# Financial equilibria in incomplete markets where heterogeneous agents with numéraire-invariant preferences act 

Constantinos Kardaras<br>Boston University

Workshop on Foundations of Mathematical Finance
Fields Institute

Wednesday the $13^{\text {th }}, 2010$

## Outline

Numéraire-invariant choices

The market, agents, investment, consumption

Agent optimality

Equilibrium

Bubbles and arbitrages

Conclusions

## Outline

Numéraire-invariant choices

The market, agents, investment, consumption

Agent optimality

## Equilibrium

## Bubbles and arbitrages

Conclusions

## A dynamic framework for preferences

Filtered probability space: $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}, \mathbb{P}\right)$.

- $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}$: flow of information.
- $\mathbb{P}$ is a "baseline" (or "real world") probability.


## A dynamic framework for preferences

Filtered probability space: $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}, \mathbb{P}\right)$.

- $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}$: flow of information.
- $\mathbb{P}$ is a "baseline" (or "real world") probability.

Quantities of interest: cumulative consumption streams...

- i.e., nondecreasing, (right-)continuous, adapted processes ...
- whose densities with respect to some "consumption clock" H live on $\left(\Omega \times \mathbb{R}_{+}, \mathcal{O}\right)$, where $\mathcal{O}$ is the optional sigma-algebra.


## A dynamic framework for preferences

Filtered probability space: $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}, \mathbb{P}\right)$.

- $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}$: flow of information.
- $\mathbb{P}$ is a "baseline" (or "real world") probability.

Quantities of interest: cumulative consumption streams...

- i.e., nondecreasing, (right-)continuous, adapted processes ...
- whose densities with respect to some "consumption clock" H live on $\left(\Omega \times \mathbb{R}_{+}, \mathcal{O}\right)$, where $\mathcal{O}$ is the optional sigma-algebra.

Subjective views: unit-mass measures ("probabilities") on $\left(\Omega \times \mathbb{R}_{+}, \mathcal{O}\right)$, generically denoted by $\mathcal{Q}$.

## Numéraire-invariant choices on consumption streams

Utility from consumption has logarithmic form:

$$
G \mapsto \int_{\Omega \times \mathbb{R}_{+}} \log \left(\frac{\mathrm{d} G}{\mathrm{~d} H}\right) \mathcal{Q}[\mathrm{d} \omega, \mathrm{~d} t]
$$

for continuous nondecreasing financeable consumption streams $G$.

- Choice of $H$ irrelevant for optimization: numéraire-invariance.


## Numéraire-invariant choices on consumption streams

Utility from consumption has logarithmic form:

$$
G \mapsto \int_{\Omega \times \mathbb{R}_{+}} \log \left(\frac{\mathrm{d} G}{\mathrm{~d} H}\right) \mathcal{Q}[\mathrm{d} \omega, \mathrm{~d} t]
$$

for continuous nondecreasing financeable consumption streams $G$.

- Choice of $H$ irrelevant for optimization: numéraire-invariance.

First-order conditions imply that the optimal $\widehat{G}$ satisfies:

$$
\operatorname{rel}_{\mathcal{Q}}(G \mid \widehat{G}):=\int_{\Omega \times \mathbb{R}_{+}}\left(\frac{\mathrm{d} G-\mathrm{d} \widehat{G}}{\mathrm{~d} \widehat{G}}\right) \mathcal{Q}[\mathrm{d} \omega, \mathrm{~d} t] \leq 0
$$

for all other financeable consumption streams $G$.

## Numéraire-invariant choices on consumption streams

Utility from consumption has logarithmic form:

$$
G \mapsto \int_{\Omega \times \mathbb{R}_{+}} \log \left(\frac{\mathrm{d} G}{\mathrm{~d} H}\right) \mathcal{Q}[\mathrm{d} \omega, \mathrm{~d} t]
$$

for continuous nondecreasing financeable consumption streams $G$.

- Choice of $H$ irrelevant for optimization: numéraire-invariance.

First-order conditions imply that the optimal $\widehat{G}$ satisfies:

$$
\operatorname{rel}_{\mathcal{Q}}(G \mid \widehat{G}):=\int_{\Omega \times \mathbb{R}_{+}}\left(\frac{\mathrm{d} G-\mathrm{d} \widehat{G}}{\mathrm{~d} \widehat{G}}\right) \mathcal{Q}[\mathrm{d} \omega, \mathrm{~d} t] \leq 0
$$

for all other financeable consumption streams $G$.

- Such choices stem from axiomatic foundations à la Savage. One then gets $\mathcal{Q}$ as a byproduct ...


## Canonical representation of preferences

A decomposition for unit-mass optional measures:

$$
\int_{\Omega \times \mathbb{R}_{+}}\left(\frac{\mathrm{d} G-\mathrm{d} \widehat{G}}{\mathrm{~d} \widehat{G}}\right) \mathcal{Q}[\mathrm{d} \omega, \mathrm{~d} t]=\mathbb{E}\left[\int_{\mathbb{R}_{+}}\left(\frac{\mathrm{d} G_{t}-\mathrm{d} \widehat{G}_{t}}{\mathrm{~d} \widehat{G}_{t}}\right) L_{t} \mathrm{~d} K_{t}\right]
$$

where the canonical representation pair $(L, K)$ of $\mathcal{Q}$ (i.e., of the numéraire-invariant preferences) is such that:

1. $L$ is a nonnegative local martingale with $L_{0}=1$,
2. $K$ is adapted, right-continuous, nondecreasing, $0 \leq K \leq 1$, and it is essentially unique (under some "minimality" postulate).

