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Hedging under Gamma constraints

e nonrisky asset S° = 1 normalized to unity

e Risky asset defined by BS model dS; = S;odW;

e Wealth process : Y7 = Yy + fot Z,dS,, where Z is the portfolio
strategy assumed to be a semimartingale with

d{Z,S): = T+d(S); (the so-called Gamma)
e Given a payoff £ € ILO(Fr), superhedging problem :
Vo = inf{YO: 3Z€Z [ <T<T and Y%zgp—a.s.}

e Or the corresponding hedging problem : find Z € Z and some
"minimal" nondecreasing process K, Ky = 0, such that

Y£ —Kr=¢ P—as.
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Market illiquidity Cetin, Jarrow and Protter 2004

S9 =1 and Risky asset price is defined by
@ the marginal price S;, t >0
o the supply curve v — S(., v)with S(s,0) = s :

S(St,v) price per share of v risky assets

The self-financing condition leads to :
Yr = Yo+ ) Zy AS,— > AZ,[S(S, AZ) — S(St,0)]

Assume v —— S(.,v) is smooth (unlike proportional transaction
costs models), then :

T TaS
Yy — y0+/ thSt/ 00 (5,0) d(Z)e~ Y2 AZ[S (S, AZ) - Sﬁ
0 b

1%
0 t<T
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The Hedging Problem
o Let dS; = S;odW,, then

d(Z): =T2d(S);: the so-called Gamma...

e Wealth process (jumps in portfolio are sub-optimal) :

oS
dYt = thSt — E(St,O)r% d<5>t where d<Z,5>1_— = rtd<5>t
e For a contingent claim &, Super-hedging problem
V :=inf {y : Y%f’z > &P — a.s. for some "admissible" Z}

or, the corresponding hedging problem

Y%f’z — Ky = & P—as. for some "admissible" Z
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Main difficulty

Without further restrictions on trading strategies, the
continuous-time problem reduces to Black-Scholes!!

Lemma (Bank-Baum 04) For predictable W —integ. cadlag process

¢, and € > 0, there exists an absolutely continuous predictable
process ¢ = ¢§ + fot a,dr such that

Supogtgl ’fot ¢rdWr — fot stdWr

<e

= If the "admissibility" set allows for arbitrary a.c. portfolio
Zy =2+ [, audu, then V = VBS (with I = 01)
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Asymptotics of the discrete-time solution

BUT Gokay and Soner 09 showed that the discrete-time
super-hedging cost (with time step 1)
VT V£ VS

V' is characterized as the unique viscosity solution of

00 s +
VPRt s) + ya(t9)H(s) [ 1- (Va(st)) + 1> ~ 0

i 0 = o — (20S\71
with V(T,.) =g and —C < V*® < C(1+5). Here £ := (48—‘3)

In the continuous-time problem, Cetin, Soner and T. derive

directly this nonlinear PDE under appropriate restrictions on the

trading strategies... similar to previous work on Gamma constraints ﬂ
Cheridito, Soner, T.
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Intuitive introduction of the scheme

e Isolate a diffusion part in the equation :

0 = —w(t,x)— %1Av(t,x) — f (x, Dv(t, x), D*v(t, x))
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Intuitive introduction of the scheme

e Isolate a diffusion part in the equation :
1
0 = —w(t,x)— ElAv(t,x) —f (X, Dv(t,x), Dzv(t,x))

e The Monte Carlo component Let Xs =x+ 1W,_;1p, s >t —h,
evaluate at (s, X), and take expectations :

0 = IE[/tih—(vﬁ—;Av)(s,Xs)ds—/tihf(.,Dv,Dz) (s,Xs)ds]

= v(t—hx)—E [v(t,Xt)+/tihf(.,Dv, D?) (s,Xs)ds}
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Intuitive introduction of the scheme

e Isolate a diffusion part in the equation :
1
0 = —w(t,x)— ElAv(t,x) —f (X, Dv(t,x), Dzv(t,x))

e The Monte Carlo component Let Xs =x+ 1W,_;1p, s >t —h,
evaluate at (s, X), and take expectations :

