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Objective

build and analyze a model of optimal investment which accounts
for

I time illiquidity: the impossibility to trade at all times

I more frequent trading near the finite time horizon



Modeling Time Illiquidity

I finite horizon T < ∞
I money market paying zero risk-free interest rate

I a risky asset S traded/observed only at some some exogenous
random times (τn)n≥0

0 = τ0 < τ1 < · · · < τn < · · · < T .

What does an agent actually observe up to time t ≤ T?

(τ0,Sτ0), (τ1,Sτ1), . . . (τn,Sτn),

if
τn ≤ t < τn+1.



More Structure for the Model

I the discrete-time observed asset prices (Sτn)n≥0 come from an
unobserved continuous-time stochastic process (St)0≤t≤T

(based on fundamentals)

I S is a stochastic exponential

S = E (L),

where L is a time inhomogeneous Lévy process

Lt =

∫ t

0
b(u) du+

∫ t

0
c(u) dBu+

∫ t

0

∫ ∞

−1
y(µ(dt, dy)−ν(dt, dy))

with ∆L > −1

I (τn)n≥0 and (St)0≤t≤T are independent under the physical
probability measure P.



More Structure for the Model cont’d

Denote by Zt,s the unobserved return between the times t ≤ s

Zt,s =
Ss − St

St
,

and
p(t, s, dz) = P[Zt,s ∈ dz ],

the distribution of the return.

Remark: based on the assumptions on L, p(t, s, dz) has full
support on (−1,∞).



Observation/Trading Times

Recall the sequence of exogenous random times (τn)n≥0 when
observation/trading takes place.
Need

I to be able to model more frequent trading near the horizon T

I to obtain a reasonable mathematical structure

Solution: assume that (τn)n≥0 are the jump times of an
inhomogeneous Poisson process with deterministic intensity.



Time Inhomogeneous Poisson Processes

Consider a (deterministic) intensity t ∈ [0,T ) → λ(t) ∈ (0,∞),
such that:∫ t

0
λ(u)du < ∞, (∀) 0 ≤ t < T and

∫ T

0
λ(u)du = ∞.

Define

I Nt = MR t
0 λ(s)ds 0 ≤ t < T , where M is a Poisson process

with intensity 1.

I (τn)n≥0 as the sequence of jumps of N.

Consequences:

I we have an increasing sequence of times that accumulates at
T

I

P[τn+1 ∈ ds|τn = t] = λ(s)e−
R s
t λ(u)du1{t≤s<T} ds



Trading Strategies

At any of the exogenous trading times τn−1 the agent can choose
to hold αn units of the risky asset up to the next trading time τn

What information is available in order to choose αn? Define the
discrete filtration:

Fn = σ
{

(τk ,Sτk
) : 1 ≤ k ≤ n

}
= σ

{
(τk ,Zk) : 1 ≤ k ≤ n

}
, n ≥ 1

where
Zn = Zτn−1,τn , n ≥ 1,

is the observed return.
In this model a trading strategy is a real-valued F -predictable
process α = (αn)n≥1, where αn represents the amount invested in
the stock over the period (τn−1, τn] after observing the stock price
at time τn−1

αn ∈ Fn−1



Wealth Processes and Admissibility

Fix the initial wealth X0 > 0.
Observed wealth process is defined by

Xτn = Xτn−1 + αnZn, n ≥ 1.

Admissibility condition:

Xτn ≥ 0, n ≥ 1.

Denote by A the set of all admissible strategies.
Terminal wealth:

XT = lim
n→∞

Xτn = X0 +
∞∑

n=1

αnZn.

Does that limit exist?
Yes, if a martingale measure for S exists.



Distribution of the Observed Returns

the independence of S and the trading times ensures that for all n,
the (regular) distribution of (τn+1,Zn+1) conditioned on Fn is
given as follows:

1. P[τn+1 ∈ ds|Fn] = λ(s)e−
R s

τn
λ(u)duds

2. further conditioning on knowing the next arrival time τn+1,
the return Zn+1 has distribution

P[Zn+1 ∈ dz |Fn ∨ σ(τn+1)] = p(τn, τn+1, dz).

One consequence: Zn+1 has full support in (−1,∞).



More on Admissibility

Recall
Xτn = Xτn−1 + αnZn ≥ 0, n ≥ 1,

and Zn has full support in (−1,∞), so admissibility means

0 ≤ αn ≤ Xτn−1 , for all n ≥ 1.

