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Information Transmission in Markets

Informational Role of Prices: Hayek (1945), Grossman (1976), Grossman
and Stiglitz (1981).

I Centralized Exchanges:
• Wilson (1977), Townsend (1978), Milgrom (1981), Vives (1993),

Pesendorfer and Swinkels (1997), and Reny and Perry (2006).

I Over-the-Counter Markets:
• Wolinsky (1990), Blouin and Serrano (2002), Golosov, Lorenzoni, and

Tsyvinski (2009).

• Duffie and Manso (2007), Duffie, Giroux, and Manso (2008), Duffie,
Malamud, and Manso (2009).
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Contributions of Today’s Paper

1 tractable model of information diffusion in over-the-counter markets
with investor segmentation by preferences, initial information, and
connectivity.

2 double auction with common values.

3 effects of information and connectivity on profits:
• more informed/connected investors attain higher expected profits than

less informed/connected investors if they can disguise trades.

• more informed/connected investors may not attain higher expected
profits than less informed/ connected investors if characteristics are
commonly observed.
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Outline of the Talk

1 Information Percolation

2 Segmented Markets

3 Double Auction

4 Connectedness and Information
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Information Percolation

Model Primitives

Duffie and Manso (2007) and Duffie, Giroux, and Manso (2010):

I Continuum of agents

I Two possible states of nature Y ∈ {0, 1}.

I Each agent is initially endowed with signals S = {s1, . . . , sn} s.t.
P(si = 1 |Y = 1) ≥ P(si = 1 |Y = 0)

I For every pair agents, their initial signals are Y -conditionally
independent

I Random matching, intensity λ.
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Information Percolation

Initial Information Endowment

After observing signals S = {s1, . . . , sn}, the logarithm of the likelihood
ratio between states Y = 0 and Y = 1 is by Bayes’ rule:

log
P(Y = 0 | s1, . . . , sn)
P(Y = 1 | s1, . . . , sn)

= log
P(Y = 0)
P(Y = 1)

+
n∑
i=1

log
P(si |Y = 0)
P(si |Y = 1)

.

We say that the “type” θ associated with this set of signals is

θ =
n∑
i=1

log
P(si |Y = 0)
P(si |Y = 1)

.
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Information Percolation

What Happens in a Meeting?

I Upon meeting, agents participate in a double auction.

I If bids are strictly increasing in the type associated with the signals
agents have collected, then bids reveal type.
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Information Percolation

Information is Additive in Type Space

Proposition: Let S = {s1, . . . , sn} and R = {r1, . . . , rm} be independent
sets of signals, with associated types θ and φ. If two agents with types θ
and φ reveal their types to each other, then both agents achieve the
posterior type θ + φ.

This follows from Bayes’ rule, by which

log
P(Y = 0 |S,R, θ + φ)
P(Y = 1 |S,R, θ + φ)

= log
P(Y = 0)
P(Y = 1)

+ θ + φ,

= log
P(Y = 0 | θ + φ)
P(Y = 1 | θ + φ)

By induction, this property holds for all subsequent meetings.
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Information Percolation

Solution for Cross-Sectional Distribution of
Information

The Boltzmann equation for the cross-sectional distribution µt of types is

d

dt
µt = −λµt + λµt ∗ µt.

with a given initial distribution of types µ0.

Proposition: The unique solution of (9) is the Wild sum

µt =
∑
n≥1

e−λt(1− e−λt)n−1µ∗n0 .
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Information Percolation

Proof of Wild Summation
Taking the Fourier transform µ̂t of µt of the Boltzmann equation

d

dt
µt = −λµt + λµt ∗ µt ,

we obtain the following ODE

d

dt
µ̂t = −λ µ̂t + λ µ̂2

t ,

whose solution is

µ̂t =
µ̂0

eλt(1− µ̂0) + µ̂0
.

This solution can be expanded as

µ̂t =
∑
n≥1

e−λt(1− e−λt)n−1µ̂n0 ,

which is the Fourier transform of the Wild sum (9).
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Information Percolation

Multi-Agent Meetings

The Boltzmann equation for the cross-sectional distribution µt of types is

d

dt
µt = −λµt + λµ∗mt .

