(x^*) = \left(1 \lambda F_{\rho}^{-1}(1-z)b\right)^+$
- Optimal $G_{\lambda}^{*}(z) = b\mathbf{1}_{\{1-\lambda F_{\rho}^{-1}(1-z)b \geq 0\}}$
- **E**xistence of unique $\lambda^* > 0$ binding budget constraint

$$\begin{array}{ll} \max_{G(\cdot)} & Q(G) = \int_0^1 \left[\mathbf{1}_{(G(z) \geq b)} - \lambda F_\rho^{-1}(1-z)G(z)\right] dz \\ \text{s.t.} & G(0+) \geq 0, \ G \in \mathbb{G} \end{array}$$

- Maximise $\varphi(x) := \mathbf{1}_{(x \ge b)} \lambda F_{\rho}^{-1} (1-z) x$ over $x \ge 0$
 - Optimal $x^* = b \mathbf{1}_{\{1 \lambda F_{\rho}^{-1}(1-z)b \ge 0\}}$
 - Optimal value $\varphi(x^*) = \left(1 \lambda F_{\rho}^{-1}(1-z)b\right)^+$
- Optimal $G_{\lambda}^{*}(z) = b\mathbf{1}_{\{1-\lambda F_{\rho}^{-1}(1-z)b \geq 0\}}$
- Existence of unique $\lambda^* > 0$ binding budget constraint
- $X^* = G_{\lambda^*}^* (1 F_{\rho}(\rho)) = b \mathbf{1}_{(\rho \le (\lambda^* b)^{-1})}$

■ Applying Lagrange multiplier $\lambda > 0$

$$\begin{array}{ll} \max_{G(\cdot)} & Q(G) = \int_0^1 \left[\mathbf{1}_{(G(z) \geq b)} - \lambda F_\rho^{-1}(1-z)G(z)\right] dz \\ \text{s.t.} & G(0+) \geq 0, \ G \in \mathbb{G} \end{array}$$

- - Optimal $x^* = b \mathbf{1}_{\{1 \lambda F_{\rho}^{-1}(1-z)b \ge 0\}}$
 - Optimal value $\varphi(x^*) = (1 \lambda F_{\rho}^{-1}(1-z)b)^+$
- Optimal $G_{\lambda}^{*}(z) = b\mathbf{1}_{\{1-\lambda F_{\rho}^{-1}(1-z)b \geq 0\}}$
- **E**xistence of unique $\lambda^* > 0$ binding budget constraint
- $X^* = G_{\lambda^*}^* (1 F_{\rho}(\rho)) = b \mathbf{1}_{(\rho \le (\lambda^* b)^{-1})}$

Theorem

(He and Zhou 2009) The unique optimal solution is $X^* = b\mathbf{1}_{(\rho \leq c^*)}$ where c^* is such that $E[\rho X^*] = x_0$. The optimal value is $F_{\rho}(c^*)$.

Example 2. Yaari's Model

$$\begin{array}{ll} \operatorname{Max} & \int_0^\infty T\left(P(X>x)\right) dx \\ \operatorname{s.t.} & E[\rho X] = x_0 \\ & X>0 \end{array}$$

where $T:[0,1]\to [0,1]$, continuous, strictly increasing, C^1 on $(0,1),\ T(0)=0,\ T(1)=1$

Example 2. Yaari's Model

$$\begin{array}{ll} \operatorname{Max} & \int_0^\infty T\left(P(X>x)\right) dx \\ \operatorname{s.t.} & E[\rho X] = x_0 \\ & X \geq 0 \end{array}$$

where $T:[0,1] \to [0,1]$, continuous, strictly increasing, C^1 on $(0,1),\ T(0)=0,\ T(1)=1$

Quantile formulation

$$\begin{array}{ll} \text{Max} & Q(G)=\int_0^1 G(z)T'(1-z)dz\\ \text{s.t.} & \int_0^1 F_\rho^{-1}(1-z)G(z)dz=x_0\\ & G(0+)\geq 0, \ \ G\in\mathbb{G} \end{array}$$

Solution to Yaari's Model

Assumption

 $M(z):=\frac{T'(1-z)}{F_\rho^{-1}(1-z)} \ \text{continuous on} \ (0,1) \text{, and} \ \exists z_0 \in (0,1) \ \text{such that} \\ M(\cdot) \uparrow \ \text{on} \ (0,z_0) \ \text{and} \ \downarrow \ \text{on} \ (z_0,1).$

Solution to Yaari's Model

Assumption

 $M(z):=\frac{T'(1-z)}{F_\rho^{-1}(1-z)} \text{ continuous on } (0,1) \text{, and } \exists z_0 \in (0,1) \text{ such that } M(\cdot) \uparrow \text{ on } (0,z_0) \text{ and } \downarrow \text{ on } (z_0,1).$

Remark

This assumption holds when ρ is lognormal and $T(z)=z^{\gamma}, \gamma>1$.

