Equilibrium with Heterogeneous Agents

Jakša Cvitanić Caltech Semyon Malamud EPF Lausanne and Swiss Finance Institute

January 2010

Benchmark Case: One Agent

- ▶ CRRA representative agent with risk aversion γ ;
- dividend following a geometric Brownian motion with volatility σ^D ;
- then, the market price of risk is given by $\lambda = \gamma \sigma^D$;
- the stock price volatility is $\sigma^S = \sigma^D$;
- ▶ the optimal portfolio is myopic, equal to $\frac{\lambda}{\sigma^S \gamma}$.

Heterogeneous Preferences

- ▶ Dumas (1989)
- ▶ Wang (1993, 1996)
- ▶ Detemple and Murthy (1997)
- Kogan, Ross, Wang and Westerfield (2006), (2008)
- ▶ Berrada, Hugonnier and Rindisbacher (2007)
- Berrada (2008)
- Jouini and Napp (2007)
- Yan (2008)
- ▶ Bhamra and Uppal (2009)
- ► Weinbaum (?)

The model

- ightharpoonup risk-free asset with r=0
- ightharpoonup one stock with terminal dividend D_T , such that

$$D_t^{-1} dD_t = \mu^D(D_t) dt + \sigma^D(D_t) dB_t;$$

- lacktriangleright K agents, agent k is initially endowed with $\psi_k>0$ shares of stock;
- ▶ agent k chooses $\pi_{k\,t}$, the portfolio weight at time t in the risky asset, as to maximize the expected utility

$$E\left[u_k(W_{kT})\right]$$

Equilibrium

optimal terminal wealth

$$W_{kT} = I_k(y_k M) \text{ where } I = (u')^{-1}$$

with

$$E[I_k(y_k M) M] = W_{k 0} = \psi_k S_0 = \psi_k E[DM].$$

ightharpoonup equilibrium SDF M solves

$$\sum_{k=1}^{K} I_k(y_k M) = D;$$

Q is the equilibrium risk neutral measure,

$$E_t^Q[X] = \frac{E_t[MX]}{E_t[M]}.$$

Representative Agent's Utility U

Equilibrium SDF has to satisfy

$$M = U'(D); (1)$$

aggregate risk aversion is

$$\gamma^U(x) := -\frac{x U''(x)}{U'(x)}.$$

Rate of Macroeconomic Fluctuations

$$F(x) \stackrel{def}{=} \int_{x_0}^x \frac{1}{y \, \sigma^D(y)} \, dy.$$

Then, for $A_t = F(D_t)$ we have

$$dA_t = -C(A_t) dt + dB_t$$

- We call $c(D_t) = C'(A_t)$ the rate of macroeconomic fluctuations.
- Can be shown

$$c(x) = -x (\mu^D)'(x) + x (\sigma^D)'(x) \sigma^D(x)^{-1} \mu^D(x) + (\sigma^D)'(x) \sigma^D(x) x + 0.5 (\sigma^D)''(x) x^2 \sigma^D(x)$$
(2)

Properties of the Rate of Macroeconomic Fluctuations

Proposition

ightharpoonup if $D_t = g(\tilde{D}_t)$ then

$$c^{D}(g(x)) = c^{\tilde{D}}(x).$$

• $c(D_t) \equiv b$ is constant if and only if there exists a one-to-one function g such that $D_t = g(A_t)$ where

$$dA_t = (a - bA_t) dt + \sigma^A dB_t.$$

Equilibrium Market Price of Risk

Theorem

$$\lambda_t = \frac{\mu_t^S - r}{\sigma_t^S}$$

is given by

$$\lambda_t = E_t^Q \left[\gamma^U(D) \, \sigma^D(D) \, e^{-\int_t^T \, c(D_s) \, ds} \right].$$

Corollary Under the equilibrium risk neutral measure, the drift of the equilibrium market price of risk is always equal to $c(D_t)$.

Discounted Volatility

▶ We denote by

$$\sigma^D(t,T) \stackrel{def}{=} e^{-\int_t^T c(D_s) ds} \sigma^D(D_T)$$

the discounted volatility.