0 = IE[/tih—(vﬁ—;Av)(s,Xs)ds—/tihf(.,Dv,Dz) (s,Xs)ds]

t

= v(t—h,x)—E[v(t,Xt)+/t f(.,Dv,Dz)(s,Xs)ds}

e The Finite Differences component Natural approximation

O(t — h,x) =E[0(t, Xe)] + h £ (x, E[DU(t, X¢)], E[D*0(t, X¢)])

—h
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Intuitive introduction of the scheme

e Isolate a diffusion part in the equation :
1
0 = —w(t,x)— ElAv(t,x) —f (X, Dv(t,x), Dzv(t,x))

e The Monte Carlo component Let Xs =x+ 1W,_;1p, s >t —h,
evaluate at (s, X), and take expectations :

0 = IE[/tih—(vﬁ—;Av)(s,Xs)ds—/tihf(.,Dv,Dz) (s,Xs)ds]

t

= v(t—h,x)—E[v(t,Xt)+/t f(.,Dv,Dz)(s,Xs)ds}

e The Finite Differences component Natural approximation

O(t — h,x) =E[0(t, Xe)] + h £ (x, E[DU(t, X¢)], E[D*0(t, X¢)])

—h

To get rid of differentiation, apply an ibp argument
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Intuition From Greeks Calculation

e Using the approximation f'(x) ~p—q E[f'(x + W})] :
e yz/(2h)
/f’ x+y)——=——dy

_ye—y Azm

:EP@+mﬂﬂ

e Similarly, by an additional integration by parts :

2 —y2/(2h)
1" . y he™

—Ef(+W)WLw
B A ’d
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A probabilistic numerical scheme for fully nonlinear PDEs

This suggests the following discretization :

YL = g(Xt’L),

VoL o= B Y (XY, 20T ) A, 1<i<n,
AW,

z, = B v 5]
AW, 2 — At;
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A probabilistic numerical scheme for fully nonlinear PDEs

This suggests the following discretization :

YL = g(Xt’L),

yfrill = ?—1 [Yt’;] +f <Xt771’ Ytl:fl’ nglj rl;71> At; ’ l<i<n ’
AW,

Z, =
AW, |2 — At

rg_fl = E; {Yt”? W

Convergence results :
o f,=f, =0: Bally, Pagés 2003
e f, =0 : Bouchard, T. (2004) and Zhang (2004) lﬂ
e General : Fahim,T.,Warin (2009) .
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Connection with BSDEs

Convergence of the process (Yt,, Zs;, I'+)

e f, =0 : convergence towards the solution (Y, Z) of the
BSDE :

dYt = —f(t,Xt, Yta Zt)th + Zj_—th, YT == g(XT), P— a.s.
e fully nonlinear? 7?7 we expect
dYe = —f(t, Xe, Ye, Zt, [ )dW; + Zed W, Yr =g(X7), P—as.

where [ dt :== d(Z, W)
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Backward SDEs : a quick review

Backward SDEs

Pardoux and Peng (1990, 1992) : W BM on (Q, F,P), F = FW
e For £ € L2, Hy(y, z) Lipschitz in (y,z), H.(0,0) € H? the BSDE

dY: = —He(Yy, Z)dt + ZedW,, Y1 =€

has a unique solution (Y, Z) € S§? x H?
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Pardoux and Peng (1990, 1992) : W BM on (Q, F,P), F = FW
e For £ € L2, Hy(y, z) Lipschitz in (y,z), H.(0,0) € H? the BSDE

dY: = —He(Yy, Z)dt + ZedW,, Y1 =€

has a unique solution (Y, Z) € S§? x H?

e For H =0, this is just the martingale representation theorem
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Backward SDEs

Pardoux and Peng (1990, 1992) : W BM on (Q, F,P), F = FW
e For £ € L2, Hy(y, z) Lipschitz in (y,z), H.(0,0) € H? the BSDE

dY: = —He(Yy, Z)dt + ZedW,, Y1 =€

has a unique solution (Y, Z) € S§? x H?
e For H =0, this is just the martingale representation theorem

e Easy proof by means of a fixed point argument
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Backward SDEs

