g-expectations and the representation

of the penalty term

of dynamic convex risk measures

Emanuela Rosazza Gianin - University of Milano-Bicocca, Italy

(Joint work with F. Delbaen and S. Peng)

Workshop on Foundations of Mathematical Finance — Toronto 2010



Outline

preliminaries and recalls on dynamic convex risk measures

link with the existing literature

representation of the penalty term of dynamic convex risk
measures (or concave utilities) satisfying some suitable
properties

sketch of the proof (by applying the theory of BSDE and
of g-expectations)



Preliminaries

static coherent/convex risk measures are functionals (satisfy-
ing suitable axioms) quantifying now the riskiness of a financial
position

in particular:

p. X —=NR
where X space of financial positions with maturity T (e.q.
X = L>*(Fr))

see Artzner et al. (1999), Delbaen (2002), Follmer and Schied
(2002), Frittelli and RG (2002)

Kusuoka, Frittelli and RG, Jouini, Schachermayer and Touzi,



dynamic risk measures quantify the riskiness of a position & of
maturity T at any time s € [0, T]:

in general: ps (&) (with 0 < s <t <T) represents the riskiness
of £ (position of maturity t) at time s

see Artzner et al. (2007), Barrieu and El Karoui (2005),
Cheridito, Delbaen and Kupper (2006), Delbaen (2006), Detlef-
sen and Scandolo (2005), Follmer and Penner (2006), Frittelli
and RG (2004), Kloppel and Schweizer (2007), RG (2006),



we will call dynamic convex risk measure on L°° :

(po,r)o<o<r<T SUcCh that, given any pair of stopping times o
and 7 such that 0 <o <7 < T, the functional psr : L®(F:) —
L>°(Fs) satisfies ps+(0) = 0 and

e monotonicity: if £,n € L®(Fr) and & < n, then ps (&) >
po,r (1)

e translation invariance: psr(& + 1) = po (&) —n for any

e convexity: pgr(af + (1 —a)n) < aper(§) + (1 — a)ps,r(n)
for any &,m € L°(F;) and o € [0, 1]



Setting and hypothesis

(Bt)¢>0 d-dimensional Brownian motion
(Ft)r>0 augmented filtration generated by (B):>0
T > 0 fixed finite time horizon

L>®(F;) as space of risky positions with maturity t € [0, T]



we will identify any probability measure @Q ~ P with its Radon
- Nykodim density g—%

and with the (d-dimensional) predictable process (Qt)te[o,T] in-
duced by

de) A ( 1t 5 t
Eo| Y™ 7l = £(0.B), 2 ——/ d / dB).
P [dp‘]:t] (q.-B)+ = exp > /s lgsl|“ds + ., 4s4Bs



Assumptions on the dynamic convex risk measures

(A) (po,r)o<e<r<T IS continuous from above, i.e. for any
(n)pen in L°°(Fr) such that &, | £ it holds limy por(€n) =
PO,T(&)-

(B) (po,r)or is time-consistent, i.e. for any stopping times
o, T, o Wth 0 <o <7< ouv<T:

pov(€) = por(—prn(€)), V&€ L™(Fv).

(C) (po,r)o,r is regular, i.e.
po,r(ELa+n1 ac) = por(§)1 a+po,r(M)Lge, VE,n € L™°(F7), VA € Fo.

(D) ¢, 7(P) = esssupgcroo( g ){EPI—E|Ft] — pr7(£)}= 0, V1
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Remarks on the Assumptions
e (A) is the dynamic version of the static Isc

e (B) is the key assumption. By Kupper and Schachermayer
(2008), (B) + law invariance imply that 3y € [0, 4] s.t.

prr(€) = % In E [exp{—yX}|Fi

i.e. either entropic-type or worst case risk measure

e it is sufficient to suppose the existence of Q ~ P satisfying
(D).
c; as in Assumption (D) is the minimal penalty term
associated to p; 1



Some known results in the literature

e (see Bion-Nadal (2006); Detlefsen and Scandolo (2005))

If (pg,T)OSUSTST satisfies the assumptions above, then

ps,t(§)= ess. sup {Eg[—¢&|Fs]—cs 1 (Q)} (1)
Q< P,Q=P On F,

for any 0 <s<t<T, where

cs,t(Q) = ess. supgcroo( ;) EQl—&|Fs] — ps,e(€)}
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e since ¢, 7(P) =0: in (1) Q < P may be replaced by Q ~ P

(see Kloppel and Schweizer (2007) (continuous time), Follmer
and Penner, Cheridito et al. (discrete time))

e (see Bion-Nadal (2006), Follmer and Penner (2006))

time-consistency is equivalent to the cocycle property of
the penalty term ¢, i.e.

cow(Q) = cor(Q) + EQ [erv(Q)|Fo]
for any stopping times o, 7,v such that 0 <o <7 <o <T
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NOTATIONS:

ct(Q) = ¢ 1(Q)

pt(X) = pp7(X)
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Our main result is the following.