Since Zn > −1 for each n, then Xτn > 0 for each n.
We can use Xτn−1 > 0, to represent the trading strategy in terms of
the proportion of the wealth invested in the risky asset at time τn−1

πn = αn/Xτn−1 ,

as
0 ≤ πn ≤ 1.

(Short sale constraints)



The Optimal Investment Problem

Find the strategy α which attains the supremum in

V0 = sup
α∈A

E[U(XT )],

where the utility function U is defined on (0,∞)

I strictly increasing

I strictly concave and C 1 on (0,∞)

I satisfies the Inada conditions: U ′(0+) = ∞, U ′(∞) = 0.
Note: actually a little more is needed, like power behavior
close to 0 and ∞



(Direct) Dynamic Programming

Idea:

1. use the Markov structure of the problem to write (formally)
the Dynamic Programming Equation

2. solve the equation analytically

3. use ”verification arguments” to show that the solution found
above is the value function, and find the optimal strategy in
”feedback form”



1-Dynamic Programming Equation (DPE)

The control problem is

I finite horizon in time t

I infinite horizon with respect to the number of
trades/observations n

Look for a function v(t, x) such that

I for each α ∈ A we have that {v(τn,Xτn), n ≥ 0} is a
(P,F )-supermartingale

I for some α∗ ∈ A we have that {v(τn,X
∗
τn

), n ≥ 0} is a
(P,F )-martingale

I limt→T ,y→x v(t, y) = U(x)



More on DPE

Because of the (conditional) distribution of observed returns, we
have

E
[
v(τn+1,Xτn+1)|Fn

]
=

=

∫ T

τn

∫
(−1,∞)

λ(s)e−
R s

τn
λ(u)duv(s,Xτn + αn+1z)p(τn, s, dz)ds

≥ (= if optimal)v(τn,Xτn)

so that {v(τn,Xτn), n ≥ 0} is a supermartingale or martingale.



DPE cont’d

We have the equation

v(t, x) = sup
a∈[0,x]

∫ T

t

∫
(−1,∞)

λ(s)e−
R s
t λ(u)duv(s, x + az)p(t, s, dz)ds,

= sup
π∈[0,1]

∫ T

t

∫
(−1,∞)

λ(s)e−
R s
t λ(u)duv(s, x(1 + πz))p(t, s, dz)ds,

for all (t, x) ∈ [0,T )× (0,∞) together with the terminal condition

lim
t↗T ,x ′→x

v(t, x ′) = U(x), x > 0.



2-Solving the DPE

Denote by

L v(t, x) = sup
a∈[0,x]

∫ T

t

∫
(−1,∞)

λ(s)e−
R s
t λ(u)duv(s, x+az)p(t, s, dz)ds.

Can rewrite the (DPE) as{
L v = v
limt↗T ,x ′→x v(t, x ′) = U(x).

How do we find a solution: by monotone iterations.

v0(t, x) = U(x), vn+1 = L vn

We have v0 ≤ v1 ≤ · · · ≤ vn and vn ↗ v , where v is a solution of
the (DPE).



3-Verification

Fix α ∈ A . We have

v(0,X0) ≥ E[v(τn,Xτn)]

IF we have some uniform integrability conditions (which we do
check!), together with limt→T ,y→x v(t, y) = U(x) we get

v(0,X0) ≥ E[U(XT )], (∀) α ∈ A .



3-Verification, the Optimal Strategy
Denote by α∗(t, x) the argmax in the DPE. For the feedback
control

αn+1 = α∗(τn,Xτn), n ≥ 0,

the state equation has to be solved recursively to obtain the wealth
process (X ∗

τn
)n≥0 (and the control α∗).

From the DPE we have that

{v(τn,X
∗
τn

), n ≥ 0}

is a (P,F )-martingale so

v(0,X0) = E[v(τn,X
∗
τn

)].

Need uniform integrability again to pass to the limit and get

v(0,X0) = E[U(X ∗
T )]

Conclusions:
I V0 = v(0,X0)
I the feedback α∗ which makes {v(τn,X

∗
τn

), n ≥ 0} a
(P,F )-martingale is optimal



Some Technical Details

I nee to show that
v := sup

n
vn < ∞

without using the dynamic programming principle

I we need controls on the jump measure, compatible with the
utility function to get the uniform integrability



Uniform Integrability
Assumptions on the utility function:
(i) there exist some constants C > 0 and p ∈ (0, 1) such that

U+(x) ≤ C (1 + xp), (∀) x > 0

(ii) Either U(0) > −∞, or U(0) = −∞ and there exist some
constants C ′ > 0 and p′ < 0 such that

U−(x) ≤ C (1 + xp′), (∀) x > 0.

