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Motivation

Can early exercise of an American ESO be triggered by inside information?

Empirically, early exercise of ESOs is common.

Usually attributed to contractual features or to risk aversion.

Significant abnormal negative returns have been observed after exercise by
top managers at small firms (Carpenter and Remmers [10]).

Hence, inside information may play a role.
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ESO literature

I Grasselli and Henderson [19]
I Leung and Sircar [26, 27], Sircar and Xiong [32]
I Rogers and Scheinkman [31]

These papers show that market frictions, risk aversion, contractual features,
job termination, can lead to early and/or partial exercise.

Cvitanic, Wiener and Zapatero [13] take early exercise as given.

We do not include outside trading, or risk aversion or partial exercise
opportunities or any other contractual complications.

Pure optimal stopping problem under the physical measure, maximise
expected discouted payoff.

Goal is to focus exclusively on impact of information.

Will insider exercise the ESO before maturity, in situations when an agent
without inside information would not.
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Incorporating inside information

Pikovsky and Karatzas [30]: initial enlargement through knowldege at time
zero of random variable L.

Amendinger, Imkeller and Schweizer [3], Ankirchner, Dereich and Imkeller [4]:
entropic characterisation of additional utility.

Amendinger, Becherer and Schweizer [2]: monetary value to initial
information.

Imkeller [22, 23]: progressive enlargement to model inside information;
Malliavin calculus to characterise the information drift.

Corcuera, Imkeller, Kohatsu-Higa, Nualart [12]: dynamic flow of inside
information.

Baudoin and Nguyen-Ngoc [5]: information on the law of some random
variable.

Hillairet [20]: comparison of optimal strategies of insiders with different forms
of side-information.
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Insider literature

Campi [7]: quadratic hedging problem for an insider.

Kohatsu-Higa and Sulem [25]: utility maximisation in a market in which
insider can influence prices.

Campi and Çetin [8]: equilibrium with an insider and default.

Campi, Çetin and Danilova [9]: equilibrium with an insider and evolution of
information.

Øksendal et al [1, 6]: forward integral approach to equilibrium with an insider.

Danilova, Monoyios and Ng [14]: optimal investment with initial enlargement
and drift uncertainty.
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Model

Log-stock price on (Ω,F ,P), equipped with filtration F = (Ft)0≤t≤T

satisfying usual conditions:

dXt = γdt + σdBt , γ := µ− 1

2
σ2. (1)

Stock price is S = eX .

Interest rate r ≥ 0.

Agent: an insider (executive) with additional information on future stock
price, via knowledge at time zero of an F-measurable random variable L.

For example
L = aXT + (1− a)ε, 0 < a ≤ 1. (2)

The insider is barred from trading S and does not trade any outside stocks.

Regular agent: a non-executive without inside information, with filtration F.
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Enlarged filtration

Insider’s filtration is Fσ(L) = (Fσ(L)
t )0≤t≤T , defined by

Fσ(L)
t := Ft ∨ σ(L), 0 ≤ t ≤ T .

For certain choices of L, dynamics of X w.r.t. enlarged filtration are of the form

dXt = a(t,Xt)dt + σdBL
t , (3)

for some a(t, x) which depends on L, and BL is (P,Fσ(L))-BM
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Example: noisy terminal stock price information

Suppose L = aXT = (1− a)ε, where ε ∼ N(0, 1) independent of B and
a ∈ (0, 1].

Then, with respect to the enlarged filtration Fσ(L), the dynamics of the
log-stock price are

dXt =
C − Xt

Ta − t
dt + σdBL

t , (4)

where BL is an Fσ(L)-Brownian motion and

C = γ(Ta − T ) +
L

a
,

Ta = T +

(
1− a

aσ

)2

, 0 < a ≤ 1.
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Information drift

Classical enlargement of filtration results:

With respect to Fσ(L) the F-Brownian motion B decomposes as

Bt = BL
t +

∫ t

0

gy (s, L,Bs)

g(s, L,Bs)
ds, 0 ≤ t ≤ T ,

where BL an Fσ(L)-Brownian motion.

g : [0,T ]× R2 → R+ is the conditional density of L given F, which must
satisfy ∫ t

0

|gy (s, x , y)/g(s, x , y |ds <∞.

