Financial equilibria in incomplete markets where heterogeneous agents with numéraire-invariant preferences act

Constantinos Kardaras Boston University

Workshop on Foundations of Mathematical Finance Fields Institute

Wednesday the 13th, 2010

Outline

Numéraire-invariant choices

The market, agents, investment, consumption

Agent optimality

Equilibrium

Bubbles and arbitrages

Conclusions

Outline

Numéraire-invariant choices

The market, agents, investment, consumption

Agent optimality

Equilibrium

Bubbles and arbitrages

Conclusions

A dynamic framework for preferences

Filtered probability space: $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathbb{R}_+}, \mathbb{P})$.

- ▶ $(\mathcal{F}_t)_{t \in \mathbb{R}_+}$: flow of information.
- $ightharpoonup \mathbb{P}$ is a "baseline" (or "real world") probability.

A dynamic framework for preferences

Filtered probability space: $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathbb{R}_+}, \mathbb{P})$.

- ▶ $(\mathcal{F}_t)_{t \in \mathbb{R}_+}$: flow of information.
- $ightharpoonup \mathbb{P}$ is a "baseline" (or "real world") probability.

Quantities of interest: cumulative consumption streams...

- ▶ i.e., nondecreasing, (right-)continuous, adapted processes . . .
- whose densities with respect to some "consumption clock" H live on $(\Omega \times \mathbb{R}_+, \mathcal{O})$, where \mathcal{O} is the *optional* sigma-algebra.

A dynamic framework for preferences

Filtered probability space: $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathbb{R}_+}, \mathbb{P})$.

- ▶ $(\mathcal{F}_t)_{t \in \mathbb{R}_+}$: flow of information.
- $ightharpoonup \mathbb{P}$ is a "baseline" (or "real world") probability.

Quantities of interest: cumulative consumption streams...

- ▶ i.e., nondecreasing, (right-)continuous, adapted processes . . .
- whose densities with respect to some "consumption clock" H live on $(\Omega \times \mathbb{R}_+, \mathcal{O})$, where \mathcal{O} is the *optional* sigma-algebra.

Subjective views: unit-mass measures ("probabilities") on $(\Omega \times \mathbb{R}_+, \mathcal{O})$, generically denoted by \mathcal{Q} .

Numéraire-invariant choices on consumption streams

Utility from consumption has *logarithmic* form:

$$G \mapsto \int_{\Omega imes \mathbb{R}_+} \log \left(rac{\mathrm{d} G}{\mathrm{d} H} \right) \mathcal{Q}[\mathrm{d} \omega, \mathrm{d} t]$$

for continuous nondecreasing financeable consumption streams G.

► Choice of *H* irrelevant for optimization: *numéraire-invariance*.

Numéraire-invariant choices on consumption streams

Utility from consumption has *logarithmic* form:

$$G\mapsto \int_{\Omega imes\mathbb{R}_+}\log\left(rac{\mathrm{d}\,G}{\mathrm{d}\,H}
ight)\mathcal{Q}[\mathrm{d}\omega,\mathrm{d}\,t]$$

for continuous nondecreasing financeable consumption streams G.

► Choice of *H* irrelevant for optimization: *numéraire-invariance*.

First-order conditions imply that the optimal \widehat{G} satisfies:

$$\mathsf{rel}_\mathcal{Q}(\mathit{G} \,|\, \widehat{\mathit{G}}) \,:=\, \int_{\Omega imes \mathbb{R}_+} \left(rac{\mathrm{d} \mathit{G} - \mathrm{d} \widehat{\mathit{G}}}{\mathrm{d} \widehat{\mathit{G}}}
ight) \mathcal{Q}[\mathrm{d} \omega, \mathrm{d} t] \,\, \leq \,\, 0$$

for all other financeable consumption streams G.

Numéraire-invariant choices on consumption streams

Utility from consumption has *logarithmic* form:

$$G\mapsto \int_{\Omega imes\mathbb{R}_+}\log\left(rac{\mathrm{d}\,G}{\mathrm{d}\,H}
ight)\mathcal{Q}[\mathrm{d}\omega,\mathrm{d}\,t]$$

for continuous nondecreasing financeable consumption streams G.

► Choice of *H* irrelevant for optimization: *numéraire-invariance*.

First-order conditions imply that the optimal \widehat{G} satisfies:

$$\operatorname{\mathsf{rel}}_\mathcal{Q}(\mathsf{G}\,|\,\widehat{\mathsf{G}}) \,:=\, \int_{\Omega imes\mathbb{R}_+} \left(rac{\mathrm{d}\mathsf{G}-\mathrm{d}\widehat{\mathsf{G}}}{\mathrm{d}\widehat{\mathsf{G}}}
ight) \mathcal{Q}[\mathrm{d}\omega,\mathrm{d}t] \,\,\leq\,\, 0$$

for all other financeable consumption streams G.

▶ Such choices stem from axiomatic foundations à la Savage.
One then gets Q as a byproduct . . .