▶ The market value of discounted volatility is defined as

$$\sigma_t^{\rm myopic} \; := \; E_t^Q \left[\, \sigma^D(t \, , \, T) \, \right]$$

Risk Aversion and Market Price of Risk

Let

$$\gamma_k^{\rm inf}$$
 , $\gamma_k^{\rm sup}$

denote the infinum and supremum of the relative risk aversion of agent k,

Proposition The equilibrium market price of risk satisfies

$$\min_{k} \gamma_{k}^{\inf} \leq \frac{\lambda_{t}}{\sigma_{t}^{\text{myopic}}} \leq \max_{k} \gamma_{k}^{\sup}.$$

Special case: CRRA agents, lognormal dividend: $\sigma_t^{
m myopic} \equiv \sigma$

Cyclicality of the Market Price of Risk

Proposition We have

- if $\gamma^U(x) \, \sigma^D(x)$ is countercyclical and $c(D_t)$ is procyclical, then λ_t is countercyclical;
- if $\gamma^U(x) \, \sigma^D(x)$ is increasing and $c(D_t)$ is countercyclical, then λ_t procyclical.

Equilibrium Stock Volatility

Theorem The equilibrium stock price volatility is given by

$$\sigma_t^S = \sigma_t^{\text{myopic}} + \frac{1}{E_t^Q[D]} \operatorname{Cov}_t^Q \left([1 - \gamma^U(D)] \sigma^D(t, T), D \right).$$
 (3)

Furthermore, S_t is always procyclical and $\sigma_t^S>0$ almost surely. With constant $\gamma^U,\sigma^D,c=b$,

$$\sigma^S = e^{-b(T-t)}\sigma^D$$

Excess Volatility

Proposition

• if the relative risk aversion $\gamma^U(x) \geq 1$ is decreasing, the volatility $\sigma^D(D)$ is countercyclical and the rate $c(D_s)$ is procyclical, then

$$\sigma_t^S \geq \sigma_t^{\text{myopic}}$$
.

• if the relative risk aversion $\gamma^U \geq 1$ is increasing, the volatility $\sigma^D(D)$ is procyclical and the rate $c(D_s)$ is counter-cyclical, then

$$\sigma_t^S \leq \sigma_t^{\text{myopic}}$$
.

Example: The Gaussian Case

$$d\log(D_t) = (a - b\log(D_t))dt + \sigma dB_t.$$

In that case, $\sigma^D = \sigma$, c = b,

Proposition Suppose that γ^U is decreasing. Then,

market price of risk is counter-cyclical and satisfies

$$\min_{k} \gamma_{k}^{\inf} \leq \frac{\lambda_{t}}{e^{b(t-T)} \sigma} \leq \max_{k} \gamma_{k}^{\sup};$$

ightharpoonup price volatility is larger than the discounted (or, appreciated, if b < 0) volatility.

$$\sigma_t^S > e^{b(t-T)} \sigma^D$$
.

Special case: CRRA agents, b = 0: $\sigma \le \sigma_t^S \le \sigma(1 + \max \gamma_k - \min \gamma_k)$.

Risk-Return Tradeoff

$$\frac{\lambda_t}{\sigma_t^S} = \gamma \frac{\sigma_t^{\text{myopic}}}{\sigma_t^{\text{myopic}} + \sigma_t^{\text{nonmyopic}}}.$$

Prediction: variation of the risk-return tradeoff is explained by fluctuations in non-myopic (excess) volatility

Optimal Portfolios and the Log-Optimal Portfolio

Log-optimal portfolio is

$$\pi_{\log t} = \frac{\lambda_t}{\sigma_t^S}.$$

Proposition If $\gamma_k(x) \geq 1$ for all x, then

$$\pi_{kt} \leq \pi_{\log t}$$

and the inequality reverses if, for all x, $\gamma_k(x) \leq 1$.

Monotonicity in Risk Aversion

Definition (Ross (1981)) Agent k is more risk averse than agent j in the sense of Ross if

$$\inf_{x} \gamma_k(x) \ge \sup_{x} \gamma_j(x).$$

In this case we write $\gamma_k \geq_R \gamma_j$.