Pardoux and Peng (1990, 1992) : W BM on (Q, F,P), F = FW
e For £ € L2, Hy(y, z) Lipschitz in (y,z), H.(0,0) € H? the BSDE

dY: = —He(Yy, Z)dt + ZedW,, Y1 =€

has a unique solution (Y, Z) € S§? x H?
e For H =0, this is just the martingale representation theorem
e Easy proof by means of a fixed point argument

e Other (important) extensions : obstacle, quadratic in z,
multidimensional Y/, ... lﬁ
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Backward SDEs : a quick review

Connection with PDEs

In the previous context of the BSDE :
dyt - —Ht(Yt,Zt)dt+thWt, Y]_ :g
e Assume further that H;(y, z) = h(t, X:,y, z), £ = g(X1), and

de_- = b(t, Xt)dt+0(t,Xt)th
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Backward SDEs : a quick review

Connection with PDEs

In the previous context of the BSDE :
dYe = —Hi( Yy, Zp)dt + ZydW, Yi=¢
e Assume further that H;(y, z) = h(t, X:,y, z), £ = g(X1), and
dXy = b(t, X¢)dt + o(t, X¢)dW;

Then Y: = V(t, X;) for some deterministic measurable function V
e V is a viscosity solution of the semilinear PDE

1
O:V + 5U2D2v + bDV + h(t,x,V,0DV) =0, V(1,x)=g(x)
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Backward SDEs : a quick review

Motivation from finance

The BSDE
dYy = —He(Yy, Z)dt + ZedW,, Y1 =€

appeared in many contexts :
@ Classical hedging problem in finance (H = 0)

e Hedging under different lending and borrowing rates, hedging
under portfolio constraints (+ nondecreasing process),

@ Recursice utility, Risk measures/monetary utility functions

e Portfolio optimization (only in exponential or power
expected utility framework)
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The CSTV framework
2nd order backward SDEs An alternative formulation of 2BSDEs

Second Order Backward SDEs

Cheridito, Soner, T. and Victoir 07 (CSTV) :
e 2BSDE :

dYt = _Ht(Yt7Zt7 rt)dt+ Ztoth7 rtdt = d(Z, W>t, Y]_ = f

where
1 1
ZiodWy = ZydW; + §d<Z, W) = ZedW,; + §rtdt

is the Fisk-Stratonovich stochastic integration.
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The CSTV framework
2nd order backward SDEs An alternative formulation of 2BSDEs

Second Order Backward SDEs

Cheridito, Soner, T. and Victoir 07 (CSTV) :
e 2BSDE :

dYy = —He(Ye, Ze, T1)dt + ZiodWe, Tidt :=d{(Z, W), Y1 =¢
where
1 1
ZiodW = ZydW; + §d<Z, W), = ZedW,e + Ertdt

is the Fisk-Stratonovich stochastic integration.

o lf Ht = h(t7 Wt) Yt, Zt, rt) and f = g(W]_), then Yt— = V(t, Wt),
where V is associated with the fully nonlinear PDE :

d:V + h(t,x,V,DV,D*V) =0 and V(1,x)=g(x).
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The CSTV framework
2nd order backward SDEs An alternative formulation of 2BSDEs

The uniqueness result of CSTV (only Markov case)

e Existence : if corresponding PDE has a smooth solution, then

Yy = V(t, W), Z; =DV(t,W;), T,=D>V(t,W,).
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The CSTV framework
2nd order backward SDEs An alternative formulation of 2BSDEs

The uniqueness result of CSTV (only Markov case)

e Existence : if corresponding PDE has a smooth solution, then

Yt == V(t, Wt)’ Zt’ DV(t Wt) rt D V(t Wt)

e Uniqueness : Second Order Stochastic Target Problem
V(t,x) := inf {y © YYZ > g(Wy) for some Z € Z}
U(t,x) = sup {y - ¥4 < g(Wy) for some Z € Z}