Canonical representation of preferences

A decomposition for unit-mass optional measures:

$$\int_{\Omega\times\mathbb{R}_+} \left(\frac{\mathrm{d} G - \mathrm{d} \widehat{G}}{\mathrm{d} \widehat{G}}\right) \mathcal{Q}[\mathrm{d} \omega, \mathrm{d} t] = \mathbb{E}\left[\int_{\mathbb{R}_+} \left(\frac{\mathrm{d} G_t - \mathrm{d} \widehat{G}_t}{\mathrm{d} \widehat{G}_t}\right) L_t \mathrm{d} K_t\right]$$

where the canonical representation pair (L, K) of \mathcal{Q} (i.e., of the numéraire-invariant preferences) is such that:

- 1. L is a nonnegative local martingale with $L_0 = 1$,
- 2. K is adapted, right-continuous, nondecreasing, $0 \le K \le 1$, and it is essentially unique (under some "minimality" postulate).

Canonical representation of preferences

A decomposition for unit-mass optional measures:

$$\int_{\Omega\times\mathbb{R}_+} \left(\frac{\mathrm{d} G - \mathrm{d} \widehat{G}}{\mathrm{d} \widehat{G}}\right) \mathcal{Q}[\mathrm{d} \omega, \mathrm{d} t] = \mathbb{E}\left[\int_{\mathbb{R}_+} \left(\frac{\mathrm{d} G_t - \mathrm{d} \widehat{G}_t}{\mathrm{d} \widehat{G}_t}\right) L_t \mathrm{d} K_t\right]$$

where the canonical representation pair (L, K) of \mathcal{Q} (i.e., of the numéraire-invariant preferences) is such that:

- 1. L is a nonnegative local martingale with $L_0 = 1$,
- 2. K is adapted, right-continuous, nondecreasing, $0 \le K \le 1$, and it is essentially unique (under some "minimality" postulate).

Conversely: For (L, K) such that (1), (2), and $\mathbb{E}\left[\int_{\mathbb{R}_+} L_t \mathrm{d}K_t\right] = 1$ hold, one can construct a unit-mass optional measure $\mathcal Q$ such that (L, K) is its canonical representation pair.

Sometimes pairs are nice... but only sometimes.

Special case: If $L \equiv (d\mathbb{Q}/d\mathbb{P})|_{\mathcal{F}_{\cdot}}$, then

$$\operatorname{\mathsf{rel}}_{\mathcal{Q}}(\mathsf{G} \,|\, \widehat{\mathsf{G}}) \;=\; \mathbb{E}_{\mathbb{Q}}\left[\int_{\mathbb{R}_{+}} \left(\frac{\mathrm{d}\, \mathsf{G}_{t} - \mathrm{d}\, \widehat{\mathsf{G}}_{t}}{\mathrm{d}\, \widehat{\mathsf{G}}_{t}}\right) \mathrm{d} \mathsf{K}_{t}\right].$$

Remarks.

- ▶ Above, \mathbb{Q} are the *subjective views* of the agent on (Ω, \mathcal{F}) .
- ▶ K: agent's consumption clock. We have $\mathbb{Q}[K_{\infty} = 1] = 1$.

Sometimes pairs are nice... but only sometimes.

Special case: If $L \equiv (d\mathbb{Q}/d\mathbb{P})|_{\mathcal{F}_{\cdot}}$, then

$$\operatorname{\mathsf{rel}}_{\mathcal{Q}}(\mathsf{G} \,|\, \widehat{\mathsf{G}}) \;=\; \mathbb{E}_{\mathbb{Q}}\left[\int_{\mathbb{R}_{+}} \left(\frac{\mathrm{d}\,\mathsf{G}_{t} - \mathrm{d}\,\widehat{\mathsf{G}}_{t}}{\mathrm{d}\,\widehat{\mathsf{G}}_{t}}\right) \mathrm{d}\mathsf{K}_{t}\right].$$

Remarks.

- ▶ Above, \mathbb{Q} are the *subjective views* of the agent on (Ω, \mathcal{F}) .
- ▶ K: agent's consumption clock. We have $\mathbb{Q}[K_{\infty} = 1] = 1$.

However,

- ▶ It *can* happen that *L* is *not* a martingale.
- ▶ It can also happen that $\mathbb{P}[K_{\infty} = 1] < 1$.

Outline

Numéraire-invariant choices

The market, agents, investment, consumption

Agent optimality

Equilibrium

Bubbles and arbitrages

Conclusions

The market

Zero-net-supply asset: A savings account offering instantaneous interest rate $r = (r_t)_{t \in \mathbb{R}_+}$. The process B denotes the accrued value of one unit of account invested at time t = 0:

$$B = \exp\left(\int_0^{\cdot} r_t dt\right) \Longrightarrow \frac{dB_t}{B_t} = r_t dt.$$

The market

Zero-net-supply asset: A savings account offering instantaneous interest rate $r = (r_t)_{t \in \mathbb{R}_+}$. The process B denotes the accrued value of one unit of account invested at time t = 0:

$$B = \exp\left(\int_0^{\cdot} r_t dt\right) \Longrightarrow \frac{dB_t}{B_t} = r_t dt.$$

Positive-net-supply asset: Offers per-share dividend rate process D and has price S with initial value S_0 and dynamics:

$$\frac{\mathrm{d}S_t + D_t \mathrm{d}t}{S_t} = (r_t + \alpha_t) \mathrm{d}t + \langle \sigma_t, \mathrm{d}W_t \rangle.$$

- ▶ $W = (W^n)_{n=1,...,m}$: standard BM that generates information.
- $\blacktriangleright |\sigma|$: local volatility process.
- α: excess rate of return.