## Canonical representation of preferences

## A decomposition for unit-mass optional measures:

$$
\int_{\Omega \times \mathbb{R}_{+}}\left(\frac{\mathrm{d} G-\mathrm{d} \widehat{G}}{\mathrm{~d} \widehat{G}}\right) \mathcal{Q}[\mathrm{d} \omega, \mathrm{~d} t]=\mathbb{E}\left[\int_{\mathbb{R}_{+}}\left(\frac{\mathrm{d} G_{t}-\mathrm{d} \widehat{G}_{t}}{\mathrm{~d} \widehat{G}_{t}}\right) L_{t} \mathrm{~d} K_{t}\right]
$$

where the canonical representation pair $(L, K)$ of $\mathcal{Q}$ (i.e., of the numéraire-invariant preferences) is such that:

1. $L$ is a nonnegative local martingale with $L_{0}=1$,
2. $K$ is adapted, right-continuous, nondecreasing, $0 \leq K \leq 1$, and it is essentially unique (under some "minimality" postulate).

Conversely: For $(L, K)$ such that (1), (2), and $\mathbb{E}\left[\int_{\mathbb{R}_{+}} L_{t} \mathrm{~d} K_{t}\right]=1$ hold, one can construct a unit-mass optional measure $\mathcal{Q}$ such that $(L, K)$ is its canonical representation pair.

## Sometimes pairs are nice... but only sometimes.

Special case: If $\left.L \equiv(d \mathbb{Q} / d \mathbb{P})\right|_{\mathcal{F}}$, then

$$
\operatorname{rel}_{\mathcal{Q}}(G \mid \widehat{G})=\mathbb{E}_{\mathbb{Q}}\left[\int_{\mathbb{R}_{+}}\left(\frac{\mathrm{d} G_{t}-\mathrm{d} \widehat{G}_{t}}{\mathrm{~d} \widehat{G}_{t}}\right) \mathrm{d} K_{t}\right]
$$

Remarks.

- Above, $\mathbb{Q}$ are the subjective views of the agent on $(\Omega, \mathcal{F})$.
- K: agent's consumption clock. We have $\mathbb{Q}\left[K_{\infty}=1\right]=1$.


## Sometimes pairs are nice. . . but only sometimes.

Special case: If $\left.L \equiv(d \mathbb{Q} / d \mathbb{P})\right|_{\mathcal{F}}$, then

$$
\operatorname{rel}_{\mathcal{Q}}(G \mid \widehat{G})=\mathbb{E}_{\mathbb{Q}}\left[\int_{\mathbb{R}_{+}}\left(\frac{\mathrm{d} G_{t}-\mathrm{d} \widehat{G}_{t}}{\mathrm{~d} \widehat{G}_{t}}\right) \mathrm{d} K_{t}\right]
$$

## Remarks.

- Above, $\mathbb{Q}$ are the subjective views of the agent on $(\Omega, \mathcal{F})$.
- $K$ : agent's consumption clock. We have $\mathbb{Q}\left[K_{\infty}=1\right]=1$.

However,

- It can happen that $L$ is not a martingale.
- It can also happen that $\mathbb{P}\left[K_{\infty}=1\right]<1$.


## Outline

## Numéraire-invariant choices

The market, agents, investment, consumption

## Agent optimality

## Equilibrium

## Bubbles and arbitrages

## Conclusions

## The market

Zero-net-supply asset: A savings account offering instantaneous interest rate $r=\left(r_{t}\right)_{t \in \mathbb{R}_{+}}$. The process $B$ denotes the accrued value of one unit of account invested at time $t=0$ :

$$
B=\exp \left(\int_{0}^{r} r_{t} \mathrm{~d} t\right) \Longrightarrow \frac{\mathrm{d} B_{t}}{B_{t}}=r_{t} \mathrm{~d} t
$$

## The market

Zero-net-supply asset: A savings account offering instantaneous interest rate $r=\left(r_{t}\right)_{t \in \mathbb{R}_{+}}$. The process $B$ denotes the accrued value of one unit of account invested at time $t=0$ :

$$
B=\exp \left(\int_{0}^{r} r_{t} \mathrm{~d} t\right) \Longrightarrow \frac{\mathrm{d} B_{t}}{B_{t}}=r_{t} \mathrm{~d} t
$$

Positive-net-supply asset: Offers per-share dividend rate process
$D$ and has price $S$ with initial value $S_{0}$ and dynamics:

$$
\frac{\mathrm{d} S_{t}+D_{t} \mathrm{~d} t}{S_{t}}=\left(r_{t}+\alpha_{t}\right) \mathrm{d} t+\left\langle\sigma_{t}, \mathrm{~d} W_{t}\right\rangle
$$

- $W=\left(W^{n}\right)_{n=1, \ldots, m}$ : standard BM that generates information.
- $|\sigma|$ : local volatility process.
- $\alpha$ : excess rate of return.


