Equilibrium Pricing in Incomplete Markets under Translation Invariant Preferences

Patrick Cheridito

ORFE, Princeton University
joint with Ulrich Horst, Michael Kupper, Traian Pirvu

Outline

1. Convex duality in a discrete-time framework
2. $B S \triangle E s$ with random walk noise
3. BSDEs in the continuous-time limit

Ingredients

- filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t=0}^{T}, \mathbb{P}\right)$
- a group of finitely many agents \mathbb{A}
- agent $a \in \mathbb{A}$ is endowed with an uncertain payoff $H^{a} \in L^{\infty}\left(\mathcal{F}_{T}\right)$
- liquid asset $\left(S_{t}\right)_{t=0}^{T}$ satisfying (NA)
- structured product in net supply n with final payoff $R \in L^{\infty}\left(\mathcal{F}_{T}\right)$
- at time t agent a invests in such a way so as to optimize a preference functional

$$
U_{t}^{a}: L^{\infty}\left(\mathcal{F}_{T}\right) \rightarrow L^{\infty}\left(\mathcal{F}_{t}\right)
$$

We assume U_{t}^{a} satisfies the following properties:
(N) Normalization $U_{t}^{a}(0)=0$
(M) Monotonicity
$U_{t}^{a}(X) \geq U_{t}^{a}(Y)$ for all $X, Y \in L^{\infty}\left(\mathcal{F}_{T}\right)$ such that $X \geq Y$
(T) Translation property
$U_{t}^{a}(X+Y)=U_{t}^{a}(X)+Y$ for all $X \in L^{\infty}\left(\mathcal{F}_{T}\right)$ and $Y \in L^{\infty}\left(\mathcal{F}_{t}\right)$
(C) \mathcal{F}_{t}-Concavity
$U_{t}^{a}(\lambda X+(1-\lambda) Y) \geq \lambda U_{t}^{a}(X)+(1-\lambda) U_{t}^{a}(Y)$
for all $X, Y \in L^{\infty}\left(\mathcal{F}_{T}\right)$ and $\lambda \in L^{\infty}\left(\mathcal{F}_{t}\right)$ such that $0 \leq \lambda \leq 1$
(TC) Time-consistency $U_{t+1}^{a}(X) \geq U_{t+1}^{a}(Y)$ implies $\quad U_{t}^{a}(X) \geq U_{t}^{a}(Y)$

$$
\Leftrightarrow \quad U_{t}^{a}(X)=U_{t}^{a}\left(U_{t+1}^{a}(X)\right)
$$

Examples

1) $U_{t}^{a}(X)=-\frac{1}{\gamma} \log E\left[e^{-\gamma X} \mid \mathcal{F}_{t}\right]$
2) $U_{t}^{a}(X)=(1-\lambda) \mathrm{E}\left[X \mid \mathcal{F}_{t}\right]-\lambda \mathrm{E}\left[\left(X-\mathrm{E}\left[X \mid \mathcal{F}_{t}\right]\right)^{2} \mid \mathcal{F}_{t}\right]$
3) $U_{t}^{a}(X)=(1-\lambda) E\left[X \mid \mathcal{F}_{t}\right]-\lambda \rho_{t}(X)$
where ρ_{t} is a conditional convex risk measure

Definition of equilibrium

An equilibrium consists of an adapted process $\left(R_{t}\right)_{t=0}^{T}$ satisfying the terminal condition $R_{T}=R$ together with trading strategies $\left(\widehat{\vartheta}_{t}^{a}\right)_{t=1}^{T}$ such that the following conditions hold:
(i) individual optimality

$$
\begin{aligned}
& U_{t}^{a}\left(H^{a}+\sum_{s=1}^{T} \widehat{\vartheta}_{s}^{a, 1} \Delta S_{s}+\widehat{\vartheta}_{s}^{a, 2} \Delta R_{s}\right) \\
\geq & U_{t}^{a}\left(H^{a}+\sum_{s=1}^{t} \widehat{\vartheta}_{s}^{a, 1} \Delta S_{s}+\widehat{\vartheta}_{s}^{a, 2} \Delta R_{s}+\sum_{s=t+1}^{T} \vartheta_{s}^{a, 2} \Delta S_{s}+\vartheta_{s}^{a, 2} \Delta R_{s}\right)
\end{aligned}
$$

for every t and all possible strategies $\left(\vartheta_{s}^{a}\right)$
(ii) market clearing $\quad \sum_{a \in \mathbb{A}} \widehat{\vartheta}_{t}^{a, 2}=n$

