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Benchmark Case: One Agent

I CRRA representative agent with risk aversion γ;

I dividend following a geometric Brownian motion with volatility σD;

I then, the market price of risk is given by λ = γσD;

I the stock price volatility is σS = σD;

I the optimal portfolio is myopic, equal to λ
σSγ

.
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Heterogeneous Preferences

I Dumas (1989)

I Wang (1993, 1996)

I Detemple and Murthy (1997)

I Kogan, Ross, Wang and Westerfield (2006), (2008)

I Berrada, Hugonnier and Rindisbacher (2007)

I Berrada (2008)

I Jouini and Napp (2007)

I Yan (2008)

I Bhamra and Uppal (2009)

I Weinbaum (?)
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The model

I risk-free asset with r = 0

I one stock with terminal dividend DT , such that

D−1
t dDt = µD(Dt) dt + σD(Dt) dBt ;

I K agents, agent k is initially endowed with ψk > 0 shares of stock;

I agent k chooses πk t, the portfolio weight at time t in the risky asset,
as to maximize the expected utility

E [uk(Wk T )]

Cvitanic, Malamud Complete Market Equilibrium with Heterogeneous Agents 4



Equilibrium

I optimal terminal wealth

Wk T = Ik(ykM) where I = (u′)−1

with
E[Ik(ykM)M ] = Wk 0 = ψk S0 = ψk E[DM ].

I equilibrium SDF M solves

K∑
k=1

Ik(ykM) = D ;

I Q is the equilibrium risk neutral measure,

EQ
t [X] =

Et[MX]

Et[M ]
.
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Representative Agent’s Utility U

I Equilibrium SDF has to satisfy

M = U ′(D) ; (1)

I aggregate risk aversion is

γU (x) := −xU
′′(x)

U ′(x)
.
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Rate of Macroeconomic Fluctuations

I

F (x)
def
=

∫ x

x0

1

y σD(y)
dy .

Then, for At = F (Dt) we have

dAt = −C(At) dt + dBt

I We call c(Dt) = C ′(At) the rate of macroeconomic fluctuations.

I Can be shown

c(x) = −x (µD)′(x) + x (σD)′(x)σD(x)−1 µD(x)

+ (σD)′(x)σD(x)x + 0.5 (σD)′′(x)x2 σD(x) (2)
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Properties of the Rate of Macroeconomic
Fluctuations

Proposition

I if Dt = g(D̃t) then

cD(g(x)) = cD̃(x).

I c(Dt) ≡ b is constant if and only if there exists a one-to-one function
g such that Dt = g(At) where

dAt = (a− bAt) dt + σAdBt.
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Equilibrium Market Price of Risk

Theorem

λt =
µSt − r

σSt

is given by

λt = EQ
t

[
γU (D)σD(D) e−

∫ T
t c(Ds) ds

]
.

Corollary Under the equilibrium risk neutral measure, the drift of the
equilibrium market price of risk is always equal to c(Dt).
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Discounted Volatility

I We denote by

σD(t, T )
def
= e−

∫ T
t c(Ds) ds σD(DT )

the discounted volatility.

I The market value of discounted volatility is defined as

σmyopic
t := EQ

t

[
σD(t , T )

]
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Risk Aversion and Market Price of Risk

Let
γinfk , γsupk

denote the infinum and supremum of the relative risk aversion of agent k,

Proposition The equilibrium market price of risk satisfies

min
k

γinfk ≤ λt

σmyopic
t

≤ max
k

γsupk .

Special case: CRRA agents, lognormal dividend: σmyopic
t ≡ σ
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Cyclicality of the Market Price of Risk

Proposition We have

I if γU (x)σD(x) is countercyclical and c(Dt) is procyclical, then λt is
countercyclical;

I if γU (x)σD(x) is increasing and c(Dt) is countercyclical, then λt
procyclical.
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Equilibrium Stock Volatility

Theorem The equilibrium stock price volatility is given by

σSt = σmyopic
t +

1

EQ
t [D]

CovQt
(
[1− γU (D)]σD(t , T ) , D

)
. (3)

Furthermore, St is always procyclical and σ
S
t > 0 almost surely.

With constant γU , σD, c = b,

σS = e−b(T−t)σD
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Excess Volatility

Proposition

I if the relative risk aversion γU (x) ≥ 1 is decreasing, the volatility
σD(D) is countercyclical and the rate c(Ds) is procyclical, then

σSt ≥ σmyopic
t .

I if the relative risk aversion γU ≥ 1 is increasing, the volatility
σD(D) is procyclical and the rate c(Ds) is counter-cyclical, then

σSt ≤ σmyopic
t .
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Example: The Gaussian Case

d log(Dt) = (a− b log(Dt))dt + σ dBt.

In that case, σD = σ, c = b,

Proposition Suppose that γU is decreasing. Then,

I market price of risk is counter-cyclical and satisfies

min
k

γinfk ≤ λt

eb(t−T ) σ
≤ max

k
γsupk ;

I price volatility is larger than the discounted (or, appreciated, if b < 0)
volatility,

σSt > eb (t−T ) σD .