## Investment and consumption

Investment-consumption: with initial capital $x \in \mathbb{R}_{+}$, the control $(\pi, c)$ generates wealth $X^{(x ; \pi, c)}$ satisfying $X_{0}^{(x ; \pi, c)}=x$ and

$$
\frac{\mathrm{d} X_{t}^{(x ; \pi, c)}}{X_{t}^{(x ; \pi, c)}}=\left(1-\pi_{t}\right) \frac{\mathrm{d} B_{t}}{B_{t}}+\pi_{t}\left(\frac{\mathrm{~d} S_{t}+D_{t} \mathrm{~d} t}{S_{t}}\right)-c_{t} \mathrm{~d} t
$$

## Investment and consumption

Investment-consumption: with initial capital $x \in \mathbb{R}_{+}$, the control $(\pi, c)$ generates wealth $X^{(x ; \pi, c)}$ satisfying $X_{0}^{(x ; \pi, c)}=x$ and

$$
\frac{\mathrm{d} X_{t}^{(x ; \pi, c)}}{X_{t}^{(x ; \pi, c)}}=\left(1-\pi_{t}\right) \frac{\mathrm{d} B_{t}}{B_{t}}+\pi_{t}\left(\frac{\mathrm{~d} S_{t}+D_{t} \mathrm{~d} t}{S_{t}}\right)-c_{t} \mathrm{~d} t
$$

Solution of the last linear SDE: $\log \left(X^{(x ; \pi, c)}\right)$ is given by

$$
\log (x)+\int_{0}^{\cdot}\left(r_{t}+\pi_{t} \alpha_{t}-\frac{\pi_{t}^{2}\left|\sigma_{t}\right|^{2}}{2}-c_{t}\right) \mathrm{d} t+\int_{0}^{\cdot} \pi_{t}\left\langle\sigma_{t}, \mathrm{~d} W_{t}\right\rangle
$$

## Investment and consumption

Investment-consumption: with initial capital $x \in \mathbb{R}_{+}$, the control $(\pi, c)$ generates wealth $X^{(x ; \pi, c)}$ satisfying $X_{0}^{(x ; \pi, c)}=x$ and

$$
\frac{\mathrm{d} X_{t}^{(x ; \pi, c)}}{X_{t}^{(x ; \pi, c)}}=\left(1-\pi_{t}\right) \frac{\mathrm{d} B_{t}}{B_{t}}+\pi_{t}\left(\frac{\mathrm{~d} S_{t}+D_{t} \mathrm{~d} t}{S_{t}}\right)-c_{t} \mathrm{~d} t
$$

Solution of the last linear SDE: $\log \left(X^{(x ; \pi, c)}\right)$ is given by

$$
\log (x)+\int_{0}^{\cdot}\left(r_{t}+\pi_{t} \alpha_{t}-\frac{\pi_{t}^{2}\left|\sigma_{t}\right|^{2}}{2}-c_{t}\right) \mathrm{d} t+\int_{0}^{\cdot} \pi_{t}\left\langle\sigma_{t}, \mathrm{~d} W_{t}\right\rangle
$$

Consumption rate at $t \in \mathbb{R}_{+}: X_{t}^{(x ; \pi, c)} c_{t} \mathrm{~d} t$. Therefore, financeable consumption streams are of the form

$$
G^{(x ; \pi, c)}=\int_{0}^{\cdot} X_{t}^{(x ; \pi, c)} c_{t} \mathrm{~d} t
$$

## Market viability

Minimal condition for optimization: $\{|\sigma|=0\} \subseteq\{\alpha=0\}$ and

$$
\int_{0}\left(\frac{\alpha_{t}}{\left|\sigma_{t}\right|} \mathbb{I}_{\left\{\left|\sigma_{t}\right|>0\right\}}\right)^{2} \mathrm{~d} t
$$

does not explode in finite time.

- Of interest is the case where $\{|\sigma|=0\}$ has zero measure. (We search for a non-redundant equilibrium.)


## Market viability

Minimal condition for optimization: $\{|\sigma|=0\} \subseteq\{\alpha=0\}$ and

$$
\int_{0}\left(\frac{\alpha_{t}}{\left|\sigma_{t}\right|} \mathbb{I}_{\left\{\left|\sigma_{t}\right|>0\right\}}\right)^{2} \mathrm{~d} t
$$

does not explode in finite time.

- Of interest is the case where $\{|\sigma|=0\}$ has zero measure. (We search for a non-redundant equilibrium.)

Market viability: The above condition fails if and only if there exists an arbitrage of the first kind in the market, i.e., some $\mathcal{F}_{T}$-measurable random variable $\xi$ (for some $T \in \mathbb{R}_{+}$) such that:

- $\mathbb{P}[\xi \geq 0]=1, \mathbb{P}[\xi>0]>0$, and
- for all $x>0$, there exist $\pi$ and $c$ (that may depend on $x$ ) such that $\mathbb{P}\left[X_{T}^{(x ; \pi, c)}=\xi\right]=1$.


## Outline

## Numéraire-invariant choices <br> The market, agents, investment, consumption

Agent optimality

## Equilibrium

## Bubbles and arbitrages

Conclusions


## Agent optimal investment-consumption

Preferences. Agent $i \in I$, where $I$ is a finite set, has canonical representation pair $\left(L^{i}, K^{i}\right)$, such that

$$
\begin{aligned}
\frac{\mathrm{d} K_{t}^{i}}{1-K_{t}^{i}} & =\kappa_{t}^{i} \mathrm{~d} t \\
\frac{\mathrm{~d} L_{t}^{i}}{L_{t}^{i}} & =\left\langle\lambda_{t}^{i}, \mathrm{~d} W_{t}\right\rangle
\end{aligned}
$$

## Agent optimal investment-consumption

Preferences. Agent $i \in I$, where $I$ is a finite set, has canonical representation pair $\left(L^{i}, K^{i}\right)$, such that

$$
\begin{aligned}
\frac{\mathrm{d} K_{t}^{i}}{1-K_{t}^{i}} & =\kappa_{t}^{i} \mathrm{~d} t \\
\frac{\mathrm{~d} L_{t}^{i}}{L_{t}^{i}} & =\left\langle\lambda_{t}^{i}, \mathrm{~d} W_{t}\right\rangle
\end{aligned}
$$

Optimality. The canonical representation pair ( $L^{i}, K^{i}$ ) separates the solution to the problems of investment and consumption:

- the optimal portfolio is given by

$$
\pi^{i}:=\frac{\alpha+\left\langle\lambda^{i}, \sigma\right\rangle}{|\sigma|^{2}}
$$

- the optimal relative-to-wealth consumption rate satisfies:

$$
c^{i}:=\kappa^{i}
$$

## Outline

> Numéraire-invariant choices

> The market, agents, investment, consumption

> Agent optimality

## Equilibrium

## Bubbles and arbitrages

Conclusions


## Market clearing and equilibrium

Several agents acting in the market, indexed by finite set $I$.