V and U are resp. viscosity super and subsolution of the PDE

If the comparison principle for viscosity solutions of PDE holds, 4
then 2BSDE has a unique solution in class Z lﬂ
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The CSTV framework
2nd order backward SDEs An alternative formulation of 2BSDEs

The admissibility set ~ in CSTV

Definition Z € Z if it is of the form

N-1

t t
Zt = Z znl{t<Tn+1} +/07 Oésds +/0' I_SdWS
n=0

e () is an " seq. of stop. times, z, are F,, —measurable,
[[N]|oo < 00

e Z; and I'; are L°°—bounded up to some polynomial of X;
o =To+ [y asds+ [y &sdWs, 0< ¢t < T, and

|¢r|
sup

«
Ied o<t<T 1+ XB

Bb+lallss +€lls2 <00, ¢lles = ‘
Lb
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Uniqueness in larger class

Counter-example The following linear 2BSDE with constant
coefficients has a nonzero solution in 1.2 :

1
dYe = —Jclidt + ZodWe, Y1 =0,

whenever ¢ # 1
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The CSTV framework
2nd order backward SDEs An alternative formulation of 2BSDEs

General framework

Q = C([0,1],RY), B : coordinate process, Py : Wiener measure
F := {F:}o<t<1 : filtration generated by B, F+

P is a local martingale measure if B local martingale under P

Karandikar 95 : fot BsdB;, defined w—wise, and coincides with the
Itd integral, P—a.s. for all local martingale measure . Then

t
R —1
(B); = BB — 2/0 B,dBY and 3 := 181%5(<B>t - <B>t_€>,

defined w—wise

P :set of all local martingale measures P such that

(B); isa.c.intand 3 takes valuesin S;%(R), P —as. ,ﬂ
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General framework, continued

For every F—prog. meas. « valued in S;°(R) with fol || dt < oo,
Pg—a.s. Define

t
P*:=Pgo (Xa)*1 where X := / ai/des, t €0,1],Py — a.s.
0

Ps C Py : collection of all such P*

Then every P € Ps
o satisfies the Blumenthal zero-one law

@ and the martingale representation property
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The CSTV framework
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Nonlinear generators

He(w,y,z,7) : [0,1]] x Q@ x R x RY x Dy — R

Dy c R9*9 given, containing 0
e For fixed (y,z,v), H is F—progressively measurable
e H is uniformly Lipschitz in (y, z), Isc in v
@ H is uniformly continuous in w under the L°°—norm
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The CSTV framework

2nd order backward SDEs An alternative formulation of 2BSDEs

Nonlinear generators

He(w,y,z,7) : [0,1]] x Q@ x R x RY x Dy — R
Dy c R9*9 given, containing 0

e For fixed (y,z,v), H is F—progressively measurable
e H is uniformly Lipschitz in (y, z), Isc in v

@ H is uniformly continuous in w under the L°°—norm

1
Fi(w,y,z,a) := sup {a iy — Hy

. @rzn}, ses®)
v€DH

Fi(y.z) == Fe(y,z,3) and F?:=F,(0,0)
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The CSTV framework

2nd order backward SDEs An alternative formulation of 2BSDEs

Nonlinear generators

He(w,y,z,7) : [0,1]] x Q@ x R x RY x Dy — R
Dy c R9*9 given, containing 0

e For fixed (y,z,v), H is F—progressively measurable
e H is uniformly Lipschitz in (y, z), Isc in v
@ H is uniformly continuous in w under the L°°—norm

1
Fi(w,y,z,a) := sup {a iy — Hy

. @rzn}, ses®)
v€DH

F(y,z):= Fe(y.z,3;) and F?:=F(0,0)
Ph : set of all P € Ps such that

1
ap < a < ap, for some ap, ap and EP{/ \FtOth

| <o
0
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The CSTV framework

2nd order backward SDEs An alternative formulation of 2BSDEs

Nonlinear generators

He(w,y,z,7) : [0,1]] x Q@ x R x RY x Dy — R
Dy c R9*9 given, containing 0

e For fixed (y,z,v), H is F—progressively measurable
e H is uniformly Lipschitz in (y, z), Isc in v
@ H is uniformly continuous in w under the L°°—norm