Investment and consumption

Investment-consumption: with initial capital $x \in \mathbb{R}_+$, the control (π,c) generates wealth $X^{(x;\pi,c)}$ satisfying $X_0^{(x;\pi,c)}=x$ and

$$\frac{\mathrm{d}X_t^{(x;\pi,c)}}{X_t^{(x;\pi,c)}} = (1-\pi_t)\frac{\mathrm{d}B_t}{B_t} + \pi_t\left(\frac{\mathrm{d}S_t + D_t\mathrm{d}t}{S_t}\right) - c_t\mathrm{d}t$$

Investment and consumption

Investment-consumption: with initial capital $x \in \mathbb{R}_+$, the control (π, c) generates wealth $X^{(x;\pi,c)}$ satisfying $X_0^{(x;\pi,c)} = x$ and

$$\frac{\mathrm{d}X_t^{(x;\pi,c)}}{X_t^{(x;\pi,c)}} = (1-\pi_t)\frac{\mathrm{d}B_t}{B_t} + \pi_t\left(\frac{\mathrm{d}S_t + D_t\mathrm{d}t}{S_t}\right) - c_t\mathrm{d}t$$

Solution of the last linear SDE: $\log (X^{(x;\pi,c)})$ is given by

$$\log(x) + \int_0^{\cdot} \left(r_t + \pi_t \alpha_t - \frac{\pi_t^2 |\sigma_t|^2}{2} - c_t \right) dt + \int_0^{\cdot} \pi_t \langle \sigma_t, dW_t \rangle$$

Investment and consumption

Investment-consumption: with initial capital $x \in \mathbb{R}_+$, the control (π, c) generates wealth $X^{(x;\pi,c)}$ satisfying $X_0^{(x;\pi,c)} = x$ and

$$\frac{\mathrm{d}X_t^{(x;\pi,c)}}{X_t^{(x;\pi,c)}} = (1-\pi_t)\frac{\mathrm{d}B_t}{B_t} + \pi_t \left(\frac{\mathrm{d}S_t + D_t \mathrm{d}t}{S_t}\right) - c_t \mathrm{d}t$$

Solution of the last linear SDE: $\log (X^{(x;\pi,c)})$ is given by

$$\log(x) + \int_0^{\cdot} \left(r_t + \pi_t \alpha_t - \frac{\pi_t^2 |\sigma_t|^2}{2} - c_t \right) dt + \int_0^{\cdot} \pi_t \langle \sigma_t, dW_t \rangle$$

Consumption rate at $t \in \mathbb{R}_+$: $X_t^{(x,\pi,c)}c_t\mathrm{d}t$. Therefore, financeable consumption streams are of the form

$$G^{(x;\pi,c)} = \int_0^{\cdot} X_t^{(x;\pi,c)} c_t \mathrm{d}t.$$

Market viability

Minimal condition for optimization: $\{|\sigma|=0\}\subseteq\{\alpha=0\}$ and

$$\int_0^{\cdot} \left(\frac{\alpha_t}{|\sigma_t|} \mathbb{I}_{\{|\sigma_t| > 0\}} \right)^2 dt$$

does not explode in finite time.

▶ Of interest is the case where $\{|\sigma|=0\}$ has zero measure. (We search for a non-redundant equilibrium.)

Market viability

Minimal condition for optimization: $\{|\sigma|=0\}\subseteq\{\alpha=0\}$ and

$$\int_0^{\cdot} \left(\frac{\alpha_t}{|\sigma_t|} \mathbb{I}_{\{|\sigma_t| > 0\}} \right)^2 dt$$

does not explode in finite time.

▶ Of interest is the case where $\{|\sigma|=0\}$ has zero measure. (We search for a non-redundant equilibrium.)

Market viability: The above condition fails *if and only if* there exists an arbitrage of the first kind in the market, i.e., some \mathcal{F}_T -measurable random variable ξ (for some $T \in \mathbb{R}_+$) such that:

- $ightharpoonup \mathbb{P}[\xi \geq 0] = 1$, $\mathbb{P}[\xi > 0] > 0$, and
- ▶ for all x > 0, there exist π and c (that may depend on x) such that $\mathbb{P}[X_T^{(x;\pi,c)} = \xi] = 1$.