The process

νL
t =

gy (t, L,Bt)

g(t, L,Bt)
, 0 ≤ t ≤ T .

is called the information drift.
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Information drift for noisy terminal stock price information

With L given in (2) and X0 assumed deterministic, then

Law[L|Ft ] = N(a(X0 + γT + σBt), (aσ)2(Ta − t)).

Hence, the semimartingale decomposition of B with respect to Fσ(L) is

Bt = BL
t +

∫ t

0

L− a(X0 + γT + σBs)

a(Ta − s)
ds, (5)

where BL is a Brownian motion with respect to Fσ(L).

Use X0 + σBt = Xt − γt to obtain dynamics (4) for X w.r.t. Fσ(L).
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Sets of stopping times

Let T be the set of F-stopping times.

Let T L be the set of Fσ(L)-stopping times.

Define the subsets of T and T L:

Tt,T := {τ ∈ T |P(τ ∈ [t,T ]) = 1}, 0 ≤ t ≤ T <∞,
T L

t,T := {τ ∈ T L|P(τ ∈ [t,T ]) = 1}, 0 ≤ t ≤ T <∞.

T0,T ≡ T and T L
0,T ≡ T L.
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ESO

ESO: American call with strike K > 0, cash settled.

The insider’s optimal stopping problem is to find a stopping time τ∗ ∈ T L to
achieve the maximal expected reward

V0 := sup
τ∈T L

E [Yτ ] = E [Yτ∗ ],

subject to dynamics (3), and where Y = (Yt)0≤t≤T is the reward process:

Yt := e−rt(eXt − K )+ = e−rt(St − K )+, 0 ≤ t ≤ T ,

satisfying E
[
sup0≤t≤T Yt

]
<∞.

The non-executive faces a similar problem, but over F-stopping times, so in
this case the dynamics of X are given by (1). His maximal expected reward is
given by

V 0
0 := sup

τ∈T
E [Yτ ].
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Benchmark case: µ ≥ r and no inside information

For µ ≥ r , the reward process Yt is a (P,F)-submartingale, so the regular
agent’s value for the American ESO coincides with the European value:

V 0
0 = E [YT ],

and the exercise time τ = T is optimal for the regular agent.

(Write µ = r − δ for some δ, then µ ≥ r ⇒ δ ≤ 0. Then we have a standard
American call problem with non-positive dividend rate.)

The goal is to show that inside information on the stock alters this conclusion.

The inside information makes the drift of the stock level dependent, so we
might expect early exercise to be induced.

Investigate this by analysis of an optimal stopping problem governed by a
diffusion with time and state dependent drift.
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Starting time t ∈ [0,T ]

For a starting time t ∈ [0,T ] the maximal expected discounted payoff is given by
the process

Vt := ess sup
τ∈T L

t,T

E [e−r(τ−t)(Sτ − K )+|Fσ(L)
t ] = ert ess sup

τ∈T L
t,T

E [Yτ |Fσ(L)
t ], 0 ≤ t ≤ T .

So we consider the process U defined by

Ut := ess sup
τ∈T L

t,T

E [Yτ |Fσ(L)
t ], 0 ≤ t ≤ T , (6)

satisfying Ut = e−rtVt a.s., for t ∈ [0,T ], and

U0 = sup
τ∈T L

E [Yτ ] = V0. (7)

U admits a right-continuous modification, so we shall not distinguish between U
and this modification.
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Snell envelope

There exists a non-negative càdlàg (P,Fσ(L))-supermartingale U = (Ut)0≤t≤T ,
the Snell envelope of Y , such that:

U is the smallest (P,Fσ(L))-supermartingale that dominates Y :

Ut ≥ Yt , 0 ≤ t ≤ T , and UT = YT a.s.