1
Fi(w,y,z,a) := sup {a iy — Hy

. @rzn}, ses®)
v€DH

F(y,z):= Fe(y.z,3;) and F?:=F(0,0)
Ph : set of all P € Ps such that

1
ap < a < ap, for some ap, ap and EP{/ \FtOth
0

Def Pp—q.s. means P—a.s. for all P € Py (Denis-Martini 04) ﬂ

| <o
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2nd order backward SDEs An alternative formulation of 2BSDEs

Target problem and relaxations V(€) > V(€) = V(€)
® Z € (pep, SM?(P), d(Z,B); = T.d(B):, Py—q.s. and

ot t
YOZ—/ Hs(Ys,Zs,Fs)ds+/ Zs 0 dBs
0 0

inf { Yo: YZ>¢Py—qs. Ze€ ﬂ]pepHSMz(P)}
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The CSTV framework

2nd order backward SDEs An alternative formulation of 2BSDEs

Target problem and relaxations V(€) > V(€) = V(€)

* Z € (pep, SMA3(P), d(Z,B); = T+d(B):, Py—q.s. and

t t
Y = YOZ—/ Hs(Ys,Zs,Fs)ds+/ Zs o dBs
0

0

V() = inf{Yo L YZ>ePy—qs. Z¢€ mpepHSM%P)}

Relaxation 1

VO = Vot fy (3as: To—Hs(V 2T, Z,,Ty) ) ds + 5 Z.dBs,
D(€) = inf{\_/o £ 32,6 € Npep,H2(P), YEZ >¢P—as Pe PH}
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The CSTV framework
2nd order backward SDEs An alternative formulation of 2BSDEs

Target problem and relaxations V(€) > V(€) = V(€)
o Z € pep, SM?(P), d(Z, B)t = T+d(B)+, Pn—q.s. and

t t
Y = YOZ—/ Hs(Ys,Zs,Fs)ds+/ Zs o dBs
0 0

V() = inf{Yo C YE>EPy—qs. Z € mpepHSM%P)}

_Rel_ag(atii)n 1 - I _
VT =Yo + Jy (300 Fa—Ho(VEZT, 2,,F,)) ds + [ Z.dBs,

D(€) = inf{\_/o £ 32,6 € Npep,H2(P), YEZ >¢P—as Pe PH}

NII

Relaxation 2 \=/ \=/0 + fot F. (\Z E) s + fo Z dBs,

f/(f) ::inf{Yo: EZ€ﬂpepHH2(P), §>EP—BS PGPH} l@
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2nd order backward SDEs An alternative formulation of 2BSDEs

Definition

For F1—meas. &, consider the 2BSDE :
dY: = Fo(Ys, Z)dt + ZudBy — dKy, 0<t <1, Y7 =¢&, Py —qs.

Wellposedness of Second Order BSDEs




The CSTV framework
2nd order backward SDEs An alternative formulation of 2BSDEs

Definition

For F1—meas. &, consider the 2BSDE :
dY: = Fo(Ys, Z)dt + ZudBy — dKy, 0<t <1, Y7 =¢&, Py —qs.
We say (Y, Z) € D?, x H3, is a solution to the 2BSDE if

o Yr=¢, Py—q.s.
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The CSTV framework
2nd order backward SDEs An alternative formulation of 2BSDEs

Definition

For F1—meas. &, consider the 2BSDE :
dY: = Fo(Ys, Z)dt + ZudBy — dKy, 0<t <1, Y7 =¢&, Py —qs.
We say (Y, Z) € D?, x H3, is a solution to the 2BSDE if

o Y7 =¢& Py—qs.

o For each P € Py, K' has nondecreasing paths, P—a.s. :