Solution to Yaari's Model

Assumption

 $M(z):=\frac{T'(1-z)}{F_\rho^{-1}(1-z)} \ \text{continuous on} \ (0,1) \text{, and} \ \exists z_0 \in (0,1) \ \text{such that} \\ M(\cdot) \uparrow \ \text{on} \ (0,z_0) \ \text{and} \ \downarrow \ \text{on} \ (z_0,1).$

Remark

This assumption holds when ρ is lognormal and $T(z) = z^{\gamma}, \gamma > 1$.

Theorem

(He and Zhou 2009) The unique optimal solution is $X^* = b^* \mathbf{1}_{\rho \leq c}$ where c is the unique root of

$$h(x) := xT(F_{\rho}(x)) - T'(F_{\rho}(x)) \int_{0}^{x} y dF_{\rho}(y)$$

on $(F_{\rho}^{-1}(1-z_0), \bar{\rho})$, and $b^*>0$ is such that $E[\rho X^*]=x_0.$

Solution to SP/A Model

Assumption

- (i) $u(\cdot)$ strictly increasing, strictly concave, differentiable, and satisfies Inada condition.
- (ii) $\frac{F_{\rho}^{-1}(z)}{T'(z)}$ decreasing on $z \in (0,1)$.

Solution to SP/A Model

Assumption

- (i) $u(\cdot)$ strictly increasing, strictly concave, differentiable, and satisfies Inada condition.
- (ii) $\frac{F_{\rho}^{-1}(z)}{T'(z)}$ decreasing on $z \in (0,1)$.

Remark

This assumption holds when ρ is lognormal and T proposed by Lopes (1987).

Solution to SP/A Model (Cont'd)

Theorem

(He and Zhou 2009) If $x_0 > AE[\rho \mathbf{1}_{\{\rho \leq F^{-1}(\alpha)\}}]$, then the unique optimal solution is

$$\begin{split} X^* = & (u')^{-1} \left(\frac{\lambda^* \rho}{T'(F_{\rho}(\rho))} \right) \mathbf{1}_{\{\rho \geq F^{-1}(\alpha)\}} \\ & + \left[(u')^{-1} \left(\frac{\lambda^* \rho}{T'(F_{\rho}(\rho))} \right) \vee A \right] \mathbf{1}_{\{\rho < F^{-1}(\alpha)\}}. \end{split}$$

where λ^* is such that $E[\rho X^*] = x_0$.

Example 4. Prospect Model

$$\begin{array}{ll} \text{Max} & \int_0^\infty T_+ \left(P \left(u_+ \left((X-B)_+ \right) > x \right) \right) dx \\ & - \int_0^\infty T_- \left(P \left(u_- \left((X-B)_- \right) > x \right) \right) dx \\ \text{s.t.} & E[\rho X] = x_0 \end{array}$$

where $T_{\pm}:[0,1]\to[0,1]$, strictly increasing, C^1 on (0,1), $T_{\pm}(0)=0$, $T_{\pm}(1)=1$, and both u_+ and u_- are concave

Example 4. Prospect Model

$$\begin{array}{ll} \operatorname{Max} & \int_0^\infty T_+ \left(P \left(u_+ \left((X-B)_+ \right) > x \right) \right) dx \\ & - \int_0^\infty T_- \left(P \left(u_- \left((X-B)_- \right) > x \right) \right) dx \\ \operatorname{s.t.} & E[\rho X] = x_0 \end{array}$$

where $T_\pm:[0,1]\to[0,1]$, strictly increasing, C^1 on (0,1), $T_\pm(0)=0$, $T_\pm(1)=1$, and both u_+ and u_- are concave