The "representative agent"

Set $H_{T}^{a}=H^{a}$ and $H_{t+1}^{a}=U_{t+1}^{a}\left(H^{a}+\sum_{s=t+2}^{T} \widehat{\vartheta}_{s}^{a, 1} \Delta S_{s}+\widehat{\vartheta}_{s}^{a, 2} \Delta R_{s}\right)$
would like to define the representative agent by

$$
\begin{aligned}
& \quad \text { esssup } \\
& \vartheta^{a} \in L^{\infty}\left(\mathcal{F}_{t}\right)^{2} \\
& \sum_{a \in \mathbb{A}} \vartheta^{a, 2}=n
\end{aligned} \sum_{a \in \mathbb{A}} U_{t}^{a}\left(\frac{X}{|\mathbb{A}|}+H_{t+1}^{a}+\vartheta^{a, 1} \Delta S_{t+1}+\vartheta^{a, 2} \Delta R_{t+1}\right)
$$

The "representative agent"

Set $H_{T}^{a}=H^{a}$ and $H_{t+1}^{a}=U_{t+1}^{a}\left(H^{a}+\sum_{s=t+2}^{T} \widehat{\vartheta}_{s}^{a, 1} \Delta S_{s}+\widehat{\vartheta}_{s}^{a, 2} \Delta R_{s}\right)$
would like to define the representative agent by

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { esssup } \\
\vartheta^{a} \in L^{\infty}\left(\mathcal{F}_{t}\right)^{2} \\
\sum_{a \in \mathbb{A}} \vartheta^{a, 2}=n
\end{array} \sum_{a \in \mathbb{A}} U_{t}^{a}\left(\frac{X}{|\mathbb{A}|}+H_{t+1}^{a}+\vartheta^{a, 1} \Delta S_{t+1}+\vartheta^{a, 2} \Delta R_{t+1}\right) \\
&
\end{aligned}
$$

But R_{t} is not known yet.

The "representative agent"

Set $H_{T}^{a}=H^{a}$ and $H_{t+1}^{a}=U_{t+1}^{a}\left(H^{a}+\sum_{s=t+2}^{T} \widehat{\vartheta}_{s}^{a, 1} \Delta S_{s}+\widehat{\vartheta}_{s}^{a, 2} \Delta R_{s}\right)$
would like to define the representative agent by

$$
\begin{aligned}
& \quad \begin{array}{l}
\vartheta^{a} \in L^{\infty}\left(\mathcal{F}_{t}\right)^{2} \\
\sum_{a \in \mathbb{A}} \vartheta^{a, 2}=n
\end{array} \\
& \sum_{a \in \mathbb{A}} U_{t}^{a}\left(\frac{X}{|\mathbb{A}|}+H_{t+1}^{a}+\vartheta^{a, 1} \Delta S_{t+1}+\vartheta^{a, 2} \Delta R_{t+1}\right) \\
&
\end{aligned}
$$

But R_{t} is not known yet. So define

$$
\begin{aligned}
\hat{U}_{t}(X):= & \operatorname{vsssup}^{\operatorname{ess} \sup } \sum^{\infty}\left(\mathcal{F}_{t}\right)^{2} \\
& \sum_{a \in \mathbb{A}} U_{t}^{a}\left(\frac{X}{|\mathbb{A}|}+H_{t+1}^{a}+\vartheta^{a, 1} \Delta S_{t+1}+\vartheta^{a, 2} R_{t+1}\right) \\
& \sum_{a \in \mathbb{A}} \vartheta^{a, 2}=0
\end{aligned}
$$

and

$$
\widehat{u}_{t}(x):=\hat{U}_{t}\left(x R_{t+1}\right), \quad x \in L^{\infty}\left(\mathcal{F}_{t}\right) .
$$