- $\left(L^{i}, K^{i}\right)_{i \in I}$ are the canonical preference pairs.
- $\left(x^{i}\right)_{i \in I}$ : initial endowments, in terms of cash.
- $\left(\pi^{i}, c^{i}\right)_{i \in I}$ : optimizers.
- Define $X^{i}:=X^{\left(x^{i} ; \pi^{i}, c^{i}\right)}$, for each $i \in I$.


## Market clearing and equilibrium

Several agents acting in the market, indexed by finite set $I$.

- $\left(L^{i}, K^{i}\right)_{i \in I}$ are the canonical preference pairs.
- $\left(x^{i}\right)_{i \in I}$ : initial endowments, in terms of cash.
- $\left(\pi^{i}, c^{i}\right)_{i \in I}$ : optimizers.
- Define $X^{i}:=X\left(x^{i} ; \pi^{i}, c^{i}\right)$, for each $i \in I$.

Equilibrium: in the market we have the clearing conditions

$$
\begin{array}{rll}
\sum_{i \in I} X^{i} & =S & \text { (money market) } \\
\sum_{i \in I} \frac{\pi^{i} X^{i}}{S} & =1 & \text { (stock market) } \\
\sum_{i \in I} X^{i} c^{i} & =D & \text { (commodity market) }
\end{array}
$$

## In search for equilibrium. . .

Primitives are exogenously given and include:

- canonical representation pairs $\left(L^{i}, K^{i}\right)_{i \in I}$ of agents.
- initial agent endowments; either cash and/or stock fractions.
- dividend structure $D$ of asset in unit net supply.


## In search for equilibrium. . .

Primitives are exogenously given and include:

- canonical representation pairs $\left(L^{i}, K^{i}\right)_{i \in I}$ of agents.
- initial agent endowments; either cash and/or stock fractions.
- dividend structure $D$ of asset in unit net supply.

Outputs are sought in order to have market equilibrium.

- Short-rate structure: $\left(r_{t}\right)_{t \in \mathbb{R}_{+}}$.
- Stock price $S$; equivalently, $S_{0},\left(\alpha_{t}\right)_{t \in \mathbb{R}_{+}}$and $\left(\sigma_{t}\right)_{t \in \mathbb{R}_{+}}$.


## In search for equilibrium. . .

Primitives are exogenously given and include:

- canonical representation pairs $\left(L^{i}, K^{i}\right)_{i \in I}$ of agents.
- initial agent endowments; either cash and/or stock fractions.
- dividend structure $D$ of asset in unit net supply.

Outputs are sought in order to have market equilibrium.

- Short-rate structure: $\left(r_{t}\right)_{t \in \mathbb{R}_{+}}$.
- Stock price $S$; equivalently, $S_{0},\left(\alpha_{t}\right)_{t \in \mathbb{R}_{+}}$and $\left(\sigma_{t}\right)_{t \in \mathbb{R}_{+}}$.
(Almost) necessary condition for equilibrium: Define

$$
f^{i}:=\frac{c^{i}}{D}=\frac{\kappa^{i}}{D}, \quad i \in I .
$$

Assume that each $f^{i}, i \in I$, is an Itô process:

$$
\frac{\mathrm{d} f_{t}^{i}}{f_{t}^{i}}=-\beta_{t}^{i} \mathrm{~d} t-\left\langle\phi_{t}^{i}, \mathrm{~d} W_{t}\right\rangle
$$

## The state variables

State variables: $p=\left(p^{i}\right)_{i \in I}$, where, for $i \in I$,

$$
p^{i}:=\frac{X^{i}}{\sum_{j \in I} X^{j}}\left(=\frac{X^{i}}{S}, \text { in equilibrium }\right) .
$$

## The state variables

State variables: $p=\left(p^{i}\right)_{i \in I}$, where, for $i \in I$,

$$
p^{i}:=\frac{X^{i}}{\sum_{j \in I} X^{j}}\left(=\frac{X^{i}}{S}, \text { in equilibrium }\right) .
$$

Notation. For $\zeta=\left(\zeta^{i}\right)_{i \in I}$, and $\mathrm{p} \in \triangle^{\prime}$, set $\zeta^{\mathrm{p}}:=\sum_{i \in I} \mathrm{p}^{i} \zeta^{i}$.
Proposition. With the above notation, each $p^{i}, i \in I$, satisfies:

$$
\begin{align*}
\frac{\mathrm{d} p_{t}^{i}}{p_{t}^{i}} & =\left(\frac{\left\langle\lambda_{t}^{p}-\lambda_{t}^{i}, \sigma_{t}\right\rangle\left\langle\lambda_{t}^{p}, \sigma_{t}\right\rangle}{\left|\sigma_{t}\right|^{2}}+\kappa_{t}^{p}-\kappa_{t}^{i}\right) \mathrm{d} t \\
& +\frac{\left\langle\lambda_{t}^{i}-\lambda_{t}^{p}, \sigma_{t}\right\rangle}{\left|\sigma_{t}\right|^{2}}\left\langle\sigma_{t}, \mathrm{~d} W_{t}\right\rangle \tag{SDE}
\end{align*}
$$