Outline

Numéraire-invariant choices

The market, agents, investment, consumption

Agent optimality

Equilibrium

Bubbles and arbitrages

Conclusions

Agent optimal investment-consumption

Preferences. Agent $i \in I$, where I is a finite set, has canonical representation pair (L^i, K^i) , such that

$$\frac{\mathrm{d}K_t^i}{1 - K_t^i} = \kappa_t^i \mathrm{d}t$$

$$\frac{\mathrm{d}L_t^i}{L_t^i} = \langle \lambda_t^i, \mathrm{d}W_t \rangle$$

Agent optimal investment-consumption

Preferences. Agent $i \in I$, where I is a finite set, has canonical representation pair (L^i, K^i) , such that

$$\frac{\mathrm{d}K_t^i}{1 - K_t^i} = \kappa_t^i \mathrm{d}t$$

$$\frac{\mathrm{d}L_t^i}{L_t^i} = \langle \lambda_t^i, \mathrm{d}W_t \rangle$$

Optimality. The canonical representation pair (L^i, K^i) separates the solution to the problems of investment and consumption:

▶ the optimal portfolio is given by

$$\pi^i := \frac{\alpha + \langle \lambda^i, \sigma \rangle}{|\sigma|^2}.$$

▶ the optimal relative-to-wealth consumption rate satisfies:

$$c^i := \kappa^i$$
.

Outline

Numéraire-invariant choices

The market, agents, investment, consumption

Agent optimality

Equilibrium

Bubbles and arbitrages

Conclusions

Market clearing and equilibrium

Several agents acting in the market, indexed by finite set *I*.

- ▶ $(L^i, K^i)_{i \in I}$ are the canonical preference pairs.
- ▶ $(x^i)_{i \in I}$: initial endowments, in terms of cash.
- ▶ $(\pi^i, c^i)_{i \in I}$: optimizers.
- ▶ Define $X^i := X^{(x^i;\pi^i,c^i)}$, for each $i \in I$.

Market clearing and equilibrium

Several agents acting in the market, indexed by finite set *I*.

- ▶ $(L^i, K^i)_{i \in I}$ are the canonical preference pairs.
- ▶ $(x^i)_{i \in I}$: initial endowments, in terms of cash.
- ▶ $(\pi^i, c^i)_{i \in I}$: optimizers.
- ▶ Define $X^i := X^{(x^i;\pi^i,c^i)}$, for each $i \in I$.

Equilibrium: in the market we have the clearing conditions

$$\sum_{i \in I} X^i = S \quad \text{(money market)}$$

$$\sum_{i \in I} \frac{\pi^i X^i}{S} = 1 \quad \text{(stock market)}$$

$$\sum_{i \in I} X^i c^i = D \quad \text{(commodity market)}$$

In search for equilibrium...

Primitives are exogenously given and include:

- ▶ canonical representation pairs $(L^i, K^i)_{i \in I}$ of agents.
- ▶ initial agent endowments; either cash and/or stock fractions.
- dividend structure D of asset in unit net supply.

In search for equilibrium...

Primitives are exogenously given and include:

- ▶ canonical representation pairs $(L^i, K^i)_{i \in I}$ of agents.
- ▶ initial agent endowments; either cash and/or stock fractions.
- dividend structure D of asset in unit net supply.

Outputs are sought in order to have market equilibrium.

- ▶ Short-rate structure: $(r_t)_{t \in \mathbb{R}_+}$.
- ▶ Stock price S; equivalently, S_0 , $(\alpha_t)_{t \in \mathbb{R}_+}$ and $(\sigma_t)_{t \in \mathbb{R}_+}$.

In search for equilibrium...

Primitives are exogenously given and include:

- ▶ canonical representation pairs $(L^i, K^i)_{i \in I}$ of agents.
- ▶ initial agent endowments; either cash and/or stock fractions.
- dividend structure D of asset in unit net supply.

Outputs are sought in order to have market equilibrium.

- ▶ Short-rate structure: $(r_t)_{t \in \mathbb{R}_+}$.
- ▶ Stock price S; equivalently, S_0 , $(\alpha_t)_{t \in \mathbb{R}_+}$ and $(\sigma_t)_{t \in \mathbb{R}_+}$.

(Almost) necessary condition for equilibrium: Define

$$f^i := \frac{c^i}{D} = \frac{\kappa^i}{D}, \quad i \in I.$$

Assume that each f^i , $i \in I$, is an Itô process:

$$\frac{\mathrm{d}f_t^i}{f_t^i} = -\beta_t^i \, \mathrm{d}t - \left\langle \phi_t^i, \mathrm{d}W_t \right\rangle.$$

The state variables

State variables: $p = (p^i)_{i \in I}$, where, for $i \in I$,

$$p^i := \frac{X^i}{\sum_{j \in I} X^j} \left(= \frac{X^i}{S}, \text{ in equilibrium} \right).$$

The state variables

State variables: $p = (p^i)_{i \in I}$, where, for $i \in I$,

$$p^i := rac{X^i}{\sum_{j \in I} X^j} \left(= rac{X^i}{S}, ext{ in equilibrium}
ight).$$

Notation. For $\zeta = (\zeta^i)_{i \in I}$, and $p \in \triangle^I$, set $\zeta^p := \sum_{i \in I} p^i \zeta^i$.