For every t ∈ [0,T ],

Ut = ess sup
τ∈T L

t,T

E [Yτ |Fσ(L)
t ], a.s.,

E [Ut ] = u(t) := sup
τ∈T L

t,T

E [Yτ ] = E [Yτ∗t ],

where
τ∗t := inf{ρ ∈ [t,T ]|Uρ = Yρ} ∧ T , 0 ≤ t ≤ T ,

is a stopping time in T L
t,T .
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Optimal stopping time

A stopping time τ∗ ∈ T L is optimal for problem (7) (that is,
E [Yτ∗ ] = U0 = supτ∈T L E [Yτ ]) if and only if

Uτ∗ = Yτ∗ , a.s.,

and the stopped supermartingale Uτ∗ defined by Uτ∗

t := Uτ∗∧t , 0 ≤ t ≤ T , is
a (P,Fσ(L))-martingale.

The supermartingale U admits the Doob-Meyer decomposition

Ut = u(0) + Mt − At , 0 ≤ t ≤ T ,

where M is a uniformly integrable (P,Fσ(L))-martingale and A is a
non-decreasing, continuous, adapted process with E AT <∞ and
A0 = M0 = 0.

The process A is flat off the set

{t ∈ [0,T ]|Ut = Yt}.
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Value functions

Define the value function F : [0,T ]× R→ R+ by

F (t, x) := sup
τ∈T L

t,T

E [f (τ,Xτ )|Xt = x ]. (8)

where f : [0,T ]× R→ R+ is continuous, non-negative, convex, given by

f (t, x) := e−rt(ex − K )+.

and X is given by

Xt = x +

∫ t

0

a(u,Xu)du + σ

∫ t

0

dBL
u , 0 ≤ t ≤ T .

Then F is a continuous function and the process (F (t,Xt))0≤t≤T is the Snell
envelope of Y = (f (t,Xt))0≤t≤T (El Karoui [16], El Karoui, Lepeltier and
Millet [18]).
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ESO value process

The insider’s value process for the ESO is (V (t,St))0≤t≤T , where
V : [0,T ]× R+ → R is given by

V (t, s) = sup
τ∈T L

t,T

E [e−r(τ−t)(Sτ − K )+|St = s],

so
e−rtV (t, s(x)) = F (t, x), with s(x) := ex .
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Continuation and stopping regions

The (smallest) optimal stopping time for the problem (8) starting at time
t ∈ [0,T ] with Xt = x is τ∗t,x given by

τ∗t,x = inf{ρ ∈ [t,T ]|F (ρ,Xρ) = f (ρ,Xρ)}, 0 ≤ t ≤ T .

In terms of the stock price we have, given St = s,

τ∗t,s = inf{ρ ∈ [t,T ]|V (ρ,Sρ) = (Sρ − K )+}, 0 ≤ t ≤ T .

The continuation region C is thus defined by

C := {(t, x) ∈ [0,T ]× R|F (t, x) > f (t, x)}
= {(t, s) ∈ R+|V (t, s) > (s − K )+}.

Since V is continuous, C is open.
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Critical stock price

There exists a decreasing function

c : [0,T ]→ R, c(t) ≥ K , ∀t ∈ [0,T ],

the critical stock price (early exercise boundary), such that the option is
exercised the first time the stock price exceeds c(t).

The continuation region C can therefore be characterised by

C = {(t, s) ∈ [0,T ]× R+|s < c(t)},

and the stopping region is D̄, the closure of D defined by

D := {(t, s) ∈ [0,T ]× R+|s > c(t)}.
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Decreasing exercise boundary

Lemma

The exercise boundary c(t) is decreasing for t ∈ [0,T ].

Proof.

Assume the map t → V (t, s) is decreasing on [0,T ] for each s ∈ R+.

A non-trivial assumption for price process that is a time-inhomogeneous
diffusion.

See Ekstrom [15] for proof in a stochastic volatility setting (under an EMM)
with r = 0.

