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A dynamic framework for preferences

Filtered probability space: (Ω,F , (Ft)t∈R+ ,P).

I (Ft)t∈R+ : flow of information.

I P is a “baseline” (or “real world”) probability.

Quantities of interest: cumulative consumption streams. . .

I i.e., nondecreasing, (right-)continuous, adapted processes . . .

I whose densities with respect to some “consumption clock” H
live on (Ω× R+,O), where O is the optional sigma-algebra.

Subjective views: unit-mass measures (“probabilities”) on
(Ω× R+,O), generically denoted by Q.
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Numéraire-invariant choices on consumption streams

Utility from consumption has logarithmic form:

G 7→
∫

Ω×R+

log

(
dG

dH

)
Q[dω,dt]

for continuous nondecreasing financeable consumption streams G .

I Choice of H irrelevant for optimization: numéraire-invariance.

First-order conditions imply that the optimal Ĝ satisfies:

relQ(G | Ĝ ) :=

∫
Ω×R+

(
dG − dĜ

dĜ

)
Q[dω,dt] ≤ 0

for all other financeable consumption streams G .

I Such choices stem from axiomatic foundations à la Savage.
One then gets Q as a byproduct . . .
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First-order conditions imply that the optimal Ĝ satisfies:
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Canonical representation of preferences

A decomposition for unit-mass optional measures:∫
Ω×R+

(
dG − dĜ

dĜ

)
Q[dω,dt] = E

[∫
R+

(
dGt − dĜt

dĜt

)
LtdKt

]

where the canonical representation pair (L,K ) of Q (i.e., of the
numéraire-invariant preferences) is such that:

1. L is a nonnegative local martingale with L0 = 1,

2. K is adapted, right-continuous, nondecreasing, 0 ≤ K ≤ 1,

and it is essentially unique (under some “minimality” postulate).

Conversely: For (L,K ) such that (1), (2), and E
[∫

R+
LtdKt

]
= 1

hold, one can construct a unit-mass optional measure Q such that
(L,K ) is its canonical representation pair.
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Sometimes pairs are nice. . . but only sometimes.

Special case: If L ≡ (dQ/dP) |F· , then

relQ(G | Ĝ ) = EQ

[∫
R+

(
dGt − dĜt

dĜt

)
dKt

]
.

Remarks.

I Above, Q are the subjective views of the agent on (Ω,F).

I K : agent’s consumption clock. We have Q[K∞ = 1] = 1.

However,

I It can happen that L is not a martingale.

I It can also happen that P[K∞ = 1] < 1.
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The market

Zero-net-supply asset: A savings account offering instantaneous
interest rate r = (rt)t∈R+ . The process B denotes the accrued
value of one unit of account invested at time t = 0:

B = exp

(∫ ·
0

rtdt

)
=⇒ dBt

Bt
= rtdt.

Positive-net-supply asset: Offers per-share dividend rate process
D and has price S with initial value S0 and dynamics:

dSt + Dtdt

St
= (rt + αt)dt +

〈
σt ,dWt

〉
.

I W = (W n)n=1,...,m: standard BM that generates information.

I |σ|: local volatility process.

I α: excess rate of return.
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Investment and consumption

Investment-consumption: with initial capital x ∈ R+, the control

(π, c) generates wealth X (x ;π,c) satisfying X
(x ;π,c)
0 = x and

dX
(x ;π,c)
t

X
(x ;π,c)
t

= (1− πt)
dBt

Bt
+ πt

(
dSt + Dtdt

St

)
− ctdt

Solution of the last linear SDE: log
(
X (x ;π,c)

)
is given by

log(x) +

∫ ·
0

(
rt + πtαt −

π2
t |σt |2

2
− ct

)
dt +

∫ ·
0
πt

〈
σt ,dWt

〉
Consumption rate at t ∈ R+: X

(x ;π,c)
t ctdt. Therefore,

financeable consumption streams are of the form

G (x ;π,c) =

∫ ·
0

X
(x ;π,c)
t ctdt.
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Market viability

Minimal condition for optimization: {|σ| = 0} ⊆ {α = 0} and∫ ·
0

(
αt

|σt |
I{|σt |>0}

)2

dt

does not explode in finite time.

I Of interest is the case where {|σ| = 0} has zero measure. (We
search for a non-redundant equilibrium.)

Market viability: The above condition fails if and only if there
exists an arbitrage of the first kind in the market, i.e., some
FT -measurable random variable ξ (for some T ∈ R+) such that:

I P[ξ ≥ 0] = 1, P[ξ > 0] > 0, and

I for all x > 0, there exist π and c (that may depend on x)

such that P[X
(x ;π,c)
T = ξ] = 1.
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Agent optimal investment-consumption

Preferences. Agent i ∈ I , where I is a finite set, has canonical
representation pair (Li ,K i ), such that

dK i
t

1− K i
t

= κi
tdt

dLi
t

Li
t

=
〈
λi

t ,dWt

〉

Optimality. The canonical representation pair (Li ,K i ) separates
the solution to the problems of investment and consumption:

I the optimal portfolio is given by

πi :=
α +

〈
λi , σ

〉
|σ|2

.