Theorem 1 Let (por)o<s<r<T b€ @ dynamic convex risk mea-
sure

Then: for any stopping times o,7 such that 0 <o <7 <T

co:r(@) = Eq| [ f(u,qu)du| 7| (2)

for some function f : [0,T] x Q x R? — [0,4o00] such that
f(t,w,-) is proper, convex and lower semi-continuous.

13



The statement of Theorem 1 can be “translated” for dynamic
concave utilities (uo,r)g<o<r<7, Where ug (£) = —pg+(£).

The proof of the previous representation is based on the theory
of BSDE and on g-expectations.

Basic references (Lipschitz condition on g):

Pardoux and Peng (1990), Peng (1997), EI Karoui, Peng and
Quenez (1997), Coquet et al. (2001, 2002), Peng (2004), ...

Recent references (weaker conditions on g):

Lepeltier and San Martin (1998), Kobylansky (2000), Briand
and Hu (2006, 2008), Delbaen, Hu and Bao (2009), ...
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et
g: R x © x R x RF - R

(t, w, Y, z) +— g(t,w,y,z)

be a functional such that
e g is (uniformly) Lipschitz in (v, z)

e g(-,y,z) is predictable and such that E [fg(g(t,w,y, z))th} <
+oo for any s > 0

o (dt xdP)—a.s., Vy € R, g(t,y,0) = 0.
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Given ¢ € L2(2, Fp, P), the following Backward Stochastic
Differential Equation:

—dYy = g(t,Ys, Zy)dt — Zid By

Yr =¢,

has a unique solution (Y%, Z¢).c(0 ) Of predictable stochastic

processes such that E[[3 Y2dt] < +oc and E[[3 ||Z4]|2dt] < +oo
(see Pardoux and Peng (1990)).
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Given such a solution (Y;f»Zt)te[o,T]v Peng (1997) defined

A

Eq(&) =Y,y g-expectation of &

Eq(€|FD) =Y, conditional g-expectation of &

Particular cases:
e when g = 0: &(:|F) = Ep(-|Fp)
e when g(t,y,2) = pllz||, > 0: E;(:|Ft) denoted by EX(-|Fz)
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the properties satisfied by Sg(-|]-"t) depend on the assumptions
imposed on g:

e g does not depend on y & &4(-|F¢) translation invariant
e g convex in (y,z) & &E4(-|Ft) convex
e g positive homogeneous in (y,z) < &¢(-|Ft) PH
(see Peng (1997), EIl karoui, Peng and Quenez (1997), RG

(2006) and Jiang (2008))
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What is the link between risk measures and g-expectations?
(i) pgT(X) = E¢(—X|Fy) is a time-consistent risk measure

(ii) under suitable assumptions the converse is also true

(see RG (2006), Barrieu and EIl Karoui, ...)

Where g-expectations play a role in our result?

. in a while ...
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. coming back to our result and its proof ...
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Sketch of the proof of Theorem 1

Step 1:
Set
ps (&) = ess. sup {EQ[—¢&|Fs] — cs,1(Q) }-
Q~ Pilql| <n
QQ = P on Fq

Then p™ is a dynamic convex risk measure satisfying the as-
sumptions above. Moreover:

cs t(Q); it g <n
cs+(Q) =

~+o0; otherwise
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Remark By Assumption (D) (¢;(P) = 0):
pi(§) > Ep[—¢&|F]

pP (&) = Ep[—¢|F]

BASIC IDEA:

to prove

Q) = Bg | [ fulu,au)dul 7,

for suitable f;, and to pass somehow to the limit ...
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Step 2: p" is induced by a conditional g,-expectation, i.e.
P

pt (&) = &g, (—€|F) (3)

with g, convex, Isc functional, Lipschitz of constant n (in z)
and satisfying the usual hypothesis.

Hence: p" satisfies the following BSDE

{ —dp(§) = gn(t, Z1")dt — Z]'dBy
pp(§) = —¢
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Step 2 (cont.):

- Conditional gp-expectation: by a result of Coquet et al.
(2002), it is sufficient to verify that

(&) £ ppr(=£)
IS time-consistent and that 7r8 satisfies strict monotonicity,
translation invariance, constancy and £#-dominance.

1 is EF-dominated if:

| du>0st m(X+Y)—-n(X)<EHY) for any X, Y
- Convexity of gn: consequence of a result of Jiang (2008)
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Step 3:
C?,t(@) = kg [/St fn(u, qu)du| .7-"3] (4)

where fn(t7w7 ) — (gn(t7w7 ))*

For s = 0,t = T, equation (4) can be deduced by cj(Q) =
(75)*(Q) and by the Measurable Selection Theorem.