Choose (t, s) ∈ C for some s ∈ (0,∞) and consider t ′ satisfying
0 ≤ t ′ < t ≤ T . Then V (t ′, s) > V (t, s), and therefore

V (t ′, s)− (s − K )+ > V (t, s)− (s − K )+ > 0, 0 ≤ t ≤ T ,

so (t ′, s) ∈ C. That is,

s < c(t) =⇒ s < c(t ′) =⇒ c(t ′) > c(t), for t ′ < t.
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Properties of c(t)

Concavity of c(t): still to be addressed (see Chen, Chadam, Jian and Zhen
[11] for put in BS model).

Continuity

C (T ) = K
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Properties of the value function

Require x → F (t, x) to be increasing and convex.

Then familiar properties of standard American options transfer to this
problem.

Convexity does not automatically follow from convexity of the option payoff
when returns or volatility are price-dependent (Merton [28], El Karoui,
Jeanblanc-Picqué and Shreve [17].

For one-dimensional diffusion models, under a risk-neutral measure, convexity
of American option prices is obtained by:

I El Karoui, Jeanblanc-Picqué and Shreve [17] using ideas of stochastic flows.
I Ekstrom [15] using stochastic time changes and a limiting argument based on

approximating American option by a Bermudan option.
I Hobson [21] using coupling methods.

Conjecture that properties hold if X satisfies a linear SDE, as in the example
with L = aXT + (1− a)ε.
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Theorem

The map x → F (t, x) is increasing for any t ∈ [0,T ].

Suppose axx (t, x) ≥ 0. Then the map x → F (t, x) is convex for any
t ∈ [0,T ].
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Idea of proof

Via ideas of stochastic flows.

For simplicity consider t = 0.

Consider log-stock price with initial condition X0 = x , and write X ≡ X (x):

Xt(x) = x +

∫ t

0

a(u,Xu(x))du + σBL
t , 0 ≤ t ≤ T .

We may choose versions of (Xt(x))0≤t≤T which for each t ∈ [0,T ] and each
ω ∈ Ω are diffeomorphisms in x from R→ R. That is, the map x → X (x) is
smooth.

Define

b(t, y) :=
∂

∂y
a(t, y),

and

Dt(x) :=
∂

∂x
Xt(x).
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Lemma

The map x → X (x) is increasing, and if ayy (t, y) ≥ 0, also convex.

Proof.

Dt(x) = exp

(∫ t

0

b(u,Xu(x))du

)
> 0,

so x → X (x) is increasing.
Define

c(t, y) :=
∂

∂y
b(t, y).

Then
∂

∂x
Dt(x) = Dt(x)

∫ t

0

c(u,Xu(x))Du(x)du,

which is non-negative if c(t, y) ≥ 0 for all (t, y) ∈ [0,T ]× R.
Then x → X (x) is convex.
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Properties of value function, continued

Leads to x → F (t, x) being increasing and convex.

(t = 0) Write optimal stopping time given X0 = x as

τ∗(x) := inf{t ∈ [0,T ]|F (t,Xt(s)) = f (t,Xt(x))}.

Because t → c(t) is decreasing, we have:

x → τ∗(x) is decreasing, (9)

x → Xτ∗(x)(x) is increasing. (10)

The value function F (x) ≡ F (0, x) is given by

F (x) = E
[
f (τ∗(x),Xτ∗(x)(x))

]
.

Then (9) and (10) imply that x → F (x) is increasing.

Similar ideas for convexity.

Alternative: prove convexity for European case, then use arguments of El
Karoui et al [17] to move to American case.

Or use coupling methods of Hobson [21].
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Free boundary problem

Define the extended generator L of X by

Lg(t, x) := gt(t, x) + a(t, x)gx (t, x) +
1

2
σ2gxx (t, x).

Theorem
F solves the free boundary problem

LF = 0, in C = {(t, x) ∈ [0,T ]× R|x < log c(t)},
F (t, log c(t)) = e−rt(c(t)− K ), 0 ≤ t ≤ T ,

F (T , x) = e−rT (ex − K )+.

Translate this into a FBP for V (t, s).
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Proof.

If F is C 1,2

F (t,Xt) = F (0,X0) +

∫ t

0

LF (s,Xs)ds + σ

∫ t

0

Fx (s,Xs)dBL
s .