Optimal solution (Jin and Zhou 2008)

$$X^* = (u'_+)^{-1} \left(\frac{\lambda \rho}{T'_+(F_\rho(\rho))} \right) \mathbf{1}_{\rho \le c^*} - \frac{x_+^* - x_0}{E[\rho \mathbf{1}_{\rho > c^*}]} \mathbf{1}_{\rho > c^*}$$

$$\begin{array}{ll} \underset{X}{\text{Min}} & C(X) \\ \text{Subject to} & E[\rho X] = x_0, \\ & E[X] = z, \\ & X \text{ bounded from below} \end{array}$$

$$\begin{array}{ll} \underset{X}{\text{Min}} & C(X) \\ \text{Subject to} & E[\rho X] = x_0, \\ & E[X] = z, \\ & X \text{ bounded from below} \end{array}$$

where

 $lackbox{ } C$: a law invariant coherent risk measure on $LB(\Omega,\mathcal{F}_T,P)$

$$\begin{array}{ll} \underset{X}{\text{Min}} & C(X) \\ \text{Subject to} & E[\rho X] = x_0, \\ & E[X] = z, \\ & X \text{ bounded from below} \end{array}$$

- lacksquare C: a law invariant coherent risk measure on $LB(\Omega, \mathcal{F}_T, P)$
- ho: pricing kernel

$$\begin{array}{ll} \underset{X}{\text{Min}} & C(X) \\ \text{Subject to} & E[\rho X] = x_0, \\ & E[X] = z, \\ & X \text{ bounded from below} \end{array}$$

- lacksquare C: a law invariant coherent risk measure on $LB(\Omega,\mathcal{F}_T,P)$
- lacksquare ho: pricing kernel
- $\blacksquare x_0$: initial wealth

$$\begin{array}{ll} \underset{X}{\text{Min}} & C(X) \\ \text{Subject to} & E[\rho X] = x_0, \\ & E[X] = z, \\ & X \text{ bounded from below} \end{array}$$

- lacksquare C: a law invariant coherent risk measure on $LB(\Omega,\mathcal{F}_T,P)$
- lacksquare ho: pricing kernel
- $\blacksquare x_0$: initial wealth
- z: targeted mean payoff

Representation

$$C(X) = \sup_{\mu \in \mathcal{M}} \int_{[0,1]} AV@R_z(X)\mu(dz)$$

where \mathcal{M} is a subset of probability measures on [0,1], $AV@R_z(X):=\frac{1}{z}\int_0^z V@R_s(X)ds=-\frac{1}{z}\int_0^z G(s)ds$

Representation

$$C(X) = \sup_{\mu \in \mathcal{M}} \int_{[0,1]} AV@R_z(X)\mu(dz)$$

where \mathcal{M} is a subset of probability measures on [0,1], $AV@R_z(X):=\frac{1}{z}\int_0^z V@R_s(X)ds=-\frac{1}{z}\int_0^z G(s)ds$

Minimax

$$\inf_{G(\cdot)}\sup_{\mu\in\mathcal{M}}=\sup_{\mu\in\mathcal{M}}\inf_{G(\cdot)}$$

Representation

$$C(X) = \sup_{\mu \in \mathcal{M}} \int_{[0,1]} AV@R_z(X)\mu(dz)$$

where \mathcal{M} is a subset of probability measures on [0,1], $AV@R_z(X):=\frac{1}{z}\int_0^z V@R_s(X)ds=-\frac{1}{z}\int_0^z G(s)ds$

Minimax

$$\inf_{G(\cdot)}\sup_{\mu\in\mathcal{M}}=\sup_{\mu\in\mathcal{M}}\inf_{G(\cdot)}$$

■ For each $\mu \in \mathcal{M}$ solve a quantile model!

Representation

$$C(X) = \sup_{\mu \in \mathcal{M}} \int_{[0,1]} AV@R_z(X)\mu(dz)$$

where \mathcal{M} is a subset of probability measures on [0,1], $AV@R_z(X) := \frac{1}{z} \int_0^z V@R_s(X) ds = -\frac{1}{z} \int_0^z G(s) ds$

Minimax

$$\inf_{G(\cdot)}\sup_{\mu\in\mathcal{M}}=\sup_{\mu\in\mathcal{M}}\inf_{G(\cdot)}$$

- For each $\mu \in \mathcal{M}$ solve a quantile model!
- **E**xplicit solution when C is comonotonic (\mathcal{M} is a singleton)

$$X^* := \frac{\frac{(1-c^*)x_0 - z\int_{c^*}^1 F_\rho^{-1}(1-z)dz}{\int_{c^*}^1 \left[1 - F_\rho^{-1}(1-z)\right]dz}}{+\frac{z - x_0}{\int_{c^*}^1 \left[1 - F_\rho^{-1}(1-z)\right]dz}} \mathbf{1}_{\rho \le F_\rho^{-1}(1-c^*)}$$