KP = Yo— Yo+ [y Fo(Ys, Zs)ds+ [y ZsdBs, t € [0,1], P — ass.
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The CSTV framework
2nd order backward SDEs An alternative formulation of 2BSDEs

Definition

For F1—meas. &, consider the 2BSDE :
dY: = Fo(Ys, Z)dt + ZudBy — dKy, 0<t <1, Y7 =¢&, Py —qs.
We say (Y, Z) € D?, x H3, is a solution to the 2BSDE if

o Y7 =¢& Py—qs.

o For each P € Py, K' has nondecreasing paths, P—a.s. :

KP = Yo— Yo+ [y Fo(Ys, Zs)ds+ [y ZsdBs, t € [0,1], P — ass.

o The family of processes {K*, P € Py} satisfies :
KF = essinf EP[K]], P—as. foral PePy,t < T

P'€Py(t,P) Pk
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The CSTV framework
2nd order backward SDEs An alternative formulation of 2BSDEs

Back to standard BSDEs

For standard BSDEs
dYy, := —H(Y;, Zy)dt + Z,dB;, Y1 =€
the nonlinearity and the corresponding conjugate :

—Ho(.) fora= Iy

00 otherwise

-1
Helr) = o+ O, Filoa) = {
Then P = {P%}, KP” = 0, and the previous definition reduces to

the standard definition

dYy = —HY(Y:, Zu)dt + Z,dB;, Yr =¢, P° —as.



The CSTV framework
2nd order backward SDEs An alternative formulation of 2BSDEs

Benchmark example : uncertain volatility model,
G —expectation (Peng)

Let d =1, and H¢(y, z,7) := G(v) =3y — ay~, and suppose
that the PDE

ou
9t + G(ux) =0, and u(T,.)=g

has a smooth solution. Then
Yt = U(t7 Bt), Zt = DU(t, Bt),

is a solution of the 2BSDE with

Ke = /Ot (G(uxx)—iés“xx> (s, Bs)ds Pk
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Spaces and norms

o Lf = {¢ P~ meas.: [[§], < oo}
o HY, .= {Z F* —prog. meas. in TR 1ZIge < oo}

A1/2
I€1gy, = sup B[P, 1215, = sup E¥[( / DA
H PePy
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Spaces and norms

o LY, := {¢ Fi — meas. : ||5||£,; < oo}
o Hf, := {Z F —prog. meas. in R9: 1Z]18e < oo}
H
1

€125 = sup EF(€7), 1211, = sup B¥[( | [at/°2P )]

H  PePy H  PePy 0
o D}, := {Y F* —prog. in R cadlag Py —q.s. | Y|P, < oo}

H

IVl == sup B[ sup |V
H PePy 0<t<1
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Spaces and norms

o Ly = {6 71 —meas. . [|¢]|f, < oo}
o Hf, := {Z F* —prog. meas. in Rd 1ZIIE; P < oof

€07y, = sup E7[1?). 112l = sup EF( / 3% 2. de))?]
oD}, :={Y F+—prog. in R cadlag Py — q.s. ”YHHI;)‘,Z, < oo}
IVl == sup B[ sup |V
H PePy 0<t<1
° L%_,’* = {§ S L%_, : ||£H]L2 < oo}
€]z, += sup BF| sup B[P, BI7E)i= ess sup” B [el7)
’ 0<t< P'ePp(t,P)
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Spaces and norms

o LY, := {¢ Fi — meas. : ||5||£,; < oo}
o Hf, := {Z F —prog. meas. in R9: HZ”I[:HZ < oo}

1
€125 = sup EF(€7), 1211, = sup B¥[( | [at/°2P )]
H PePy H PePy 0
o D}, := {Y F* —prog. in R cadlag Py —q.s. | Y|P, < oo}
H

IVl == sup B[ sup |V
H PePy 0<t<1

o 13, = {€ €Ly ¢l < oo}

l€llz, = sup B[ sup E{FIIEP], BIPIE) = ess sup” B [¢] 7]
»* PePy 0<t<1 P/EPH(t,P)
o 2, := closure of UC,(£2) under the norm || - H]Lﬁ lﬂ
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Representation and uniqueness