Taking the Fourier transform, we obtain the ODE,

d

dt
µ̂t = −λ µ̂t + λ µ̂mt ,

whose solution satisfies

µ̂m−1
t =

µ̂m−1
0

e(m−1)λt(1− µ̂m−1
0 ) + µ̂m−1

0

. (1)
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Information Percolation

Groups of 2 (blue) versus Groups of 3 (red)
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Information Percolation

New Private Information

Suppose that, independently across agents as above, each agent receives,
at Poisson mean arrival rate ρ, a new private set of signals whose type
outcome y is distributed according to a probability measure ν. Then the
evolution equation is extended to

d

dt
µt = −(λ+ ρ)µt + λµt ∗ µt + ρµt ∗ ν.

Taking Fourier transforms, we obtain the following ODE

d

dt
µ̂t = −(λ+ ρ) µ̂t + λ µ̂2

t + ρ µ̂t ν̂.

whose solution satisfies

µ̂t =
µ̂0

e(λ+ρ(1−ν̂))t(1− µ̂0) + µ̂0
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Information Percolation

Other Extensions

I Public information releases
• Duffie, Malamud, and Manso (2010).

I Endogenous search intensity
• Duffie, Malamud, and Manso (2009).

Duffie, Malamud and
Manso Information Percolation 20



Information Percolation

Duffie, Malamud and Manso (2010): Public
Releases of Information

1 At public information release random times {T1, T2, . . .} (Poisson
arrival process with intensity η) n randomly selected agents have their
posterior probabilities revealed to all agents.

2 We allow for random number of agents in each meeting and in each
public information release:

• Meeting group size m: ql = P(m = l).
• Public information release group size n: pk = P(n = k).
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Information Percolation

Evolution of type distribution

Theorem. Given the variable X of common concern, the probability
distribution of each agent’s type at time t is νt = αt ∗ βt, where
αt = h(µ0, t) is the type distribution in a model with no public releases of
information, satisfying the differential equation

dαt
dt

= λ

( ∞∑
l=2

ql α
∗l
t − αt

)
, α0 = µ0, (2)

and where βt is the probability distribution over types that solves the
differential equation

dβt
dt

= −ηβt + ηβt ∗
∞∑
k=1

pk α
∗k
t , (3)

with initial condition given by the Dirac measure δ0 at zero.
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Information Percolation

The rate of Convergence

Let

s 7→M(s) =
∫
esx dµ0(x)

and
R = sup

y∈R
(− logM(y)) . (4)

and

Φ(z) =
∞∑
n=1

pn z
n,

Theorem Convergence is exponential at the rate λ+ η, as long as λ > 0.
Otherwise, the rate

ρ = η
(
1 − Φ

(
e−R

) )
. (5)

is strictly less than η.
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Segmented Markets

Model Primitives

Same as the previous model except that:

I N classes of investors.

I Agent of class i has matching intensity λi.

I Upon meeting, the probability that a class-j agent is selected as a
counterparty is κij .
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Segmented Markets

Evolution of Type Distribution

The evolution equation is given by:

d

dt
ψit = −λi ψit + λi ψit ∗

N∑
j=1

κij ψjt, i ∈ {1, . . . , N} .

Taking Fourier transforms we obtain:

d

dt
ψ̂it = −λi ψ̂it + λi ψ̂it

N∑
j=1

κij ψ̂jt, i ∈ {1, . . . , N},
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Segmented Markets

Special Case: N = 2 and λ1 = λ2

Proposition: Suppose N = 2 and λ1 = λ2 = λ. Then

ψ̂1 =
e−λt (ψ̂20 − ψ̂10)

ψ̂20e−ψ̂20(1−e−λt) − ψ̂10e−ψ̂10(1−e−λt)
ψ̂10 e

−ψ̂10(1−e−λt)

ψ̂2 =
e−λt (ψ̂20 − ψ̂10)

ψ̂20e−ψ̂20(1−e−λt) − ψ̂10e−ψ̂10(1−e−λt)
ψ̂20 e

−ψ̂20(1−e−λt).
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Segmented Markets

General Case: Wild Sum Representation

Theorem: There is a unique solution of the evolution equation, given by

ψit =
∑
k∈ZN+

ait(k)ψ∗k110 ∗ · · · ∗ ψ
∗kN
N0 ,

where ψ∗ni0 denotes n-fold convolution,

a′it = −λi ait + λi ait ∗
N∑
j=1

κij ajt, ai0 = δei ,

(ait ∗ ajt)(k1, . . . , kN ) =
∑

l=(l1,...,lN )∈ZN+ , l<k

ait(l) ajt(k − l),

and
ait(ei) = e−λit ai0(ei).
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Double Auction

Double Auction

I At some time T , the economy ends and the utility realized by an
agent of class i for each additional unit of the asset is

Ui = viY + vH(1− Y ),

measured in units of consumption, for strictly positive constants vH

and vi < vH , where Y is a non-degenerate 0-or-1 random variable
whose outcome will be revealed at time T .