## The state variables

State variables: $p=\left(p^{i}\right)_{i \in I}$, where, for $i \in I$,

$$
p^{i}:=\frac{X^{i}}{\sum_{j \in I} X^{j}}\left(=\frac{X^{i}}{S}, \text { in equilibrium }\right) .
$$

Notation. For $\zeta=\left(\zeta^{i}\right)_{i \in I}$, and $\mathrm{p} \in \triangle^{\prime}$, set $\zeta^{\mathrm{p}}:=\sum_{i \in I} \mathrm{p}^{i} \zeta^{i}$.
Proposition. With the above notation, each $p^{i}, i \in I$, satisfies:

$$
\begin{align*}
\frac{\mathrm{d} p_{t}^{i}}{p_{t}^{i}} & =\left(\frac{\left\langle\lambda_{t}^{p}-\lambda_{t}^{i}, \sigma_{t}\right\rangle\left\langle\lambda_{t}^{p}, \sigma_{t}\right\rangle}{\left|\sigma_{t}\right|^{2}}+\kappa_{t}^{p}-\kappa_{t}^{i}\right) \mathrm{d} t \\
& +\frac{\left\langle\lambda_{t}^{i}-\lambda_{t}^{p}, \sigma_{t}\right\rangle}{\left|\sigma_{t}\right|^{2}}\left\langle\sigma_{t}, \mathrm{~d} W_{t}\right\rangle \tag{SDE}
\end{align*}
$$

Strategy. Our aim is the following:

- Express $\sigma$ in terms of $p$ and solve (SDE).
- Express all other market parameters in terms of $p$.


## $\sigma$ in terms of $p$ : the idea

- Use the commodity clearing condition:

$$
\sum_{i \in I} X^{i} c^{i}=D \Longleftrightarrow \sum_{i \in I} p^{i} f^{i}=\frac{1}{S}
$$

## $\sigma$ in terms of $p$ : the idea

- Use the commodity clearing condition:

$$
\sum_{i \in I} X^{i} c^{i}=D \Longleftrightarrow \sum_{i \in I} p^{i} f^{i}=\frac{1}{S}
$$

- Equate the " $\mathrm{d} W_{t}$ " parts to get the equation:

$$
\left(1+\frac{\left\langle\lambda^{q}-\lambda^{p}, \sigma\right\rangle}{|\sigma|^{2}}\right) \sigma=\phi^{q}
$$

## $\sigma$ in terms of $p$ : the idea

- Use the commodity clearing condition:

$$
\sum_{i \in I} X^{i} c^{i}=D \Longleftrightarrow \sum_{i \in I} p^{i} f^{i}=\frac{1}{S}
$$

- Equate the " $\mathrm{d} W_{t}$ " parts to get the equation:

$$
\left(1+\frac{\left\langle\lambda^{q}-\lambda^{p}, \sigma\right\rangle}{|\sigma|^{2}}\right) \sigma=\phi^{q}
$$

- where $q=\left(q^{i}\right)_{i \in I}$, each $q^{i}$ for $i \in I$ being a function of $p$ :

$$
q^{i}=\frac{p^{i} f^{i}}{\sum_{j \in I} p^{j} f^{j}}=\frac{X^{i} c^{i}}{\sum_{j \in I} X^{j} c^{j}}\left(=\frac{X^{i} c^{i}}{D}, \text { in equilibrium }\right)
$$

## $\sigma$ in terms of $p$ : implementation of idea

Solution to the equation for $\sigma$. Recall:

$$
\left(1+\frac{\left\langle\lambda^{q}-\lambda^{p}, \sigma\right\rangle}{|\sigma|^{2}}\right) \sigma=\phi^{q} .
$$

## $\sigma$ in terms of $p$ : implementation of idea

Solution to the equation for $\sigma$. Recall:

$$
\left(1+\frac{\left\langle\lambda^{q}-\lambda^{p}, \sigma\right\rangle}{|\sigma|^{2}}\right) \sigma=\phi^{q} .
$$

- If $\phi^{q} \neq 0$,

$$
\begin{equation*}
\sigma=\left(1+\frac{\left\langle\lambda^{p}-\lambda^{q}, \phi^{q}\right\rangle}{\left|\phi^{q}\right|^{2}}\right) \phi^{q} \tag{SIGMA}
\end{equation*}
$$

## $\sigma$ in terms of $p$ : implementation of idea

Solution to the equation for $\sigma$. Recall:

$$
\left(1+\frac{\left\langle\lambda^{q}-\lambda^{p}, \sigma\right\rangle}{|\sigma|^{2}}\right) \sigma=\phi^{q} .
$$

- If $\phi^{q} \neq 0$,

$$
\begin{equation*}
\sigma=\left(1+\frac{\left\langle\lambda^{p}-\lambda^{q}, \phi^{q}\right\rangle}{\left|\phi^{q}\right|^{2}}\right) \phi^{q} \tag{SIGMA}
\end{equation*}
$$

- If $\phi^{q}=0$,

$$
\begin{equation*}
\sigma \in\left\{\left\langle\lambda^{p}-\lambda^{q}, \mathbf{u}\right\rangle \mathbf{u}||\mathbf{u}|=1\}\right. \tag{SIGMA'}
\end{equation*}
$$

## $\alpha$ in terms of $p$

Use the stock clearing condition:

$$
\sum_{i \in I} \pi^{i} X^{i}=S \Longleftrightarrow \sum_{i \in I} \pi^{i} p^{i}=1
$$

to get:

$$
\begin{equation*}
\alpha=|\sigma|^{2}-\left\langle\lambda^{p}, \sigma\right\rangle \tag{ALPHA}
\end{equation*}
$$

- $\sigma$ has already been expressed in terms of $p$.