\hat{U}_{t} and \widehat{u}_{t} are \mathcal{F}_{t}-concave

For the static case, see:

Jouini, Schachermayer and Touzi (2008)
Filipovic and Kupper (2008)

Convex dual characterization of equilibrium

Theorem A bounded, adapted process $\left(R_{t}\right)_{t=0}^{T}$ satisfying
$R_{T}=R$ together with trading strategies $\left(\hat{\vartheta}_{t}^{a}\right)_{t=1}^{T}, a \in \mathbb{A}$, form an equilibrium \Longleftrightarrow for all t :
(i) $R_{t} \in \partial \widehat{u}_{t}(n)$
(ii) $\sum_{a \in \mathbb{A}} U_{t}^{a}\left(H_{t+1}^{a}+\widehat{\vartheta}_{t+1}^{a, 1} \Delta S_{t+1}+\widehat{\vartheta}_{t+1}^{a, 2} R_{t+1}\right)=\widehat{u}_{t}(n)$
(iii) $\sum_{a \in \mathbb{A}} \widehat{\vartheta}_{t+1}^{a, 2}=n$

Existence of equilibrium

Assumption (A)

For all $t=0, \ldots, T-1, V^{a} \in L^{\infty}\left(\mathcal{F}_{t+1}\right), W \in L^{\infty}\left(\mathcal{F}_{t+1}\right)$,
there exist $\widehat{\vartheta}_{t+1}^{a} \in L^{\infty}\left(\mathcal{F}_{t}\right)^{2}, a \in \mathbb{A}$, such that

$$
\sum_{a \in \mathbb{A}} \widehat{\vartheta}_{t+1}^{a, 2}=0
$$

and

$$
=\begin{aligned}
& \sum_{a \in \mathbb{A}} U_{t}^{a}\left(V^{a}+\widehat{\vartheta}_{t+1}^{a, 1} \Delta S_{t+1}+\widehat{\vartheta}_{t+1}^{a, 2} W\right) \\
& \vartheta_{t+1}^{a} \in L^{\infty}\left(\mathcal{F}_{t}\right)^{2} \sum_{a \in \mathbb{A}} U_{t}^{a}\left(V^{a}+\vartheta_{t+1}^{a, 1} \Delta S_{t+1}+\vartheta_{t+1}^{a, 2} W\right) . \\
& \sum_{a \in \mathbb{A}} \vartheta_{t+1}^{a, 2}=0
\end{aligned}
$$

Theorem Under assumption (A) an equilibrium exists

Definition

U_{0}^{a} is sensitive to large losses if

$$
\lim _{\lambda \rightarrow \infty} U_{0}^{a}(\lambda X)=-\infty
$$

for all $X \in L^{\infty}\left(\mathcal{F}_{T}\right)$ such that $\mathbb{P}[X<0]>0$.

Theorem

If all U_{0}^{a} are sensitive to large losses, then condition (A) is satisfied and an equilibrium exists.

Idea of the proof

Consider two agents a and b in a one time-step model

$$
\text { Assume } S_{0}=S_{1}=H_{1}^{a}=H_{1}^{b}=0
$$

Consider the convolution

$$
\begin{aligned}
& \sup _{\vartheta \in \mathbb{R}} U^{a}\left(\vartheta R_{1}\right)+U^{b}\left(-\vartheta R_{1}\right) \\
= & \sup _{\vartheta \in \mathbb{R}} U^{a}\left(\vartheta\left(R_{1}-\mathrm{E}\left[R_{1}\right]\right)\right)+U^{b}\left(-\vartheta\left(R_{1}-\mathrm{E}\left[R_{1}\right]\right)\right)
\end{aligned}
$$

Under sensitivity to large losses it will be attained for some $\widehat{\vartheta}$.