F convex and increasing so Fx bounded and stochastic integral is martingale.

Supermartingale condition suggests LF ≤ 0. We also have F ≥ f .

Need LF = 0 in C = {F > f } so that process A in Doob decomposition of
supermartingale (Ft ,Xt)0≤t≤T only increases on the set {F = f }.
For region R ⊂ C, consider C 1,2 solution g to PDE in R, with g = F on ∂R.
Classical PDE results guarantee a unique solution.

Then show that g and F coincide on R. Consider any point in R and first
time process X leaves R.

Define martingale based on g(t,Xt) with starting point in R, and use fact
that stopped Snell envelope process is martingale to show equivalence of this
martingale and the one based on g , so g = V .
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Smooth fit condition

Theorem

The function V : [0,T ]× R+ → R+ satisfies the smooth fit condition

Vs(t, s∗(t)) = 1, 0 ≤ t ≤ T .

Proof.
Convexity of F implies convexity of V .

We have V (t, s) = (s − K ) for s > c(t), so Vs(t, c(t)+) = 1.

Convexity of V gives Vs(t, c(t)−) ≤ 1.

Then show that Vs(t, c(t)−) ≥ 1 by considering starting at (t, s − ε), using
fact that c(t) is decreasing, and taking limit as ε→ 0.
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Early exercise decomposition

Free boundary PDE and smooth fit condition lead to decomposition

V (t, s) = e−r(T−t)E [(ST − K )+|St = s] + p(t, s)

where

p(t, s) =

∫ T

t

e−r(u−t)E [(r − LS )(Su − K )1{Su>c(u)}|St = s]du,

is the early execise premium.

Probabilistic proof by methods of Jacka [24]?
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Integral equation for early exercise boundary

Early exercise decomposition leads to integral equation for c(·):

c(t) = K + C (t, c(t))

+

∫ T

t

e−r(u−t)E [1{Su>c(u)}((r − µL(u,Su))Su − rK )|St = c(t)]du,

where the dynamics of S w.r.t. Fσ(L) are

dSt = St(µ(t,St)dt + σdBL
t ).

Uniqueness of solution (Peskir [29]).
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Numerical result
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Figure: r = 0.01, µ = 0.02, σ = 0.2, T = 1, K = ST = 80.
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Conclusions

Optimal stopping problem for pure exercise of ESO with inside information.

Leads to Snell envelope of reward process governed by time-inhomogeneous
diffusion.

Establish properties of value function (time decay, convexity, smooth fit) and
of exercise boundary (monotone decreasing, concave).

Numerical results suggest insider will exercise when regular agent will not.

Extensions: probabilistic proof of value function and exercise boundary
properties.

Different objectives: distorted probabilities, risk aversion, outside trading, ...

Uncertainty in drift (that is, in model P)

Other forms of side information, such as when drift changes.

Michael Monoyios, Andrew Ng (University of Oxford)Optimal exercise of an executive stock option by an insider Fields Institute January 14, 2010 35 / 36



References
K. K. Aase, T. Bjuland, and B. Øksendal, Strategic insider trading equilibrium: a forward integration approach.

Preprint, 2007.

J. Amendinger, D. Becherer, and M. Schweizer, A monetary value for initial information in portfolio optimization, Finance Stoch., 7

(2003), pp. 29–46.

J. Amendinger, P. Imkeller, and M. Schweizer, Additional logarithmic utility of an insider, Stochastic Process. Appl., 75 (1998),

pp. 263–286.

S. Ankirchner, S. Dereich, and P. Imkeller, The Shannon information of filtrations and the additional logarithmic utility of insiders, Ann.

Probab., 34 (2006), pp. 743–778.

F. Baudoin and L. Nguyen-Ngoc, The financial value of a weak information on a financial market, Finance Stoch., 8 (2004), pp. 415–435.

F. Biagini and B. Øksendal, A general stochastic calculus approach to insider trading, Appl. Math. Optim., 52 (2005), pp. 167–181.

L. Campi, Some results on quadratic hedging with insider trading, Stochastics, 77 (2005), pp. 327–348.
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