## $r$ in terms of $p$

Use again the commodity clearing condition

$$
\sum_{i \in I} X^{i} c^{i}=D \Longleftrightarrow \sum_{i \in I} p^{i} f^{i}=\frac{1}{S}
$$

- $S$ in expressed in terms of $p$.


## $r$ in terms of $p$

Use again the commodity clearing condition

$$
\sum_{i \in I} X^{i} c^{i}=D \Longleftrightarrow \sum_{i \in I} p^{i} f^{i}=\frac{1}{S}
$$

- $S$ in expressed in terms of $p$.
- Now, equate the " $\mathrm{d} t$ " parts above, remembering that

$$
\frac{\mathrm{d} S_{t}+D_{t} \mathrm{~d} t}{S_{t}}=\left(r_{t}+\alpha_{t}\right) \mathrm{d} t+\left\langle\sigma_{t}, \mathrm{~d} W_{t}\right\rangle
$$

## $r$ in terms of $p$

Use again the commodity clearing condition

$$
\sum_{i \in I} X^{i} c^{i}=D \Longleftrightarrow \sum_{i \in I} p^{i} f^{i}=\frac{1}{S}
$$

- $S$ in expressed in terms of $p$.
- Now, equate the " $\mathrm{d} t$ " parts above, remembering that

$$
\frac{\mathrm{d} S_{t}+D_{t} \mathrm{~d} t}{S_{t}}=\left(r_{t}+\alpha_{t}\right) \mathrm{d} t+\left\langle\sigma_{t}, \mathrm{~d} W_{t}\right\rangle
$$

- This way you easily get:

$$
\begin{equation*}
r=\ldots \tag{R}
\end{equation*}
$$

## Synthesis

The previous necessary conditions for equilibrium can be inverted:
Theorem. If you do all the previous, and everything works out nicely, equilibrium is fully characterized.

## Synthesis

The previous necessary conditions for equilibrium can be inverted:
Theorem. If you do all the previous, and everything works out nicely, equilibrium is fully characterized.

- Solve (SDE) - make sure it has a solution!
- Define $\sigma$ via (SIGMA) or (SIGMA');
- Define $\alpha$ via (ALPHA);
- Define $r$ via (R).

Then, the market is in equilibrium.

## Existence and uniqueness

The case $\phi^{q} \neq 0$ : With $\widetilde{\phi}^{q}=\left(1 /\left|\phi^{q}\right|\right) \phi^{q}$, for $i \in I$,

$$
\begin{aligned}
\frac{\mathrm{d} p_{t}^{i}}{p_{t}^{i}} & =\left(\left\langle\lambda_{t}^{p}-\lambda_{t}^{i}, \widetilde{\phi}_{t}^{q}\right\rangle\left\langle\lambda_{t}^{p}, \widetilde{\phi}_{t}^{q}\right\rangle+\kappa_{t}^{p}-\kappa_{t}^{i}\right) \mathrm{d} t \\
& +\left\langle\lambda_{t}^{i}-\lambda_{t}^{p}, \widetilde{\phi}_{t}^{q}\right\rangle\left\langle\widetilde{\phi}_{t}^{q}, \mathrm{~d} W_{t}\right\rangle
\end{aligned}
$$

## Existence and uniqueness

The case $\phi^{q} \neq 0$ : With $\widetilde{\phi}^{q}=\left(1 /\left|\phi^{q}\right|\right) \phi^{q}$, for $i \in I$,

$$
\begin{aligned}
\frac{\mathrm{d} p_{t}^{i}}{p_{t}^{i}} & =\left(\left\langle\lambda_{t}^{p}-\lambda_{t}^{i}, \widetilde{\phi}_{t}^{q}\right\rangle\left\langle\lambda_{t}^{p}, \widetilde{\phi}_{t}^{q}\right\rangle+\kappa_{t}^{p}-\kappa_{t}^{i}\right) \mathrm{d} t \\
& +\left\langle\lambda_{t}^{i}-\lambda_{t}^{p}, \widetilde{\phi}_{t}^{q}\right\rangle\left\langle\widetilde{\phi}_{t}^{q}, \mathrm{~d} W_{t}\right\rangle
\end{aligned}
$$

Existence and uniqueness of equilibrium becomes the equivalent question on the above equation. As long as $\phi^{q}$ does not vanish, it should be OK... but rigorous results have to be obtained.