I If vi = vj , no trade (Milgrom and Stokey (1982)), so that κij = 0.

I Meeting between two agents vi > vj , then i is buyer and j is seller.

I Upon meeting, participate in a double auction. If the buyer’s bid β is
higher than the seller’s ask σ, trade occurs at the price σ.
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Double Auction

Equilibrium

The prices (σ, β) constitute an equilibrium for a seller of class i and a
buyer of class j provided that, fixing β, the offer σ maximizes the seller’s
conditional expected gain,

E
[
(σ − E(Ui | FS ∪ {β}))1{σ<β} | FS

]
,

and fixing σ, the bid β maximizes the buyer’s conditional expected gain

E
[
(E(Uj | FB ∪ {σ})− σ)1{σ<β} | FB

]
.

Counterexample: Reny and Perry (2006)
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Double Auction

Restriction on the Initial Information Endowment

Lemma: Suppose that each signal Z satisfies

P(Z = 1 |Y = 0) + P(Z = 1 |Y = 1) = 1 .

Then, for each agent class i and time t, the type density ψit satisfies

ψHit (x) = exψHit (−x), ψLit(x) = ψHit (−x) x ∈ R .

and the hazard rate condition

hHit (x)
def
=

ψHit (x)∫ +∞
x ψHit (y) dy

≥ ψLit(x)∫ +∞
x ψLit(y) dy

def
= hLit(x) .
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Double Auction

Bidding Strategies

Lemma: For any V0 ∈ R, there exists a unique solution V2( · ) on [vi, vH)
to the ODE

V ′2(z) =
1

vi − vj

(
z − vi
vH − z

1
hHit (V2(z))

+
1

hLit(V2(z))

)
, V2(vi) = V0.

This solution, also denoted V2(V0, z), is monotone increasing in both z
and V0. Further, limv→vH V2(v) = +∞ . The limit
V2(−∞, z) = limV0→−∞ V2(V0, z) exists. Moroever, V2(−∞, z) is
continuously differentiable with respect to z.
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Double Auction

Bidding Strategies

Proposition: Suppose that (S,B) is a continuous equilibrium such that
S(θ) ≤ vH for all θ ∈ R. Let V0 = B−1(vi) ≥ −∞. Then,

B(φ) = V −1
2 (φ), φ > V0,

Further, S(−∞) = limθ→−∞ S(θ) = vi and
S(+∞) = limθ→−∞ S(θ) = vH , and for any θ, we have S(θ) = V −1

1 (θ)
where

V1(z) = log
z − vi
vH − z

− V2(z), z ∈ (vi, vH) .

Any buyer of type φ < V0 will not trade, and has a bidding policy B that
is not uniquely determined at types below V0.
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Double Auction

Tail Condition

Definition: We say that a probability density g( · ) on the real line is of
exponential type α at +∞ if, for some constants c > 0 and γ > −1,

lim
x→+∞

g(x)
xγ eαx

= c

In this case, we write g(x) ∼ Exp+∞(c, γ, α).
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Double Auction

Exponential Tails in Percolation Models

Suppose N = 1, and let λ = λ1 and ψt = ψ1t. The Laplace transform ψ̂t
of ψt is given by

ψ̂t(z) =
e−λt ψ̂0(z)

1− (1− e−λt)ψ̂0(z)

and ψt(x) ∼ Exp+∞(ct, 0,−αt) in t, where αt is the unique positive
number z solving

ψ̂0(z) =
1

1− e−λt
,

and where

ct =
e−λt

(1− e−λt)2 d
dz ψ̂0(αt)

.

Furthermore, αt is monotone decreasing in t, with limt→∞ αt = 0.

Duffie, Malamud and
Manso Information Percolation 34



Double Auction

Strictly Monotone Equilibrium

Proposition: Suppose that, for all t in [0, T ], there are αi(t), ci(t), and
γi(t) such that

ψHit (x) ∼ Exp+∞(ci(t), γi(t),−αi(t)).