Representation

$$C(X) = \sup_{\mu \in \mathcal{M}} \int_{[0,1]} AV@R_z(X)\mu(dz)$$

where \mathcal{M} is a subset of probability measures on [0,1], $AV@R_z(X) := \frac{1}{z} \int_0^z V@R_s(X) ds = -\frac{1}{z} \int_0^z G(s) ds$

Minimax

$$\inf_{G(\cdot)} \sup_{\mu \in \mathcal{M}} = \sup_{\mu \in \mathcal{M}} \inf_{G(\cdot)}$$

- For each $\mu \in \mathcal{M}$ solve a quantile model!
- **E**xplicit solution when C is comonotonic (\mathcal{M} is a singleton)

$$X^* := \frac{\frac{(1-c^*)x_0 - z\int_{c^*}^1 F_\rho^{-1}(1-z)dz}{\int_{c^*}^1 \left[1 - F_\rho^{-1}(1-z)\right]dz}}{+ \frac{z - x_0}{\int_{c^*}^1 \left[1 - F_\rho^{-1}(1-z)\right]dz} \mathbf{1}_{\rho \le F_\rho^{-1}(1-c^*)}$$

■ He, Jin, and Zhou (2009)

$$\max_{\tau} \quad \int_{0}^{\infty} T(P(u(S_{\tau}) > x)) dx$$

$$\max_{\tau} \quad \int_{0}^{\infty} T(P(u(S_{\tau}) > x)) dx$$

where

lacksquare S_t : a martingale (w.l.o.g)

$$\max_{\tau} \quad \int_{0}^{\infty} T(P(u(S_{\tau}) > x)) dx$$

- \blacksquare S_t : a martingale (w.l.o.g)
- $ullet u(\cdot)$: utility or payoff function (convex/concave/S-shaped)

$$\max_{\tau} \quad \int_{0}^{\infty} T(P(u(S_{\tau}) > x)) dx$$

- \blacksquare S_t : a martingale (w.l.o.g)
- ullet $u(\cdot)$: utility or payoff function (convex/concave/S-shaped)
- lacksquare T:[0,1]
 ightarrow [0,1] (nonlinear) function

 \blacksquare Take quantile of S_{τ} as decision variable

- Take quantile of S_{τ} as decision variable
- Instead of finding the optimal stopping time, find the distribution of the optimal stopped price

- Take quantile of S_{τ} as decision variable
- Instead of finding the optimal stopping time, find the distribution of the optimal stopped price
- How to recover τ^* from the distribution of S_{τ^*} ? **Skorohod** embedding!

- Take quantile of S_{τ} as decision variable
- Instead of finding the optimal stopping time, find the distribution of the optimal stopped price
- How to recover τ^* from the distribution of S_{τ^*} ? **Skorohod** embedding!
- Skorohod embedding: a well studied and challenging probability problem

- Take quantile of S_{τ} as decision variable
- Instead of finding the optimal stopping time, find the distribution of the optimal stopped price
- How to recover τ^* from the distribution of S_{τ^*} ? **Skorohod** embedding!
- Skorohod embedding: a well studied and challenging probability problem
- It does not have a unique solution in general

- Take quantile of S_{τ} as decision variable
- Instead of finding the optimal stopping time, find the distribution of the optimal stopped price
- How to recover τ^* from the distribution of S_{τ^*} ? **Skorohod** embedding!
- Skorohod embedding: a well studied and challenging probability problem
- It does not have a unique solution in general
- We have solved various cases

- Take quantile of S_{τ} as decision variable
- Instead of finding the optimal stopping time, find the distribution of the optimal stopped price
- How to recover τ^* from the distribution of S_{τ^*} ? **Skorohod** embedding!
- Skorohod embedding: a well studied and challenging probability problem
- It does not have a unique solution in general
- We have solved various cases
- Xu and Zhou (2009)

 Classical (static) mutual fund theorem based on Markowitz: all investors hold same risky portfolio regardless their personal risk tastes

- Classical (static) mutual fund theorem based on Markowitz: all investors hold same risky portfolio regardless their personal risk tastes
- Recall $X^* = G^*(1 F_\rho(\rho))$ for all the models treated (except the optimal stopping one)

- Classical (static) mutual fund theorem based on Markowitz:
 all investors hold same risky portfolio regardless their personal risk tastes
- Recall $X^* = G^*(1 F_{\rho}(\rho))$ for all the models treated (except the optimal stopping one)
- With deterministic investment opportunity set all the investors (rational or behavioral) have the same risky portfolio which they never short sell (He and Zhou 2009)