## Multiplicity of equilibria

The case $\phi=0$ : Recall (SIGMA'):

$$
\sigma \in\left\{\left\langle\lambda^{p}-\lambda^{q}, \mathbf{u}\right\rangle \mathbf{u}||\mathbf{u}|=1\} .\right.
$$

## Multiplicity of equilibria

The case $\phi=0$ : Recall (SIGMA'):

$$
\sigma \in\left\{\left\langle\lambda^{p}-\lambda^{q}, \mathbf{u}\right\rangle \mathbf{u}||\mathbf{u}|=1\} .\right.
$$

Pick any predictable process $\left(u_{t}\right)_{t \in \mathbb{R}_{+}}$with $|u|=1$, and solve

$$
\begin{aligned}
\frac{\mathrm{d} p_{t}^{i}}{p_{t}^{i}} & =\left(\left\langle\lambda_{t}^{p}-\lambda_{t}^{i}, u_{t}\right\rangle\left\langle\lambda_{t}^{p}, u_{t}\right\rangle+\kappa_{t}^{p}-\kappa_{t}^{i}\right) \mathrm{d} t \\
& +\left\langle\lambda_{t}^{i}-\lambda_{t}^{p}, u_{t}\right\rangle\left\langle u_{t}, \mathrm{~d} W_{t}\right\rangle .
\end{aligned}
$$

## Multiplicity of equilibria

The case $\phi=0$ : Recall (SIGMA'):

$$
\sigma \in\left\{\left\langle\lambda^{p}-\lambda^{q}, \mathbf{u}\right\rangle \mathbf{u}||\mathbf{u}|=1\} .\right.
$$

Pick any predictable process $\left(u_{t}\right)_{t \in \mathbb{R}_{+}}$with $|u|=1$, and solve

$$
\begin{aligned}
\frac{\mathrm{d} p_{t}^{i}}{p_{t}^{i}} & =\left(\left\langle\lambda_{t}^{p}-\lambda_{t}^{i}, u_{t}\right\rangle\left\langle\lambda_{t}^{p}, u_{t}\right\rangle+\kappa_{t}^{p}-\kappa_{t}^{i}\right) \mathrm{d} t \\
& +\left\langle\lambda_{t}^{i}-\lambda_{t}^{p}, u_{t}\right\rangle\left\langle u_{t}, \mathrm{~d} W_{t}\right\rangle
\end{aligned}
$$

We can construct multiple non-redundant equilibria if:

- we have $m>1$ (in particular, incompleteness);
- agents are "sufficiently heterogeneous";
- consumption rates and the dividend rate stream are smooth.


## Special cases of closed-form equilibria

Complete markets: If $m=1$, then, for $i \in I$,

$$
p^{i}=\frac{x^{i} L^{i}\left(1-K^{i}\right)}{\sum_{j \in I} x^{j} L^{j}\left(1-K^{j}\right)} .
$$

## Special cases of closed-form equilibria

Complete markets: If $m=1$, then, for $i \in I$,

$$
p^{i}=\frac{x^{i} L^{i}\left(1-K^{i}\right)}{\sum_{j \in I} x^{j} L^{j}\left(1-K^{j}\right)} .
$$

Agents with homogeneous beliefs: If $L^{i}=L^{j}$ for all $i \in I, j \in I$,

$$
p^{i}=\frac{x^{i}\left(1-K^{i}\right)}{\sum_{j \in I} x^{j}\left(1-K^{j}\right)} .
$$

## Special cases of closed-form equilibria

Complete markets: If $m=1$, then, for $i \in I$,

$$
p^{i}=\frac{x^{i} L^{i}\left(1-K^{i}\right)}{\sum_{j \in I} x^{j} L^{j}\left(1-K^{j}\right)} .
$$

Agents with homogeneous beliefs: If $L^{i}=L^{j}$ for all $i \in I, j \in I$,

$$
p^{i}=\frac{x^{i}\left(1-K^{i}\right)}{\sum_{j \in I} x^{j}\left(1-K^{j}\right)} .
$$

Agents with same consumption clocks: In this case, $\sigma=\phi^{p}=\phi^{i}$ and (SDE) can be solved with a trick.

## Outline

## Numéraire-invariant choices <br> The market, agents, investment, consumption <br> Agent optimality <br> Equilibrium

Bubbles and arbitrages

Conclusions


## Definitions and perceptions

The savings account contains a bubble in $[0, T], T \in \mathbb{R}_{+}$, if there exists $x \in(0,1)$ and an investment strategy $\pi$ such that:

$$
\mathbb{P}\left[X_{T}^{(x ; \pi, 0)} \geq B_{T}\right]=1
$$

## Definitions and perceptions

The savings account contains a bubble in $[0, T], T \in \mathbb{R}_{+}$, if there exists $x \in(0,1)$ and an investment strategy $\pi$ such that:

$$
\mathbb{P}\left[X_{T}^{(x ; \pi, 0)} \geq B_{T}\right]=1
$$

The stock contains a bubble in $[0, T], T \in \mathbb{R}_{+}$, if there exists $x \in(0,1)$ and an investment strategy $\pi$ such that:

$$
\mathbb{P}\left[X_{T}^{(x ; \pi, 0)} \geq X_{T}^{(1 ; 1,0)}\right]=1
$$

## Definitions and perceptions

The savings account contains a bubble in $[0, T], T \in \mathbb{R}_{+}$, if there exists $x \in(0,1)$ and an investment strategy $\pi$ such that:

$$
\mathbb{P}\left[X_{T}^{(x ; \pi, 0)} \geq B_{T}\right]=1
$$

The stock contains a bubble in $[0, T], T \in \mathbb{R}_{+}$, if there exists $x \in(0,1)$ and an investment strategy $\pi$ such that:

$$
\mathbb{P}\left[X_{T}^{(x ; \pi, 0)} \geq X_{T}^{(1 ; 1,0)}\right]=1
$$

"Folklore" knowledge: in non-constrained, complete-market equilibrium, assets in positive net supply cannot contain bubbles. (Otherwise, the representative agent would not invest in stocks.)

## Stock bubble in equilibrium

Agent's preferences are given by the pair $(L, K)$ such that:

- $\mathrm{d} L_{t}=-L_{t}^{2} \mathrm{~d} W_{t}, L_{0}=1$. ( $\mathrm{BES}^{-3}$, a strict local martingale.)
- $K=1-\exp \left(-\int_{0}^{\cdot} L_{t}^{2} \mathrm{~d} t\right)$.