Special case: CRRA agents, b = 0: σ ≤ σSt ≤ σ(1 + max γk −min γk).
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Risk-Return Tradeoff

λt

σSt
= γ

σmyopic
t

σmyopic
t + σnonmyopic

t

.

Prediction: variation of the risk-return tradeoff is explained by
fluctuations in non-myopic (excess) volatility
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Optimal Portfolios and the Log-Optimal Portfolio

Log-optimal portfolio is

πlog t =
λt

σSt
.

Proposition If γk(x) ≥ 1 for all x, then

πkt ≤ πlog t

and the inequality reverses if, for all x, γk(x) ≤ 1.
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Monotonicity in Risk Aversion

Definition (Ross (1981)) Agent k is more risk averse than agent j in the
sense of Ross if

inf
x
γk(x) ≥ sup

x
γj(x).

In this case we write γk ≥R γj .

Proposition

I suppose that γU (x)σD(x) is decreasing and c is procyclical. Then,
γk ≥R γj ≥ 1 implies

πkt ≤ πjt ;

I suppose that γU (x)σD(x) is increasing and c is countercyclical.
Then, 1 ≥ γk ≥R γj implies

πkt ≤ πjt .
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Myopic Portfolio

I

Uk t(x) = sup
π

Et [uk(WkT ) |Wkt = x ]

denotes the value function of agent k;

I

γk t = −
xU ′′

k t(Wt)

U ′
k t(Wt)

.

denotes the effective relative risk aversion of agent k at time t;

I Define myopic portfolio as

πmyopic
k t

def
=

λt

γk t σ
S
t

.
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Hedging Portfolio

We will denote
πhedgingk t = πk t − πmyopic

k t

λ(t , τ)
def
= e−

∫ τ
t c(Ds) ds λτ

Theorem We have

πhedgingk t = − 1

σSt Wk t
CovQt (λ(t, T ) , WkT − R(WkT ) )

πmyopic
k t Wkt

def
=

λt

σSt
Rkt =

λt

σSt
EQ

t [RkT ] .

where R(x) = x/γ(x) is absolute risk tolerance.
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The Sign of the Hedging Portfolio

Pk(x) := − u′′′(x)

u′′(x)
, rk(x) := xγ−1

k (x)

denote the absolute prudence and absolute risk tolerance of agent k.

Proposition

I If γU (x)σD(x) is decreasing and c is procyclical, then

πhedgingkt ≥ 0 if sup
x

(Pk(x)Rk(x)) ≤ 2

πhedgingkt ≤ 0 if inf
x
(Pk(x)Rk(x)) ≥ 2

(4)

Reason why:

I
d

dx
Rk(x) = −1 + Pk(x)Rk(x).
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Increasing Relative Risk Aversion

Corollary Suppose that γk(x) ≥ 1 and is increasing. Then,

I if γU (x)σD(x) is decreasing and c is procyclical, then

πhedgingkt ≥ 0 ; (5)

I if γU (x)σD(x) is increasing and c is countercyclical, then

πhedgingkt ≤ 0 . (6)
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Constant Relative Risk Aversion

Corollary Suppose that γk = const. Then,

(1) if γU (x)σD(x) is decreasing and c is procyclical, then

πhedgingkt ≥ 0 if γk ≥ 1

πhedgingkt ≤ 0 if γk ≤ 1 ;
(7)

(2) if γU (x)σD(x) is increasing and c is countercyclical, then

πhedgingkt ≥ 0 if γk ≤ 1

πhedgingkt ≤ 0 if γk ≥ 1 .
(8)
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Conclusions I.

I the market price of risk is determined by the aggregate (relative) risk
aversion multiplied by dividend volatility discounted at the rate we
call the “rate of macroeconomic fluctuations”;

I the stock price volatility = excess component + fundamental
component. The fundamental component is given by the market
value of discounted dividend volatility, myopic volatility;

I excess volatility is given by a volatility risk premium, whose sign is
determined by the co-movement of the dividend with the market price
of risk;
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Conclusions II.

I excess volatility is positive when risk aversion and discounted volatility
are counter-cyclical;

I the non-myopic (hedging) component of an agent’s portfolio is given
by a portfolio risk premium, whose sign is determined by the
co-movement of agent’s wealth and risk tolerance with the market
price of risk;

I when market price of risk is counter-cyclical, hedging component is
positive for CRRA agents with γ ≥ 1.
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Survival of CRRA agents

Theorem The agent 0 whose risk aversion is closest to 1 dominates in the
long run:

lim
T→∞

WkT

W0T
= 0

for all k ̸= 0.
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Relative Extinction

Definition (KRWW (2006)): agent i experiences extinction relative to
agent j if

lim
t→∞

WiT

WjT
= 0

Theorem. Even if agent i experiences extinction relative to agent j,
adding a third agent k to the economy may reverse the situation and force
the agent j to experience extinction relative to agent i.
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Global Bounds for the Price