Proposition. With the above notation, each p^i , $i \in I$, satisfies:

$$\frac{\mathrm{d}p_{t}^{i}}{p_{t}^{i}} = \left(\frac{\langle \lambda_{t}^{p} - \lambda_{t}^{i}, \sigma_{t} \rangle \langle \lambda_{t}^{p}, \sigma_{t} \rangle}{|\sigma_{t}|^{2}} + \kappa_{t}^{p} - \kappa_{t}^{i}\right) \mathrm{d}t + \frac{\langle \lambda_{t}^{i} - \lambda_{t}^{p}, \sigma_{t} \rangle}{|\sigma_{t}|^{2}} \langle \sigma_{t}, \mathrm{d}W_{t} \rangle. \tag{SDE}$$

The state variables

State variables: $p = (p^i)_{i \in I}$, where, for $i \in I$,

$$p^i := rac{X^i}{\sum_{j \in I} X^j} \ \left(= rac{X^i}{S}, ext{ in equilibrium}
ight).$$

Notation. For $\zeta = (\zeta^i)_{i \in I}$, and $p \in \triangle^I$, set $\zeta^p := \sum_{i \in I} p^i \zeta^i$.

Proposition. With the above notation, each p^i , $i \in I$, satisfies:

$$\frac{\mathrm{d}p_t^i}{p_t^i} = \left(\frac{\left\langle \lambda_t^p - \lambda_t^i, \sigma_t \right\rangle \left\langle \lambda_t^p, \sigma_t \right\rangle}{|\sigma_t|^2} + \kappa_t^p - \kappa_t^i \right) \mathrm{d}t + \frac{\left\langle \lambda_t^i - \lambda_t^p, \sigma_t \right\rangle}{|\sigma_t|^2} \left\langle \sigma_t, \mathrm{d}W_t \right\rangle. \tag{SDE}$$

Strategy. Our aim is the following:

- \triangleright Express σ in terms of p and solve (SDE).
- Express all other market parameters in terms of p.

σ in terms of p: the idea

▶ Use the commodity clearing condition:

$$\sum_{i\in I} X^i c^i = D \iff \sum_{i\in I} p^i f^i = \frac{1}{S}.$$

σ in terms of p: the idea

▶ Use the commodity clearing condition:

$$\sum_{i\in I} X^i c^i = D \iff \sum_{i\in I} p^i f^i = \frac{1}{S}.$$

▶ Equate the " dW_t " parts to get the equation:

$$\left(1 + \frac{\left\langle \lambda^q - \lambda^p, \sigma \right\rangle}{|\sigma|^2}\right) \sigma = \phi^q,$$

σ in terms of p: the idea

▶ Use the commodity clearing condition:

$$\sum_{i\in I} X^i c^i = D \iff \sum_{i\in I} p^i f^i = \frac{1}{S}.$$

▶ Equate the " dW_t " parts to get the equation:

$$\left(1 + \frac{\left\langle \lambda^q - \lambda^p, \sigma \right\rangle}{|\sigma|^2}\right) \sigma = \phi^q,$$

▶ where $q = (q^i)_{i \in I}$, each q^i for $i \in I$ being a function of p:

$$q^i = \frac{p^i f^i}{\sum_{i \in I} p^j f^j} = \frac{X^i c^i}{\sum_{i \in I} X^j c^j} \left(= \frac{X^i c^i}{D}, \text{ in equilibrium} \right).$$

σ in terms of p: implementation of idea

Solution to the equation for σ **.** Recall:

$$\left(1 + \frac{\left\langle \lambda^{q} - \lambda^{p}, \sigma \right\rangle}{|\sigma|^{2}}\right) \sigma = \phi^{q}.$$

σ in terms of p: implementation of idea

Solution to the equation for σ **.** Recall:

$$\left(1 + \frac{\left\langle \lambda^q - \lambda^p, \sigma \right\rangle}{|\sigma|^2}\right) \sigma = \phi^q.$$

• If $\phi^q \neq 0$,

$$\sigma = \left(1 + \frac{\left\langle \lambda^p - \lambda^q, \phi^q \right\rangle}{|\phi^q|^2}\right) \phi^q \tag{SIGMA}$$

σ in terms of p: implementation of idea

Solution to the equation for σ **.** Recall:

$$\left(1 + \frac{\left\langle \lambda^q - \lambda^p, \sigma \right\rangle}{|\sigma|^2}\right) \sigma = \phi^q.$$

▶ If $\phi^q \neq 0$,

$$\sigma = \left(1 + \frac{\left\langle \lambda^p - \lambda^q, \phi^q \right\rangle}{|\phi^q|^2}\right) \phi^q \tag{SIGMA}$$

 $If \phi^q = 0,$

$$\sigma \in \left\{ \left\langle \lambda^p - \lambda^q, \mathbf{u} \right\rangle \mathbf{u} \mid |\mathbf{u}| = 1 \right\}$$
 (SIGMA')