It can be shown that $\mathbb{E}\left[\int_{\mathbb{R}_{+}} L_{t} \mathrm{~d} K_{t}\right]=1$.

## Stock bubble in equilibrium

Agent's preferences are given by the pair $(L, K)$ such that:
$-\mathrm{d} L_{t}=-L_{t}^{2} \mathrm{~d} W_{t}, L_{0}=1$. ( $\mathrm{BES}^{-3}$, a strict local martingale.)

- $K=1-\exp \left(-\int_{0}^{\cdot} L_{t}^{2} \mathrm{~d} t\right)$.

It can be shown that $\mathbb{E}\left[\int_{\mathbb{R}_{+}} L_{t} \mathrm{~d} K_{t}\right]=1$.
Market: $r=0, S=L(1-K), D=S L^{2}$.

## Stock bubble in equilibrium

Agent's preferences are given by the pair $(L, K)$ such that:
$-\mathrm{d} L_{t}=-L_{t}^{2} \mathrm{~d} W_{t}, L_{0}=1$. ( $\mathrm{BES}^{-3}$, a strict local martingale.)

- $K=1-\exp \left(-\int_{0}^{2} L_{t}^{2} \mathrm{~d} t\right)$.

It can be shown that $\mathbb{E}\left[\int_{\mathbb{R}_{+}} L_{t} \mathrm{~d} K_{t}\right]=1$.
Market: $r=0, S=L(1-K), D=S L^{2}$.
Agents's optimal investment-consumption: $\pi=1$ and $c=L^{2}$.
With one (representative) agent, we are in equilibrium!

## Stock bubble in equilibrium

Agent's preferences are given by the pair $(L, K)$ such that:

- $\mathrm{d} L_{t}=-L_{t}^{2} \mathrm{~d} W_{t}, L_{0}=1$. ( $\mathrm{BES}^{-3}$, a strict local martingale.)
- $K=1-\exp \left(-\int_{0} L_{t}^{2} \mathrm{~d} t\right)$.

It can be shown that $\mathbb{E}\left[\int_{\mathbb{R}_{+}} L_{t} \mathrm{~d} K_{t}\right]=1$.
Market: $r=0, S=L(1-K), D=S L^{2}$.
Agents's optimal investment-consumption: $\pi=1$ and $c=L^{2}$.
With one (representative) agent, we are in equilibrium!
The stock contains a bubble, because $X^{(1 ; 1,0)}=L$. For all
$T \in \mathbb{R}_{+}$, there exists $x \in(0,1)$ and strategy $\pi$, both depending on
$T$, such that $\mathbb{P}\left[X_{T}^{(x ; \pi, 0)}=X_{T}^{(1 ; 1,0)}\right]=1$.

## Outline

Numéraire-invariant choicesThe market, agents, investment, consumption
Agent optimality
Equilibrium
Bubbles and arbitrages
Conclusions

## Summing up. . .

- Existence and uniqueness of equilibria can be expressed in terms of existence and uniqueness of SDEs.


## Summing up. . .

- Existence and uniqueness of equilibria can be expressed in terms of existence and uniqueness of SDEs.
- The SDEs have closed-form solutions in certain cases. In general, one can use numerical solutions.


## Summing up. . .

- Existence and uniqueness of equilibria can be expressed in terms of existence and uniqueness of SDEs.
- The SDEs have closed-form solutions in certain cases. In general, one can use numerical solutions.
- We obtain multiplicity of equilibria in simple settings. Is it just a mathematical curiosity? Are there economic implications?


## Summing up...

- Existence and uniqueness of equilibria can be expressed in terms of existence and uniqueness of SDEs.
- The SDEs have closed-form solutions in certain cases. In general, one can use numerical solutions.
- We obtain multiplicity of equilibria in simple settings. Is it just a mathematical curiosity? Are there economic implications?
- The state variable is the capital distribution. This seems to prevent Markovian structure in our equilibrium models. . .


## Looking ahead. . .

- The nice workable expressions we came up should allow further economic and mathematical analysis - in particular, a study of the effect of primitives on equilibrium...


## Looking ahead. . .

- The nice workable expressions we came up should allow further economic and mathematical analysis - in particular, a study of the effect of primitives on equilibrium...
- Large number of agents is needed to justify a "price-taking" assumption. We could make I an arbitrary measurable space and get an SDE involving the capital distribution.


## Looking ahead. . .

- The nice workable expressions we came up should allow further economic and mathematical analysis - in particular, a study of the effect of primitives on equilibrium...
- Large number of agents is needed to justify a "price-taking" assumption. We could make I an arbitrary measurable space and get an SDE involving the capital distribution.
- Updating views and consumption patterns: $\left(L^{i}, K^{i}\right)_{i \in I}$ can be made to depend on past economy data.


## Looking ahead. . .

- The nice workable expressions we came up should allow further economic and mathematical analysis - in particular, a study of the effect of primitives on equilibrium...
- Large number of agents is needed to justify a "price-taking" assumption. We could make I an arbitrary measurable space and get an SDE involving the capital distribution.
- Updating views and consumption patterns: $\left(L^{i}, K^{i}\right)_{i \in I}$ can be made to depend on past economy data.
- past personal performance (learning from your mistakes),
- past performance of other agents (learning from their mistakes or success; reevaluating statistical views),
- consumption patterns of others (keeping up with the Johnses). This way, game-theoretic equilibria can be constructed.


## The End

Thank You!