I the optimal relative-to-wealth consumption rate satisfies:

c i := κi .
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Market clearing and equilibrium

Several agents acting in the market, indexed by finite set I .

I (Li ,K i )i∈I are the canonical preference pairs.

I (x i )i∈I : initial endowments, in terms of cash.

I (πi , c i )i∈I : optimizers.

I Define X i := X (x i ;πi ,c i ), for each i ∈ I .

Equilibrium: in the market we have the clearing conditions∑
i∈I

X i = S (money market)

∑
i∈I

πiX i

S
= 1 (stock market)∑

i∈I

X ic i = D (commodity market)
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In search for equilibrium. . .

Primitives are exogenously given and include:

I canonical representation pairs (Li ,K i )i∈I of agents.
I initial agent endowments; either cash and/or stock fractions.
I dividend structure D of asset in unit net supply.

Outputs are sought in order to have market equilibrium.

I Short-rate structure: (rt)t∈R+ .
I Stock price S ; equivalently, S0, (αt)t∈R+ and (σt)t∈R+ .

(Almost) necessary condition for equilibrium: Define

f i :=
c i

D
=
κi

D
, i ∈ I .

Assume that each f i , i ∈ I , is an Itô process:

df i
t

f i
t

= −βi
t dt −

〈
φi

t ,dWt

〉
.
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The state variables

State variables: p = (pi )i∈I , where, for i ∈ I ,

pi :=
X i∑
j∈I X j

(
=

X i

S
, in equilibrium

)
.

Notation. For ζ = (ζ i )i∈I , and p ∈ 4I , set ζp :=
∑

i∈I piζ i .

Proposition. With the above notation, each pi , i ∈ I , satisfies:

dpi
t

pi
t

=

(〈
λp

t − λi
t , σt

〉〈
λp

t , σt

〉
|σt |2

+ κp
t − κi

t

)
dt

+

〈
λi

t − λ
p
t , σt

〉
|σt |2

〈
σt ,dWt

〉
. (SDE)

Strategy. Our aim is the following:

I Express σ in terms of p and solve (SDE).

I Express all other market parameters in terms of p.
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σ in terms of p: the idea

I Use the commodity clearing condition:∑
i∈I

X ic i = D ⇐⇒
∑
i∈I

pi f i =
1

S
.

I Equate the “dWt” parts to get the equation:(
1 +

〈
λq − λp, σ

〉
|σ|2

)
σ = φq,

I where q = (qi )i∈I , each qi for i ∈ I being a function of p:

qi =
pi f i∑
j∈I pj f j

=
X ic i∑
j∈I X jc j

(
=

X ic i

D
, in equilibrium

)
.
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σ in terms of p: implementation of idea

Solution to the equation for σ. Recall:(
1 +

〈
λq − λp, σ

〉
|σ|2

)
σ = φq.

I If φq 6= 0,

σ =

(
1 +

〈
λp − λq, φq

〉
|φq|2

)
φq (SIGMA)

I If φq = 0,

σ ∈
{〈
λp − λq, u

〉
u
∣∣ |u| = 1

}
(SIGMA’)
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α in terms of p

Use the stock clearing condition:∑
i∈I

πiX i = S ⇐⇒
∑
i∈I

πipi = 1

to get:
α = |σ|2 −

〈
λp, σ

〉
, (ALPHA)

I σ has already been expressed in terms of p.



r in terms of p

Use again the commodity clearing condition∑
i∈I

X ic i = D ⇐⇒
∑
i∈I

pi f i =
1

S
.

I S in expressed in terms of p.

I Now, equate the “dt” parts above, remembering that

dSt + Dtdt

St
= (rt + αt)dt +

〈
σt ,dWt

〉
.

I This way you easily get:

r = . . . (R)
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Synthesis

The previous necessary conditions for equilibrium can be inverted:

Theorem. If you do all the previous, and everything works out
nicely, equilibrium is fully characterized.

I Solve (SDE) — make sure it has a solution!

I Define σ via (SIGMA) or (SIGMA’);

I Define α via (ALPHA);

I Define r via (R).