1
Assumption  sup EP{ sup Ef’P[/ |F£\2ds]} < o0, and :
PePy  L0<t<l t

iy, 21) — Fily, 22)| < Clat%(z1 — )|, dt x dP —a.s. for all P € Py

Theorem Let ¢ € ]L‘%L* and suppose (Y, Z) € D?, x H?, is a
solution of the 2BSDE. Then, forany P e Py and 0 < t; < tp <1,

, P P
Yo = esssup = Yy (2, Yy,), P—as.
P’ ePy(t1,P)

Vi (t2, Yi,) = Ve, where (y¢)e<s, is the solution of
T T
ye=Ye —/ Ft(ys,zs)ds—l—/ zsdBs, P —a.s.
t t

Corollary The 2BSDE has at most one solution in D?, x HZ,, and Pk
comparison holds true
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A priori estimates

Theorem (i) Let& e LI%I,* and (Y, Z) € D?, x H% a solution of
the 2BSDE. Then

2 2 P P2 2 012
Y18, + 121, + sup EFIRFP) < ClelEy,+ 17l )
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A priori estimates

Theorem (i) Let& e LI%I,* and (Y, Z) € D?, x H% a solution of
the 2BSDE. Then

2 2 P P2 2 012
Y18, + 121, + sup EFIRFP) < ClelEy,+ 17l )

(i) Let &' € L%‘h* and (Y',Z") € D?, x H?, corresponding
solutions to the 2BSDE, i = 1,2. Then, with 6¢ := ¢} — €2,
OY =YY= Y2 67 :=7'— 72 and 6KP .= KLP — K2P .

16Yllp3, < Cl6¢], . and

16213, + sup E”| sup [oKTP]
H PePy 0<t<1 .
< Cllaglz, + (1€, + 1P, )I5€ls,.
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Existence

Theorem For any ¢ € L2, the 2BSDE admits a unique solution
(Y,Z) e D?, x H2,.

Recall 22, := closure of UC,(£2) under the norm || - Iz, . where

H,P
l€ls, = sup B[ sup E{F[igP?]
* PePy t<1

0<
and
E{Fle] = ess sup® EY [¢] ]

P ePy(t,P)
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Connection with PDEs

Theorem Under "natural conditions", the solution of the 2BSDE
satisfies Y: = u(t, By), t € [0, T], Py—q.s. and u is a viscosity

solution of

3u ~ 2

E(t,x) + H(t,x, u(t,x), Du(t,x), D u(t,x)) = 0,0<t<1

u(l,x) = g(x)

where

~ 1 dxd

H(taxayaz77) = sup {73:’7_F(t7x7yazva)}> ’YGR .
aeS}(R)

We also have a Feynman-Kac representation theorem for the lﬂ

Cauchy problem with the latter fully nonlinear PDE

Nizar TOUZI Wellposedness of Second Order BSDEs



Representation, uniqueness
Existence

. Connection with PDEs and stochastic control
Main results

Connection with G —expectation

Denis-Martini (2004), Peng's G —expectation (2007) :

1 0 on]laa
Hi(y,2,7) = 6(7):= 5 sup_a:y Then Ft(a):{ 50 oth[e;wi]se
a<a<a

The corresponding PDE is

du 2 —

given the terminal data u(T,.) = g, this is the DPE for the
problem of superhedging under uncertain volatility :

-
inf { Yo: Yo +/ ZsdBs > g(Bt), P — q.s.}
0

where Py = {P €Ps: ac|aa,P—- a.s.} lﬁ
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Connection with stochastic control

In classical stochastic control theory, define :

YP = esssup E[¢|F], P—as. forall P e Py
PePy(t,P)
Then
o {Y7} can be aggregated into a P—supermartingale for all
P e Py

o {YF'} is a P*—martingale for some P* € Py = P* optimal

However, it is not clear how to aggregate the family of processes
{YF, PePy}
i.e. find a process Y such that Y = Y¥ P—as. forall P € Py ,ﬁ
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