α in terms of p

Use the stock clearing condition:

$$\sum_{i \in I} \pi^i X^i = S \iff \sum_{i \in I} \pi^i p^i = 1$$

to get:

$$\alpha = |\sigma|^2 - \langle \lambda^p, \sigma \rangle, \tag{ALPHA}$$

 $ightharpoonup \sigma$ has already been expressed in terms of p.

r in terms of p

Use again the commodity clearing condition

$$\sum_{i\in I} X^i c^i = D \iff \sum_{i\in I} p^i f^i = \frac{1}{S}.$$

 \triangleright *S* in expressed in terms of *p*.

r in terms of p

Use again the commodity clearing condition

$$\sum_{i\in I} X^i c^i = D \iff \sum_{i\in I} p^i f^i = \frac{1}{S}.$$

- S in expressed in terms of p.
- Now, equate the "dt" parts above, remembering that

$$\frac{\mathrm{d}S_t + D_t \mathrm{d}t}{S_t} = (r_t + \alpha_t) \mathrm{d}t + \langle \sigma_t, \mathrm{d}W_t \rangle.$$

r in terms of p

Use again the commodity clearing condition

$$\sum_{i\in I} X^i c^i = D \iff \sum_{i\in I} p^i f^i = \frac{1}{S}.$$

- ▶ *S* in expressed in terms of *p*.
- Now, equate the "dt" parts above, remembering that

$$\frac{\mathrm{d}S_t + D_t \mathrm{d}t}{S_t} = (r_t + \alpha_t) \mathrm{d}t + \langle \sigma_t, \mathrm{d}W_t \rangle.$$

► This way you *easily* get:

$$r = \dots$$
 (R)

Synthesis

The previous *necessary* conditions for equilibrium can be inverted:

Theorem. If you do all the previous, and everything works out nicely, equilibrium is fully characterized.

Synthesis

The previous *necessary* conditions for equilibrium can be inverted:

Theorem. If you do all the previous, and everything works out nicely, equilibrium is fully characterized.

- ▶ Solve (SDE) make sure it has a solution!
- Define σ via (SIGMA) or (SIGMA');
- Define α via (ALPHA);
- Define r via (R).

Then, the market is in equilibrium.

Existence and uniqueness

The case
$$\phi^q \neq 0$$
: With $\widetilde{\phi}^q = (1/|\phi^q|)\phi^q$, for $i \in I$,
$$\frac{\mathrm{d} p_t^i}{p_t^i} = \left(\left\langle \lambda_t^p - \lambda_t^i, \widetilde{\phi}_t^q \right\rangle \left\langle \lambda_t^p, \widetilde{\phi}_t^q \right\rangle + \kappa_t^p - \kappa_t^i \right) \mathrm{d} t \\ + \left\langle \lambda_t^i - \lambda_t^p, \widetilde{\phi}_t^q \right\rangle \left\langle \widetilde{\phi}_t^q, \mathrm{d} W_t \right\rangle.$$

Existence and uniqueness

The case $\phi^q \neq 0$: With $\widetilde{\phi}^q = (1/|\phi^q|)\phi^q$, for $i \in I$,

$$\frac{\mathrm{d}p_t^i}{p_t^i} = \left(\left\langle \lambda_t^p - \lambda_t^i, \widetilde{\phi}_t^q \right\rangle \left\langle \lambda_t^p, \widetilde{\phi}_t^q \right\rangle + \kappa_t^p - \kappa_t^i \right) \mathrm{d}t
+ \left\langle \lambda_t^i - \lambda_t^p, \widetilde{\phi}_t^q \right\rangle \left\langle \widetilde{\phi}_t^q, \mathrm{d}W_t \right\rangle.$$

Existence and uniqueness of equilibrium becomes the equivalent question on the above equation. As long as ϕ^q does not vanish, it should be OK... but rigorous results have to be obtained.

Multiplicity of equilibria

The case $\phi = 0$: Recall (SIGMA'):

$$\sigma \in \left\{ \left\langle \lambda^{p} - \lambda^{q}, \mathbf{u} \right\rangle \mathbf{u} \ \middle| \ |\mathbf{u}| = 1 \right\}.$$

Multiplicity of equilibria

The case $\phi = 0$: Recall (SIGMA'):

$$\sigma \in \left\{ \left\langle \lambda^{p} - \lambda^{q}, \mathbf{u} \right\rangle \mathbf{u} \ \middle| \ |\mathbf{u}| = 1 \right\}.$$

Pick any predictable process $(u_t)_{t\in\mathbb{R}_+}$ with |u|=1, and solve

$$\frac{\mathrm{d}p_t^i}{p_t^i} = \left(\left\langle \lambda_t^p - \lambda_t^i, u_t \right\rangle \left\langle \lambda_t^p, u_t \right\rangle + \kappa_t^p - \kappa_t^i \right) \mathrm{d}t
+ \left\langle \lambda_t^i - \lambda_t^p, u_t \right\rangle \left\langle u_t, \mathrm{d}W_t \right\rangle.$$