Then, the market is in equilibrium.
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Existence and uniqueness

The case φq 6= 0: With φ̃q = (1/|φq|)φq, for i ∈ I ,
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Existence and uniqueness of equilibrium becomes the equivalent
question on the above equation. As long as φq does not vanish, it
should be OK. . . but rigorous results have to be obtained.
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Multiplicity of equilibria

The case φ = 0: Recall (SIGMA’):

σ ∈
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λp − λq, u

〉
u
∣∣ |u| = 1

}
.

Pick any predictable process (ut)t∈R+ with |u| = 1, and solve
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We can construct multiple non-redundant equilibria if:

I we have m > 1 (in particular, incompleteness);

I agents are “sufficiently heterogeneous”;

I consumption rates and the dividend rate stream are smooth.
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Special cases of closed-form equilibria

Complete markets: If m = 1, then, for i ∈ I ,

pi =
x iLi (1− K i )∑
j∈I x jLj(1− K j)

.

Agents with homogeneous beliefs: If Li = Lj for all i ∈ I , j ∈ I ,

pi =
x i (1− K i )∑
j∈I x j(1− K j)

.

Agents with same consumption clocks: In this case,
σ = φp = φi and (SDE) can be solved with a trick.
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Definitions and perceptions

The savings account contains a bubble in [0,T ], T ∈ R+, if
there exists x ∈ (0, 1) and an investment strategy π such that:

P
[
X

(x ;π,0)
T ≥ BT

]
= 1.

The stock contains a bubble in [0,T ], T ∈ R+, if there exists
x ∈ (0, 1) and an investment strategy π such that:

P
[
X

(x ;π,0)
T ≥ X

(1;1,0)
T

]
= 1.

“Folklore” knowledge: in non-constrained, complete-market
equilibrium, assets in positive net supply cannot contain bubbles.
(Otherwise, the representative agent would not invest in stocks.)
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Stock bubble in equilibrium

Agent’s preferences are given by the pair (L,K ) such that:

I dLt = −L2
t dWt , L0 = 1. (BES−3, a strict local martingale.)

I K = 1− exp
(
−
∫ ·

0 L2
t dt
)
.

It can be shown that E
[∫

R+
LtdKt

]
= 1.

Market: r = 0, S = L(1− K ), D = SL2.

Agents’s optimal investment-consumption: π = 1 and c = L2.
With one (representative) agent, we are in equilibrium!

The stock contains a bubble, because X (1;1,0) = L. For all
T ∈ R+, there exists x ∈ (0, 1) and strategy π, both depending on

T , such that P
[
X

(x ;π,0)
T = X

(1;1,0)
T

]
= 1.
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Summing up. . .

I Existence and uniqueness of equilibria can be expressed in
terms of existence and uniqueness of SDEs.

I The SDEs have closed-form solutions in certain cases. In
general, one can use numerical solutions.

I We obtain multiplicity of equilibria in simple settings. Is it just
a mathematical curiosity? Are there economic implications?

I The state variable is the capital distribution. This seems to
prevent Markovian structure in our equilibrium models. . .



Summing up. . .

I Existence and uniqueness of equilibria can be expressed in
terms of existence and uniqueness of SDEs.

I The SDEs have closed-form solutions in certain cases. In
general, one can use numerical solutions.

I We obtain multiplicity of equilibria in simple settings. Is it just
a mathematical curiosity? Are there economic implications?

I The state variable is the capital distribution. This seems to
prevent Markovian structure in our equilibrium models. . .



Summing up. . .

I Existence and uniqueness of equilibria can be expressed in
terms of existence and uniqueness of SDEs.

I The SDEs have closed-form solutions in certain cases. In
general, one can use numerical solutions.

I We obtain multiplicity of equilibria in simple settings. Is it just
a mathematical curiosity? Are there economic implications?

I The state variable is the capital distribution. This seems to
prevent Markovian structure in our equilibrium models. . .



Summing up. . .

I Existence and uniqueness of equilibria can be expressed in
terms of existence and uniqueness of SDEs.

I The SDEs have closed-form solutions in certain cases. In
general, one can use numerical solutions.

I We obtain multiplicity of equilibria in simple settings. Is it just
a mathematical curiosity? Are there economic implications?

I The state variable is the capital distribution. This seems to
prevent Markovian structure in our equilibrium models. . .



Looking ahead. . .

I The nice workable expressions we came up should allow
further economic and mathematical analysis — in particular, a
study of the effect of primitives on equilibrium. . .

I Large number of agents is needed to justify a “price-taking”
assumption. We could make I an arbitrary measurable space
and get an SDE involving the capital distribution.

I Updating views and consumption patterns: (Li ,K i )i∈I can be
made to depend on past economy data.

I past personal performance (learning from your mistakes),
I past performance of other agents (learning from their mistakes

or success; reevaluating statistical views),
I consumption patterns of others (keeping up with the Johnses).

This way, game-theoretic equilibria can be constructed.
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The End

Thank You!
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