Proposition

▶ suppose that $\gamma^U(x) \, \sigma^D(x)$ is decreasing and c is procyclical. Then, $\gamma_k \geq_R \gamma_j \geq 1$ implies

$$\pi_{kt} \leq \pi_{jt};$$

▶ suppose that $\gamma^U(x) \, \sigma^D(x)$ is increasing and c is countercyclical. Then, $1 \geq \gamma_k \geq_R \gamma_i$ implies

$$\pi_{kt} \leq \pi_{jt}$$
.

Myopic Portfolio

$$U_{k\,t}(x) = \sup_{\pi} E_t [u_k(W_{kT}) | W_{kt} = x]$$

denotes the value function of agent k;

$$\gamma_{kt} = -\frac{x \, U_{kt}''(W_t)}{U_{kt}'(W_t)}.$$

denotes the effective relative risk aversion of agent k at time t;

Define myopic portfolio as

$$\pi_{kt}^{\text{myopic}} \stackrel{def}{=} \frac{\lambda_t}{\gamma_{kt} \, \sigma_t^S} \, .$$

Hedging Portfolio

We will denote

$$\pi_{kt}^{\text{hedging}} = \pi_{kt} - \pi_{kt}^{\text{myopic}}$$

$$\lambda(t, \tau) \stackrel{\text{def}}{=} e^{-\int_{t}^{\tau} c(D_{s}) ds} \lambda_{\tau}$$

Theorem We have

$$\pi_{kt}^{\text{hedging}} = -\frac{1}{\sigma_t^S W_{kt}} \operatorname{Cov}_t^Q (\lambda(t, T), W_{kT} - R(W_{kT}))$$

$$\pi_{kt}^{\text{myopic}} W_{kt} \stackrel{\text{def}}{=} \frac{\lambda_t}{\sigma_t^S} R_{kt} = \frac{\lambda_t}{\sigma_t^S} E_t^Q [R_{kT}].$$

where $R(x) = x/\gamma(x)$ is absolute risk tolerance.

The Sign of the Hedging Portfolio

$$P_k(x) := -\frac{u'''(x)}{u''(x)}, r_k(x) := x\gamma_k^{-1}(x)$$

denote the absolute prudence and absolute risk tolerance of agent k.

Proposition

• If $\gamma^U(x) \, \sigma^D(x)$ is decreasing and c is procyclical, then

$$\pi_{kt}^{\text{hedging}} \geq 0$$
 $if \sup_{x} (P_k(x) R_k(x)) \leq 2$

$$\pi_{kt}^{\text{hedging}} \leq 0 if \inf_{x} (P_k(x) R_k(x)) \geq 2$$
(4)

Reason why:

$$\frac{d}{dx}R_k(x) = -1 + P_k(x)R_k(x).$$

Increasing Relative Risk Aversion

Corollary Suppose that $\gamma_k(x) \geq 1$ and is increasing. Then,

 \blacktriangleright if $\gamma^U(x)\,\sigma^D(x)$ is decreasing and c is procyclical, then

$$\pi_{kt}^{\text{hedging}} \ge 0;$$
(5)

 \blacktriangleright if $\gamma^U(x)\,\sigma^D(x)$ is increasing and c is countercyclical, then

$$\pi_{kt}^{\text{hedging}} \leq 0.$$
(6)

Constant Relative Risk Aversion

Corollary Suppose that $\gamma_k = \text{const.}$ Then,

(1) if $\gamma^U(x) \, \sigma^D(x)$ is decreasing and c is procyclical, then

$$\pi_{kt}^{\text{hedging}} \geq 0 \quad \text{if } \gamma_k \geq 1$$

$$\pi_{kt}^{\text{hedging}} \leq 0 \quad \text{if } \gamma_k \leq 1;$$
(7)

(2) if $\gamma^U(x) \sigma^D(x)$ is increasing and c is countercyclical, then

$$\pi_{kt}^{\text{hedging}} \geq 0 \quad \text{if } \gamma_k \leq 1$$

$$\pi_{kt}^{\text{hedging}} \leq 0 \quad \text{if } \gamma_k \geq 1.$$
(8)

Conclusions I.