Differentiable preferences

We say that U_{t}^{a} satisfies the differentiability condition (D) if for all $X, Y \in L^{\infty}\left(\mathcal{F}_{t+1}\right)$, there exists $Z \in L^{1}\left(\mathcal{F}_{t+1}\right)$ such that

$$
\lim _{k \rightarrow \infty} k\left(U_{t}^{a}\left(X+\frac{Y}{k}\right)-U_{t}^{a}(X)\right)=\mathrm{E}\left[Y Z \mid \mathcal{F}_{t}\right]
$$

If such a Z exists, it has to be unique, and we denote it by $\nabla U_{t}^{a}(X)$.

Differentiable preferences

We say that U_{t}^{a} satisfies the differentiability condition (D) if for all $X, Y \in L^{\infty}\left(\mathcal{F}_{t+1}\right)$, there exists $Z \in L^{1}\left(\mathcal{F}_{t+1}\right)$ such that

$$
\lim _{k \rightarrow \infty} k\left(U_{t}^{a}\left(X+\frac{Y}{k}\right)-U_{t}^{a}(X)\right)=\mathrm{E}\left[Y Z \mid \mathcal{F}_{t}\right]
$$

If such a Z exists, it has to be unique, and we denote it by $\nabla U_{t}^{a}(X)$.
Theorem Assume all U_{t}^{a} satisfy (D). Then there can exist at most one equilibrium price process $\left(R_{t}\right)_{t=0}^{T}$, and if the market is in equilibrium, then \hat{U}_{t} satisfies (D) at $X=n R_{t+1}$ with

$$
\nabla \hat{U}_{t}\left(n R_{t+1}\right)=\frac{1}{|\mathbb{A}|} \sum_{a \in \mathbb{A}} \nabla U_{t}^{a}\left(H_{t+1}^{a}+\widehat{\vartheta}_{t+1}^{a, 1} \Delta S_{t+1}+\widehat{\vartheta}_{t+1}^{a, 2} R_{t+1}\right),
$$

and

$$
\frac{d \mathbb{Q}}{d \mathbb{P}}=\prod_{t=1}^{T} \nabla \hat{U}_{t}\left(n R_{t+1}\right)
$$

defines probability measure on $(\Omega, \mathcal{F}, \mathbb{P})$ such that

$$
S_{t}=\mathrm{E}_{\mathbb{Q}}\left[S_{T} \mid \mathcal{F}_{t}\right] \quad \text { and } \quad R_{t}=\mathrm{E}_{\mathbb{Q}}\left[R_{T} \mid \mathcal{F}_{t}\right] \quad \text { for all } t
$$

Random Factors and $B S \triangle E s$

Fix $h>0$ and $N \in \mathbb{N}$
Denote $\mathbb{T}=\{0, h, \ldots, T=N h\}$
$b_{t}^{1}, \ldots, b_{t}^{d} \quad d$ independent random walks with $P\left[\Delta b_{t+h}^{i}= \pm \sqrt{h}\right]=1 / 2$
$b_{t}^{d+1}, \ldots, b_{t}^{D} \quad 2^{d}-(d+1)$ random walks orthogonal to $b_{t}^{1}, \ldots, b_{t}^{d}$
Every $X \in L^{\infty}\left(\mathcal{F}_{t+h}\right)$ can be represented as

$$
X=\mathrm{E}\left[X \mid \mathcal{F}_{t}\right]+\pi_{t}(X) \cdot \Delta b_{t+h}
$$

for

$$
\pi_{t}(X) \cdot \Delta b_{t+h}=\sum_{i=1}^{D} \pi_{t}^{i}(X) \Delta b_{t+h}^{i} \quad \text { and } \quad \pi_{t}^{i}(X)=\frac{1}{h} E\left[X \Delta b_{t+h}^{i} \mid \mathcal{F}_{t}\right] .
$$