Assumptions on the jump measure: (i) there exists q > 1 such that∫ T

0

∫ ∞

0

(
(1 + y)q − 1− qy

)
ν(dt, dy) < ∞.

(ii) If the utility function U satisfies U(0) = −∞ , then there exists
r < p′ < 0 such that∫ T

0

∫ 0

−1

(
(1 + y)r − 1− ry

)
ν(dt, dy) < ∞.

(iii) there are no predictable jumps, i.e. ν({t}, (−1,∞)) = 0 for
each t



The Approximate Solution vn

Using again the same kind of verification arguments, we obtain as
a by-product that

vn(0,X0) = sup
α∈An

E[U(XT )],

where An is the set of admissible controls (αn)n≥1 such that

αn+1 = αn+2 = ... = 0.



CRRA Utility Functions

Power utility functions:

U(x) =
xγ

γ
, x > 0, γ < 1, γ 6= 0.

The value function has the form:

v(t, x) = ϕ(t)U(x).

The DPE becomes

ϕ(t) = sup
π∈[0,1]

∫ T

t
λ(s)e−

R s
t λ(u)duϕ(s)

( ∫
(−1,∞)

(1+πz)γp(t, s, dz)
)
ds

with terminal condition
ϕ(T ) = 1.



Overview of the Solution

I derive (formally in the beginning) the DPE, having in mind
the verification arguments

I solve the DPE analytically

I go over the verification arguments to compute the maximal
expected utility and the optimal control in feedback form



Asymptotic Behavior

Question: what happens if intensity is very large at all times, not
only close to maturity?
For a fixed intensity function λ, denote

V λ
0 = sup

α∈A λ

E[U(XT )].

Need to find the limit of V λ
0 as λ(·) →∞ (in some sense).



The Optimization Problem in Continuous Time

Denote by FS the filtration generated by continuously observing S

F S
t := σ(Su; 0 ≤ u ≤ t).

Consider the class A c of continuous time strategies with short sale
constraints: α = (αt)0≤t≤T such that

Xt = X0 +

∫ t

0
αu

dSu

Su−
, 0 ≤ t ≤ T

satisfies
0 ≤ αt ≤ Xt−, 0 ≤ t ≤ T .

Define
V M

0 = sup
α∈A c

E[U(XT )].



One Possible Approach

I solve the continuous time problem and find the optimal
proportion π̂s = π̂(s,Xs) ∈ [0, 1] in feedback form

I show that the solution of the closed loop equation

X̂t = X0 +

∫ t

0
X̂uπ̂(u, X̂u−)

dSu

Su−
, 0 ≤ t ≤ T

is approximated by the discrete version

Xτn = Xτn−1 + X̂τn−1 π̂(τn−1,Xτn−1)
Sτn − Sτn−1

Sτn−1

, n ≥ 1.

when the intensity rate is large (at all times) so that

V λ
0 → V M

0



Our Approach

I for a fixed arrival rate λ, we use the very same verification
arguments to show that an investor cannot improve his/her
utility if the process S is observed continuously

I use the arguments of Kardaras and Platen to show that a
continuous time trading strategy can be approximated by a
discrete-time trading strategy (trading occurs at the arrival
times) but where the asset S is observed continuously.
Therefore

V M
0 ≤ lim

λ
V λ

0

I using independence V λ
0 ≤ V M

0 , so

V M
0 = lim

λ
V λ

0



Asymptotic behavior: the precise result

Consider (λk)k a sequence of intensity functions. If

∞∑
k=0

exp

(
−

∫ s

t
λk(u) du

)
< ∞, (∀) 0 ≤ t < s < T ,

then
V λk

0 → V M
0 , as k goes to infinity.



Conclusions

We model a time-illiquid investment problem as a stochastic
control problem which is

I finite horizon in time t

I infinite horizon with respect to the number of
trades/observations n

We solve the problem using dynamic programming

I solve the DPE

I perform a verification argument to find the optimal control

We also analyze the asymptotic behavior for the case when
intensity is large at all times.
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