- ▶ the market price of risk is determined by the aggregate (relative) risk aversion multiplied by dividend volatility discounted at the rate we call the "rate of macroeconomic fluctuations";
- the stock price volatility = excess component + fundamental component. The fundamental component is given by the market value of discounted dividend volatility, myopic volatility;
- excess volatility is given by a volatility risk premium, whose sign is determined by the co-movement of the dividend with the market price of risk;

Conclusions II.

- excess volatility is positive when risk aversion and discounted volatility are counter-cyclical;
- the non-myopic (hedging) component of an agent's portfolio is given by a portfolio risk premium, whose sign is determined by the co-movement of agent's wealth and risk tolerance with the market price of risk;
- when market price of risk is counter-cyclical, hedging component is positive for CRRA agents with $\gamma \geq 1$.

Survival of CRRA agents

Theorem The agent 0 whose risk aversion is closest to 1 dominates in the long run:

$$\lim_{T \to \infty} \frac{W_{kT}}{W_{0T}} = 0$$

for all $k \neq 0$.

Relative Extinction

Definition (KRWW (2006)): agent i experiences extinction relative to agent j if

$$\lim_{t \to \infty} \frac{W_{iT}}{W_{jT}} = 0$$

Theorem. Even if agent i experiences extinction relative to agent j, adding a third agent k to the economy may reverse the situation and force the agent j to experience extinction relative to agent i.

Global Bounds for the Price

Proposition

$$e^{r(t-T)} \frac{E_t[D^{1-\gamma_{\max}}]}{E_t[D^{-\gamma_{\max}}]} \le S_t \le e^{r(t-T)} \frac{E_t[D^{1-\gamma_{\min}}]}{E_t[D^{-\gamma_{\min}}]}$$

Related to:

- bubbles and crashes (Cao and Ou-Yang (2005));
- ▶ Harrison and Kreps (1978).

Large population limit

Assumption. Risk aversions densely cover an interval $[1, \Gamma]$.

Long run dynamics

Definition. Given a random process X_t , $t \in [0, T]$, we define

$$X(\lambda) = \lim_{T \to \infty} X_{\lambda T}$$

for $\lambda \in (0,1)$.

Long run drift and volatility

Theorem

$$\mu(\lambda) = \begin{cases} r + (1 + \lambda^{-1})^2 \sigma^2, & \lambda \ge (\Gamma - 1)^{-1} \\ r + \Gamma^2 \sigma^2, & \lambda < (\Gamma - 1)^{-1} \end{cases}$$

and

$$\sigma(\lambda) = \begin{cases} \sigma(1 + \lambda^{-1}), & \lambda \geq (\Gamma - 1)^{-1} \\ \sigma\Gamma, & \lambda < (\Gamma - 1)^{-1} \end{cases}$$

(9)

The special role of risk aversion two

If $\Gamma \geq 2$ then, for $t \approx T$, volatility is two times larger,

$$\sigma_t \approx 2\sigma$$
.

The market price of risk

$$\frac{\mu_t - r}{\sigma_t} \approx 2 \sigma$$

is determined by the agent with risk aversion 2 and not by the log agent!

Volatility and MPR are Decreasing

Corollary In the limit $T \to \infty$, the instantaneous drift, the volatility and the market price of risk of the stock are monotone decreasing in $t = \lambda T$.

Long run myopic portfolios

Proposition

$$\pi_{\gamma}^{\text{myopic}}(\lambda) = \frac{1}{\gamma}$$

is independent of λ .

Long run hedging portfolios

Theorem. We have

• if $\lambda > (\Gamma - 1)^{-1}$ then

$$\pi_{\gamma}(\lambda) = \gamma^{-1} + \frac{\gamma - 1}{(\lambda + 1)\gamma(1 + \lambda(\gamma - 1))};$$

• if $\lambda < (\Gamma - 1)^{-1}$ then

$$\pi_{\gamma}(\lambda) = \gamma^{-1} + (\gamma - 1) \frac{(\Gamma - 1)(1 + \lambda(\gamma - 1)) - (\gamma - 1)}{\Gamma \gamma(1 + \lambda(\gamma - 1))}.$$

Monotonicity properties

Proposition. Let $\lambda > (\Gamma - 1)^{-1}$. Then,

▶ the hedging portfolio

$$\pi_{\gamma}^{\text{hedging}}(\lambda)$$

is monotone decreasing in λ for each fixed γ ;

• for each fixed λ , $\pi_{\gamma}^{\mathrm{hedging}}(\lambda)$ is monotone increasing in γ for

$$\gamma < 1 + \lambda^{-1/2}$$

and is monotone decreasing for $\gamma > 1 + \lambda^{-1/2}$.