Multiplicity of equilibria

The case $\phi = 0$: Recall (SIGMA'):

$$\sigma \in \left\{ \left\langle \lambda^p - \lambda^q, \mathbf{u} \right\rangle \mathbf{u} \mid |\mathbf{u}| = 1 \right\}.$$

Pick any predictable process $(u_t)_{t\in\mathbb{R}_+}$ with |u|=1, and solve

$$\frac{\mathrm{d}p_t^i}{p_t^i} = \left(\left\langle \lambda_t^p - \lambda_t^i, u_t \right\rangle \left\langle \lambda_t^p, u_t \right\rangle + \kappa_t^p - \kappa_t^i \right) \mathrm{d}t
+ \left\langle \lambda_t^i - \lambda_t^p, u_t \right\rangle \left\langle u_t, \mathrm{d}W_t \right\rangle.$$

We can construct multiple non-redundant equilibria if:

- we have m > 1 (in particular, incompleteness);
- agents are "sufficiently heterogeneous";
- consumption rates and the dividend rate stream are smooth.

Special cases of closed-form equilibria

Complete markets: If m = 1, then, for $i \in I$,

$$p^{i} = \frac{x^{i}L^{i}(1 - K^{i})}{\sum_{j \in I} x^{j}L^{j}(1 - K^{j})}.$$

Special cases of closed-form equilibria

Complete markets: If m = 1, then, for $i \in I$,

$$p^{i} = \frac{x^{i}L^{i}(1 - K^{i})}{\sum_{j \in I} x^{j}L^{j}(1 - K^{j})}.$$

Agents with homogeneous beliefs: If $L^i = L^j$ for all $i \in I$, $j \in I$,

$$p^{i} = \frac{x^{i}(1-K^{i})}{\sum_{j\in I} x^{j}(1-K^{j})}.$$

Special cases of closed-form equilibria

Complete markets: If m = 1, then, for $i \in I$,

$$p^{i} = \frac{x^{i}L^{i}(1 - K^{i})}{\sum_{j \in I} x^{j}L^{j}(1 - K^{j})}.$$

Agents with homogeneous beliefs: If $L^i = L^j$ for all $i \in I$, $j \in I$,

$$p^{i} = \frac{x^{i}(1-K^{i})}{\sum_{j\in I} x^{j}(1-K^{j})}.$$

Agents with same consumption clocks: In this case, $\sigma=\phi^p=\phi^i$ and (SDE) can be solved with a trick.

Outline

Numéraire-invariant choices

The market, agents, investment, consumption

Agent optimality

Equilibrium

Bubbles and arbitrages

Conclusions

Definitions and perceptions

The savings account contains a bubble in [0, T], $T \in \mathbb{R}_+$, if there exists $x \in (0, 1)$ and an investment strategy π such that:

$$\mathbb{P}\big[X_T^{(x;\pi,0)}\geq B_T\big]=1.$$

Definitions and perceptions

The savings account contains a bubble in [0, T], $T \in \mathbb{R}_+$, if there exists $x \in (0, 1)$ and an investment strategy π such that:

$$\mathbb{P}\big[X_T^{(x;\pi,0)}\geq B_T\big]=1.$$

The stock contains a bubble in [0, T], $T \in \mathbb{R}_+$, if there exists $x \in (0, 1)$ and an investment strategy π such that:

$$\mathbb{P}\big[X_T^{(x;\pi,0)} \geq X_T^{(1;1,0)}\big] = 1.$$

Definitions and perceptions

The savings account contains a bubble in [0, T], $T \in \mathbb{R}_+$, if there exists $x \in (0, 1)$ and an investment strategy π such that:

$$\mathbb{P}\big[X_T^{(x;\pi,0)}\geq B_T\big]=1.$$

The stock contains a bubble in [0, T], $T \in \mathbb{R}_+$, if there exists $x \in (0, 1)$ and an investment strategy π such that:

$$\mathbb{P}\big[X_T^{(x;\pi,0)} \ge X_T^{(1;1,0)}\big] = 1.$$

"Folklore" knowledge: in non-constrained, complete-market equilibrium, assets in positive net supply cannot contain bubbles. (Otherwise, the *representative agent* would not invest in stocks.)

Agent's preferences are given by the pair (L, K) such that:

- $ightharpoonup \mathrm{d} L_t = -L_t^2 \mathrm{d} W_t, \ L_0 = 1. \ (\mathsf{BES}^{-3}, \ \mathsf{a} \ \mathsf{strict} \ \mathsf{local} \ \mathsf{martingale}.)$
- $K = 1 \exp\left(-\int_0^{\cdot} L_t^2 dt\right).$

It can be shown that $\mathbb{E}\left[\int_{\mathbb{R}_+} L_t \mathrm{d} \mathcal{K}_t \right] = 1.$

Agent's preferences are given by the pair (L, K) such that:

- ▶ $dL_t = -L_t^2 dW_t$, $L_0 = 1$. (BES⁻³, a strict local martingale.)
- $K = 1 \exp\left(-\int_0^{\cdot} L_t^2 dt\right).$

It can be shown that $\mathbb{E}\left[\int_{\mathbb{R}_+} L_t \mathrm{d} \mathcal{K}_t\right] = 1.$

Market: r = 0, S = L(1 - K), $D = SL^2$.