A dual representation of g-expectations also in Barrieu and El
Karoui (2005).

The general case can be obtained thanks to the cocycle prop-
erty of c.
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Some remarks

L fn(tawaq) Z O (Since gn(t,w,O) — O)

o fn(t,w,0) =0 (from cg(P) = 0 and gn(t,w,z) > 0)

o fn(t,w,q) = o0 for [lg|| > n
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Step 4:

° 08 IS decreasing on n

e p" is increasing on n, hence &g, (&|F:) < &y, .1 (€17%)

e By applying the Converse Comparison Theorem on BSDE
(see Briand et al. (2000)) and a result of Jiang (2006):

gn IS INCreasing on n

e ~~ fn IS decreasing on n
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Step 4 (cont.):

the sequence of f;,, ‘“stabilizes”, that is, once fixed (t,w), Vq

either: there exists n > 0 such that fin(t,w,q) = f(t,w,q) < +o0
forany m>n

or: fn(t,w,q) = oo = f(t,w,q) for any n >0
for some function f: [0,7] x 2 x R¢ — [0, +o0].

Therefore: f(t,w,z) = inf, fn(t,w,xz) is proper, convex and
lower semi-continuous and f(¢,w,0) = 0.
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Step 5:

Case 1: [§ f(t,q)dt bounded

Set Q" the probability associated to ¢" = quIquSn'

By Isc of c:

cor(Q) < limy cor(Q™)
= limn Egn [ I fn(t, q)d]
= Egqn I £(t:a0) jq<n ]

= Eq |Jg f(t,a)dt]
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Step 5 (cont.):

Case 2: [§ f(t,q)dt unbounded

. similarly ...

Hence: for any QQ ~ P

cor(Q) < Eg :foT f(u, qu)du:

ce7(Q) < Eg :ftTf(ua qu)du ft}

7?77 is it possible to replace < with = 777
30



IDEA / AIM:

to find (if there exists) a sequence (Q™),,>0 with bounded ¢™

dQ™m 1 d
such that (?P L dg and co 7(Q") —m co(Q). Hence, by
proceeding as above:

co.r(Q) < Eq g f(u,qu)du]
<.
< limm Egm |[g f (4, qu)1jjg|<md
= limm ' (Q™) = c0,7(Q).
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Step 6:

(a) ¢t is a positive Q-supermartingale of class (D)

(b) if @ ~ P, cor(Q) < +oo and ¢(Q) is right-continuous,
then ¢:(Q) is a Q-potential,

i.e. there exists a unique predictable, increasing (A?)te[O,T]
such that Ag = 0 and

at(Q) = EglAS — AP |7
(by Dellacherie-Meyer)

(©) (cl@))sefo.r) s cadlag =(AP) (0.7 Is cadlag
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Step 7:

(a) Given Q! Q2, their associated processes Al A2 and two
stopping times o, 7, set ¢ = ¢11 . +¢°1, where Hy =]0, oU]7, TT
and Hy =Jlo,7]]. Then

dAY = 15, dAY + 15,dA?

(b) let Q ~ P and let A = A¥ be the increasing process asso-
ciated to Q. Suppose A bounded.

Let H be a predictable set and let QH be the probability mea-
sure corresponding to ¢H = ¢1y.

Then dAH < dA, hence A < Ap.
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Step 8:
(a) let Q ~ P and let A = A¥ be bounded.

Let (H™);,>0 be a sequence of predictable sets with H™ 7
(0,T] x Q and let Q¥ be the probability measure correspond-
ing to q = qlgm.

Then co7(QT™) —m co7(Q).
(b) by taking H™ = {q : ||q|| < m}:

thejre exists (Q™)m>0 With bounded ¢ such that ‘?—; Lt g—%
an

co,7(Q") —m co(Q)
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Final step: by the existence of a sequence (Q™),,>0 (Step 8),
we deduce that

co,r(Q) < Eq /g f(u, qu)du]
< liminfp, cg'p(Q™)
= |im Infm CO,T(Qm) — CO,T(Q)
Hence:

T
coT(Q) = Eg [/o f(u,qu)du]
. and by the cocycle property:
co,r(Q) = kg [/UT f(u, CIu)du‘ fa]

End of the proof.
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A relevant example: the entropic penalty term

(see Barrieu and EIl Karoui (2005))

for f(q) = 3lq||?:

cor7(Q) = Eg

Pl 2] _
) Sl = 1@Q.P)

. even if the corresponding g is not Lipschitz !
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THANK YOU

FOR YOUR AT TENTION !
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