- Classical (static) mutual fund theorem based on Markowitz: all investors hold same risky portfolio regardless their personal risk tastes
- Recall $X^* = G^*(1 F_{\rho}(\rho))$ for all the models treated (except the optimal stopping one)
- With deterministic investment opportunity set all the investors (rational or behavioral) have the same risky portfolio which they never short sell (He and Zhou 2009)
- This portfolio (mutual fund) is the optimal log portfolio

 Existing criteria (neoclassical and behavioral) in portfolio selection/optimal stopping introduce distortions in either payments or probabilities, or both, leading to generally non-expected maximisation models

- Existing criteria (neoclassical and behavioral) in portfolio selection/optimal stopping introduce distortions in either payments or probabilities, or both, leading to generally non-expected maximisation models
- These distortions have various economical significance

- Existing criteria (neoclassical and behavioral) in portfolio selection/optimal stopping introduce distortions in either payments or probabilities, or both, leading to generally non-expected maximisation models
- These distortions have various economical significance
- Yet they give rise to difficulties, especially in the dynamic setting, for which traditional approaches fall apart

- Existing criteria (neoclassical and behavioral) in portfolio selection/optimal stopping introduce distortions in either payments or probabilities, or both, leading to generally non-expected maximisation models
- These distortions have various economical significance
- Yet they give rise to difficulties, especially in the dynamic setting, for which traditional approaches fall apart
- We propose to change the whole perspective of continuous-time portfolio selection (including optimal stopping for selling/buying decisions)

- Existing criteria (neoclassical and behavioral) in portfolio selection/optimal stopping introduce distortions in either payments or probabilities, or both, leading to generally non-expected maximisation models
- These distortions have various economical significance
- Yet they give rise to difficulties, especially in the dynamic setting, for which traditional approaches fall apart
- We propose to change the whole perspective of continuous-time portfolio selection (including optimal stopping for selling/buying decisions)
 - Instead of finding optimal random terminal cash flows or optimal time

- Existing criteria (neoclassical and behavioral) in portfolio selection/optimal stopping introduce distortions in either payments or probabilities, or both, leading to generally non-expected maximisation models
- These distortions have various economical significance
- Yet they give rise to difficulties, especially in the dynamic setting, for which traditional approaches fall apart
- We propose to change the whole perspective of continuous-time portfolio selection (including optimal stopping for selling/buying decisions)
 - Instead of finding optimal random terminal cash flows or optimal time
 - finding quantiles values

- Existing criteria (neoclassical and behavioral) in portfolio selection/optimal stopping introduce distortions in either payments or probabilities, or both, leading to generally non-expected maximisation models
- These distortions have various economical significance
- Yet they give rise to difficulties, especially in the dynamic setting, for which traditional approaches fall apart
- We propose to change the whole perspective of continuous-time portfolio selection (including optimal stopping for selling/buying decisions)
 - Instead of finding optimal random terminal cash flows or optimal time
 - finding quantiles values
- The result is magical it sorts out the issues of nonlinear expectation and non-concavity simultaneously

- Existing criteria (neoclassical and behavioral) in portfolio selection/optimal stopping introduce distortions in either payments or probabilities, or both, leading to generally non-expected maximisation models
- These distortions have various economical significance
- Yet they give rise to difficulties, especially in the dynamic setting, for which traditional approaches fall apart
- We propose to change the whole perspective of continuous-time portfolio selection (including optimal stopping for selling/buying decisions)
 - Instead of finding optimal random terminal cash flows or optimal time
 - finding quantiles values
- The result is magical it sorts out the issues of nonlinear expectation and non-concavity simultaneously
- A new paradigm for portfolio selection, and hopefully beyond

 Oxford Maths Finance Group is looking for up to 2 Nomura Research Fellows (2-year positions)

- Oxford Maths Finance Group is looking for up to 2 Nomura Research Fellows (2-year positions)
- Affiliations with St. Hugh's College and Wadham College

- Oxford Maths Finance Group is looking for up to 2 Nomura Research Fellows (2-year positions)
- Affiliations with St. Hugh's College and Wadham College
- Free lunch ...

- Oxford Maths Finance Group is looking for up to 2 Nomura Research Fellows (2-year positions)
- Affiliations with St. Hugh's College and Wadham College
- Free lunch ...
- Deadline: 15 February 2010

- Oxford Maths Finance Group is looking for up to 2 Nomura Research Fellows (2-year positions)
- Affiliations with St. Hugh's College and Wadham College
- Free lunch ...
- Deadline: 15 February 2010
- https://www.maths.ox.ac.uk/node/11239