Proposition

er(t−T ) Et[D
1−γmax ]

Et[D−γmax ]
≤ St ≤ er(t−T ) Et[D

1−γmin ]

Et[D−γmin ]

Related to:

I bubbles and crashes (Cao and Ou-Yang (2005));

I Harrison and Kreps (1978).
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Large population limit

Assumption. Risk aversions densely cover an interval [1,Γ].
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Long run dynamics

Definition. Given a random process Xt , t ∈ [0 , T ] , we define

X(λ) = lim
T→∞

XλT

for λ ∈ (0, 1).
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Long run drift and volatility

Theorem

µ(λ) =

{
r + (1 + λ−1)2 σ2 , λ ≥ (Γ− 1)−1

r + Γ2 σ2 , λ < (Γ− 1)−1

and

σ(λ) =

{
σ (1 + λ−1) , λ ≥ (Γ− 1)−1

σ Γ , λ < (Γ− 1)−1

(9)
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The special role of risk aversion two

If Γ ≥ 2 then, for t ≈ T , volatility is two times larger,

σt ≈ 2σ .

The market price of risk
µt − r

σt
≈ 2σ

is determined by the agent with risk aversion 2
and not by the log agent!
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Volatility and MPR are Decreasing

Corollary In the limit T → ∞, the instantaneous drift, the volatility and
the market price of risk of the stock are monotone decreasing in t = λT.
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Long run myopic portfolios

Proposition

πmyopic
γ (λ) =

1

γ

is independent of λ.
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Long run hedging portfolios

Theorem. We have

I if λ > (Γ− 1)−1 then

πγ(λ) = γ−1 +
γ − 1

(λ+ 1) γ (1 + λ (γ − 1))
;

I if λ < (Γ− 1)−1 then

πγ(λ) = γ−1 + (γ−1)
(Γ− 1) (1 + λ (γ − 1)) − (γ − 1)

Γ γ (1 + λ (γ − 1))
.
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Monotonicity properties

Proposition. Let λ > (Γ− 1)−1 . Then,

I the hedging portfolio
πhedgingγ (λ)

is monotone decreasing in λ for each fixed γ;

I for each fixed λ, πhedgingγ (λ) is monotone increasing in γ for

γ < 1 + λ−1/2

and is monotone decreasing for γ > 1 + λ−1/2.
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Conclusions

I With more then two agents, agents impact relative extinction of each
other;

I Long run volatility is two times larger than dividend volatility and the
long run market price of risk is determined by the agent with risk
aversion two;

I Hedging demand never vanishes and may exhibit unexpected patterns
in terms of risk aversion;

I Close to t = T , agent with risk aversion two has the highest hedging
demand.
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Intertemporal Consumption

Joint with E. Jouini and C. Napp.
Heterogeneous beliefs, and CRRA agents:

dDt = µiDtdt+ σDtdW
i
t

EP i

[∫ ∞

0
e−ρitui (ct) dt

]
Denote δi = (µi − µ)/σ and introduce Survival Index:

−ρi − γi(µi −
σ2

2
)− 1

2
δ2i
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Results: SDF and market price of risk

- In the long run, SDF is determined by the agent with highest survival
index, who also dominates in terms of consumption shares.
- In very bad (good) states the SDF is determined by the agent associated
with the highest (lowest) market price of risk, who also dominates in terms
of consumption shares.
- Market price of risk is a (moving) weighted average of “individual”
market prices of risk. This is not the case for the short rate. Asymptotics
are as above.
- Market price of risk is always decreasing in aggregate wealth.
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Results: short rate and volatility
- The short rate converges to the one corresponding to the highest survival
index, while the long-term yield converges to the lowest individual short
rate. At other horizons, other agents determine the asymptotic driving
marginal discount rate, in accordance with Preferred Habitat Theory.
- Even in the long-run, the price of an asset is not necessarily equal to the
price corresponding to the highest survival index.
- The stock volatility is given by

σS (t) = σ +
Et

[∫∞
t (θt − θτ )MτDτdτ

]
Et

[∫∞
t MτDτ dτ

] .

converges to σ, and satisfies

σ +min
i
θi −max

i
θi ≤ σSt ≤ σ +max

i
θi −min

i
θi

- The asymptotic stock price long run return rate is not necessarily equal
to the one corresponding to the surviving agent.
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Results: Optimal portfolios

The optimal portfolio is given by, with bi = 1/γi,

σtπit = θt +
Et

[∫∞
t (biδi + (bi − 1)θτ )Mτciτdτ

]
Et

[∫∞
t Mτ ciτdτ

]
In particular,

min
j
θj +min

j
(biδi + (bi − 1)θj) ≤ σtπit ≤ max

j
θj +max

j
(biδi + (bi − 1)θj)

If we further assume that γi > 1, for all i, then, with IK being the highest
survival index,

lim
t→∞

πit =
δi + θIK
σγi

.
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Thank you for your patience
:))
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