$$
U_{t}^{a}(X)=U_{t}^{a}\left(\mathrm{E}\left[X \mid \mathcal{F}_{t}\right]+\pi_{t}(X) \cdot \Delta b_{t+h}\right)=\mathrm{E}\left[X \mid \mathcal{F}_{t}\right]-f_{t}^{a}\left(\pi_{t}(X)\right) h
$$

for the \mathcal{F}_{t}-convex function $f_{t}^{a}: L^{\infty}\left(\mathcal{F}_{t}\right)^{D} \rightarrow L^{\infty}\left(\mathcal{F}_{t}\right)$ given by

$$
f_{t}^{a}(z):=-\frac{1}{h} U_{t}^{a}\left(z \cdot \Delta b_{t+h}\right) .
$$

Assume condition (A) is satisfied and all U_{t}^{a} satisfy the differentiability condition (D).
Then there exists $\nabla f_{t}^{a}(z) \in L^{\infty}\left(\mathcal{F}_{t}\right)^{D}$ such that

$$
\lim _{k \rightarrow \infty} k\left(f_{t}^{a}\left(z+z^{\prime} / k\right)-f_{t}^{a}(z)\right)=z^{\prime} \cdot \nabla f_{t}^{a}(z)
$$

For given $S_{t+h}, R_{t+h}, H_{t+h}^{a}$ denote

$$
\begin{aligned}
Z_{t+h}^{S} & :=\pi_{t}\left(S_{t+h}\right) \\
Z_{t+h}^{R} & :=\pi_{t}\left(R_{t+h}\right) \\
Z_{t+h}^{a} & :=\pi_{t}\left(H_{t+h}^{a}\right) \\
Z_{t+h} & =\left(Z_{t+h}^{S}, Z_{t+h}^{R}, Z_{t+h}^{a}, a \in \mathbb{A}\right)
\end{aligned}
$$

and define the function $f_{t}: L^{\infty}\left(\mathcal{F}_{t}\right)^{(3+|\mathbb{A}|) D} \rightarrow L^{\infty}\left(\mathcal{F}_{t}\right)$ by

$$
\begin{aligned}
& f_{t}\left(v, Z_{t+h}\right)= \begin{array}{c}
\vartheta^{a} \in L\left(\mathcal{F}_{t}\right)^{2} \\
\sum_{a \in \mathbb{A}} \vartheta^{a, 2}=0
\end{array} \\
& \sum_{a \in \mathbb{A}} f_{t}^{a}\left(\frac{v}{|\mathbb{A}|}+Z_{t+h}^{a}+\vartheta_{t+h}^{a, 1} Z_{t+h}^{S}+\vartheta_{t+h}^{a, 2} Z_{t+h}^{R}\right) \\
&-\frac{\vartheta_{t+h}^{a, 2}}{h} \mathrm{E}\left[\Delta S_{t+h} \mid \mathcal{F}_{t}\right] .
\end{aligned}
$$

Set

$$
\begin{aligned}
g_{t}^{R}\left(Z_{t+h}\right):= & Z_{t+h}^{R} \cdot \nabla^{v} f_{t}\left(n Z_{t+h}^{R}, Z_{t+h}\right) \\
g_{t}^{a}\left(Z_{t+h}\right):= & f_{t}^{a}\left(Z_{t+h}^{a}+\widehat{\vartheta}_{t+h}^{a, 1} Z_{t+h}^{S}+\widehat{\vartheta}_{t+h}^{a, 2} Z_{t+h}^{R}\right) \\
& -\widehat{\vartheta}_{t+h}^{a, 1} \frac{1}{h} \mathrm{E}\left[\Delta S_{t+h} \mid \mathcal{F}_{t}\right]-\widehat{\vartheta}_{t+h}^{a, 2} g_{t}^{R}\left(Z_{t+h}\right)
\end{aligned}
$$