Conclusions

- ▶ With more then two agents, agents impact relative extinction of each other;
- Long run volatility is two times larger than dividend volatility and the long run market price of risk is determined by the agent with risk aversion two;
- ► Hedging demand never vanishes and may exhibit unexpected patterns in terms of risk aversion;
- ▶ Close to t = T, agent with risk aversion **two** has the highest hedging demand.

Intertemporal Consumption

Joint with **E. Jouini** and **C. Napp**.

Heterogeneous beliefs, and CRRA agents:

$$dD_t = \mu_i D_t dt + \sigma D_t dW_t^i$$

$$E^{P^{i}}\left[\int_{0}^{\infty}e^{-\rho_{i}t}u_{i}\left(c_{t}\right)dt\right]$$

Denote $\delta_i = (\mu_i - \mu)/\sigma$ and introduce Survival Index:

$$-\rho_i - \gamma_i(\mu_i - \frac{\sigma^2}{2}) - \frac{1}{2}\delta_i^2$$

Results: SDF and market price of risk

- In the long run, SDF is determined by the agent with highest survival index, who also dominates in terms of consumption shares.
- In very bad (good) states the SDF is determined by the agent associated with the highest (lowest) market price of risk, who also dominates in terms of consumption shares.
- Market price of risk is a (moving) weighted average of "individual" market prices of risk. This is not the case for the short rate. Asymptotics are as above.
- Market price of risk is always decreasing in aggregate wealth.

Results: short rate and volatility

- The short rate converges to the one corresponding to the highest survival index, while the long-term yield converges to the lowest individual short rate. At other horizons, other agents determine the asymptotic driving marginal discount rate, in accordance with Preferred Habitat Theory.
- Even in the long-run, the price of an asset is not necessarily equal to the price corresponding to the highest survival index.
- The stock volatility is given by

$$\sigma_{S}(t) = \sigma + \frac{E_{t} \left[\int_{t}^{\infty} (\theta_{t} - \theta_{\tau}) M_{\tau} D_{\tau} d\tau \right]}{E_{t} \left[\int_{t}^{\infty} M_{\tau} D_{\tau} d\tau \right]}.$$

converges to σ , and satisfies

$$\sigma + \min_{i} \theta_{i} - \max_{i} \theta_{i} \leq \sigma_{t}^{S} \leq \sigma + \max_{i} \theta_{i} - \min_{i} \theta_{i}$$

- The asymptotic stock price long run return rate is not necessarily equal to the one corresponding to the surviving agent.

Results: Optimal portfolios

The optimal portfolio is given by, with $b_i = 1/\gamma_i$,

$$\sigma_t \pi_{it} = \theta_t + \frac{E_t \left[\int_t^{\infty} (b_i \delta_i + (b_i - 1)\theta_{\tau}) M_{\tau} c_{i\tau} d\tau \right]}{E_t \left[\int_t^{\infty} M_{\tau} c_{i\tau} d\tau \right]}$$

In particular,

$$\min_{j} \theta_{j} + \min_{j} (b_{i}\delta_{i} + (b_{i} - 1)\theta_{j}) \leq \sigma_{t}\pi_{it} \leq \max_{j} \theta_{j} + \max_{j} (b_{i}\delta_{i} + (b_{i} - 1)\theta_{j})$$

If we further assume that $\gamma_i > 1$, for all i, then, with I_K being the highest survival index,

$$\lim_{t \to \infty} \pi_{it} = \frac{\delta_i + \theta_{I_K}}{\sigma \gamma_i}.$$

Thank you for your patience :))