If αi(T ) < 1, then there is no equilibrium associated with V0 = −∞.
Moreover, if vi − vj is sufficiently large and if αi(T ) > α∗, where α∗ is
the unique positive solution to α∗ = 1 + 1/(α∗2α

∗
) (which is

approximately 1.31), then there exists a unique strictly monotone
equilibrium associated with V0 = −∞. This equilibrium is in undominated
strategies, and maximizes total welfare among all continuous equilibria.
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Connectedness and Information

Class-i Agent Utility

The expected future profit at time t of a class-i agent is

Ui(t,Θt) = E

 ∑
τk>t

∑
j

κij πij(τk,Θτk)
∣∣∣∣ Θt

 ,
where τk is this agent’s k-th auction time and πij(t, θ) is the expected
profit of a class-i agent of type θ entering an auction at time t with a
class-j agent.

Agents may be able to disguise the characteristics determining their
information at a particular auction. In this case, we denote the expected
future profit at time t of a class-i agent as Ûi(t,Θt).
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Connectedness and Information

The Value of Initial Information and Connectivity
When Trades Can be Disguised

Theorem: Suppose that v1 = v2. If λ2 ≥ λ1 and if the initial type
densities ψ10 and ψ20 are distinguished by the fact that the density p2 of
the number of signals received by class-2 agents has first-order stochastic
dominance over the density p1 of the number of signals by class-1 agents,
then

E[ Û2(t,Θ2t)]
λ2

≥ E[ Û1(t,Θ1t)]
λ1

, t ∈ [0, T ].

The above inequality holds strictly if, in addition, λ2 > λ1 or if p2 has
strict dominance over p1.

Duffie, Malamud and
Manso Information Percolation 37



Connectedness and Information

What if Characteristics are Commonly Observed?

I trade-off between adverse selection and gains from trade.

I more informed/connected investor may achieve lower profits than less
informed/connected investor.

I If v1 = v2 = 0.9, v3 = 0, vH = 1.9,

ψ10(x) = 12
e3x

(1 + ex)5
,

and ψ20(x) = ψ10 ∗ ψ10.

Then,
E[U2(t,Θ1t)] < E[U1(t,Θ2t)]

and
E[ Û1(t,Θ1t)] < E[U1(t,Θ2t)].
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Connectedness and Information

What if Characteristics are Commonly Observed?
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Connectedness and Information

Even If Characteristics are Commonly Observed
Connectivity May be Valuable

Proposition: Suppose that κ1 = κ2 , v1 = v2 and λ1 < λ2, and suppose
that class-1 and class-2 investors have the same initial information quality,
that is, ψ10 = ψ20, and assume the exponential tail condition
ψHit ∼ Exp+∞ (cit, γit,−αit) for all i and t, with α10 > 3 , α30 < 3 and

α30 >
α10 − 1
3− α10

,

and
α1t + 1
α1t − 1

> α3t, t ∈ [0, T ] .

If v1−v3
vH−v1 is sufficiently large, then for any time t we have

E[U2(t,Θ2t)]
λ2

>
E[ Û2(t,Θ2t)]

λ2
>

E[ Û1(t,Θ1t)]
λ1

>
E[U1(t,Θ1t)]

λ1
.
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Connectedness and Information

Subsidizing Order Flow

I Investors i and j with vi = vj meet at time t.

I Enter a swap agreement by which the amount

k
[
(pj(t)− Y )2 − (pi(t)− Y )2

]
,

will be paid by investor i to investor j at time T .

I Increase connectivity of class i investors.

I When would investors want to subsidize order flow?
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Connectedness and Information

Concluding Remarks

I tractable model of information diffusion in over-the-counter markets.

I initial information and connectivity may or may not increase profits:
• more informed/connected investors attain higher profits than less

informed connected investors when investors can disguise trades.

• more informed/connected investors may attain lower profits than less
informed connected investors when investors’ characteristics are
commonly observed.
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Connectedness and Information

Other Applications

I centralized exchanges, decentralized information transmission

I bank runs

I knowledge spillovers

I social learning

I technology diffusion

Duffie, Malamud and
Manso Information Percolation 43



Connectedness and Information

Thank You !

and

Bon Apétit !
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