Agent's preferences are given by the pair (L, K) such that:

- $ightharpoonup \mathrm{d} L_t = -L_t^2 \mathrm{d} W_t, \ L_0 = 1. \ (\mathsf{BES}^{-3}, \ \mathsf{a} \ \mathsf{strict} \ \mathsf{local} \ \mathsf{martingale}.)$
- $\blacktriangleright K = 1 \exp\left(-\int_0^{\cdot} L_t^2 dt\right).$

It can be shown that $\mathbb{E}\left[\int_{\mathbb{R}_+} L_t \mathrm{d} \mathcal{K}_t\right] = 1.$

Market: r = 0, S = L(1 - K), $D = SL^2$.

Agents's optimal investment-consumption: $\pi=1$ and $c=L^2$. With one (representative) agent, we are in equilibrium!

Agent's preferences are given by the pair (L, K) such that:

- $ightharpoonup \mathrm{d} L_t = -L_t^2 \mathrm{d} W_t, \ L_0 = 1. \ (\mathsf{BES}^{-3}, \ \mathsf{a} \ \mathsf{strict} \ \mathsf{local} \ \mathsf{martingale}.)$
- $\blacktriangleright K = 1 \exp\left(-\int_0^{\cdot} L_t^2 dt\right).$

It can be shown that $\mathbb{E}\left[\int_{\mathbb{R}_+} L_t \mathrm{d} \mathcal{K}_t \right] = 1.$

Market: r = 0, S = L(1 - K), $D = SL^2$.

Agents's optimal investment-consumption: $\pi=1$ and $c=L^2$. With one (representative) agent, we are in equilibrium!

The stock contains a bubble, because $X^{(1;1,0)}=L$. For all $T\in\mathbb{R}_+$, there exists $x\in(0,1)$ and strategy π , both depending on T, such that $\mathbb{P}\big[X_T^{(x;\pi,0)}=X_T^{(1;1,0)}\big]=1$.

Outline

Numéraire-invariant choices

The market, agents, investment, consumption

Agent optimality

Equilibrium

Bubbles and arbitrages

Conclusions

Summing up...

► Existence and uniqueness of equilibria can be expressed in terms of existence and uniqueness of SDEs.

Summing up...

- ► Existence and uniqueness of equilibria can be expressed in terms of existence and uniqueness of SDEs.
- ► The SDEs have closed-form solutions in certain cases. In general, one can use numerical solutions.

Summing up. . .

- ► Existence and uniqueness of equilibria can be expressed in terms of existence and uniqueness of SDEs.
- ► The SDEs have closed-form solutions in certain cases. In general, one can use numerical solutions.
- ► We obtain multiplicity of equilibria in simple settings. Is it just a mathematical curiosity? Are there economic implications?

Summing up. . .

- ► Existence and uniqueness of equilibria can be expressed in terms of existence and uniqueness of SDEs.
- ► The SDEs have closed-form solutions in certain cases. In general, one can use numerical solutions.
- ▶ We obtain multiplicity of equilibria in simple settings. Is it just a mathematical curiosity? Are there economic implications?
- ► The state variable is the capital distribution. This seems to prevent Markovian structure in our equilibrium models. . .

▶ The nice workable expressions we came up should allow further economic and mathematical analysis — in particular, a study of the effect of primitives on equilibrium...

- ► The nice workable expressions we came up should allow further economic and mathematical analysis — in particular, a study of the effect of primitives on equilibrium...
- ► Large number of agents is needed to justify a "price-taking" assumption. We could make *I* an arbitrary measurable space and get an SDE involving the capital distribution.

- ► The nice workable expressions we came up should allow further economic and mathematical analysis — in particular, a study of the effect of primitives on equilibrium...
- ► Large number of agents is needed to justify a "price-taking" assumption. We could make *I* an arbitrary measurable space and get an SDE involving the capital distribution.
- ▶ Updating views and consumption patterns: $(L^i, K^i)_{i \in I}$ can be made to depend on past economy data.

- ► The nice workable expressions we came up should allow further economic and mathematical analysis — in particular, a study of the effect of primitives on equilibrium...
- ▶ Large number of agents is needed to justify a "price-taking" assumption. We could make *I* an arbitrary measurable space and get an SDE involving the capital distribution.
- ▶ Updating views and consumption patterns: $(L^i, K^i)_{i \in I}$ can be made to depend on past economy data.
 - past personal performance (learning from your mistakes),
 - past performance of other agents (learning from their mistakes or success; reevaluating statistical views),
 - consumption patterns of others (keeping up with the Johnses).

This way, game-theoretic equilibria can be constructed.

THANK YOU!