Theorem The processes $\left(R_{t}\right)$ and $\left(H_{t}^{a}\right)$ satisfy the following coupled system of BS \triangle Es

$$
\begin{aligned}
& \Delta R_{t+h}=g_{t}^{R}\left(Z_{t+h}\right) h+Z_{t+h}^{R} \cdot \Delta b_{t+h}, \quad \\
& \Delta H_{T}=R \\
& \Delta H_{t+h}^{a}=g_{t}^{a}\left(Z_{t+h}\right) h+Z_{t+h}^{a} \cdot \Delta b_{t+h}, \quad H_{T}^{a}=H
\end{aligned}
$$

Example (discrete time)

Let $\left(b_{t}^{S}\right)_{t \in \mathbb{T}},\left(b_{t}^{R}\right)_{t \in \mathbb{T}},\left(b_{t}^{a}\right)_{t \in \mathbb{T}}, a \in \mathbb{A}$, be independent random walks with

$$
P\left[\Delta b_{t}^{S}= \pm \sqrt{h}\right]=P\left[\Delta b_{t}^{R}= \pm \sqrt{h}\right]=P\left[\Delta b_{t}^{a}= \pm \sqrt{h}\right]=1 / 2 .
$$

Assume that the price of the standard asset is given by

$$
S_{t+h}=S_{t}+\mu S_{t} h+\sigma S_{t} \Delta b_{t+h}^{S}, \quad S_{0}=s
$$

and

$$
R_{T}=r\left(b_{T}^{R}\right), \quad H^{a}=h^{a}\left(b_{T}^{S}, b_{T}^{R}+b_{T}^{a}\right)
$$

for bounded Lipschitz functions r, h^{a}.
Suppose that agent a's preference functional is

$$
U_{t}^{a}(X)=-\frac{1}{\gamma^{a}} \log \mathrm{E}\left[\exp \left(-\gamma^{a} X\right) \mid \mathcal{F}_{t}\right] \quad \text { for some } \quad \gamma^{a}>0
$$

Then

$$
U_{t}^{a}(X)=\mathrm{E}\left[X \mid \mathcal{F}_{t}\right]-f_{t}^{a}\left(\pi_{t}(X)\right) h
$$

for

$$
f_{t}^{a}(z)=\frac{1}{h \gamma^{a}} \log E\left[\exp \left(-\gamma^{a} z \cdot \Delta b_{t+h}\right)\right] .
$$

Neglect the random walks b^{d+1}, \ldots, b^{D}
and use the approximation

$$
\frac{1}{h \gamma^{a}} \sum_{i=1}^{d} \log \cosh \left(\sqrt{h} \gamma^{a} z^{i}\right) \approx \frac{\gamma^{a}}{2} \sum_{i=1}^{d}\left(z^{i}\right)^{2}
$$

Then the BS $\triangle E$ of the last theorem yields ...
... the recursive algorithm

$$
\begin{aligned}
R_{t} & =\mathrm{E}\left[R_{t+1} \mid \mathcal{F}_{t}\right]-g_{t}^{R} h, & & R_{T}=R \\
H_{t}^{a} & =\mathrm{E}\left[H_{t+1}^{a} \mid \mathcal{F}_{t}\right]-g_{t}^{a} h, & & H_{T}^{a}=H^{a}
\end{aligned}
$$

where

$$
\begin{aligned}
g_{t}^{R} & =\frac{1}{c^{S S}}\left[c^{R S} \mu S_{t}+\gamma\left(n\left\{c^{S S} c^{R R}-c^{S R} c^{S R}\right\}+c^{R A} c^{S S}-c^{S R} c^{S A}\right)\right] \\
g_{t}^{a} & =\frac{\gamma^{a}}{2}\left\|Z_{t+h}^{a}+\widehat{\vartheta}_{t+h}^{a, 1} Z_{t+h}^{S}+\widehat{\vartheta}_{t+h}^{a, 2} Z_{t+h}^{R}\right\|_{2}^{2}-\widehat{\vartheta}_{t+h}^{a, 1} \mu S_{t}-\widehat{\vartheta}_{t+h}^{a, 2} g_{t}^{R} \\
\widehat{\vartheta}_{t+h}^{a, 1} & =\frac{\mu S_{t}}{\gamma^{a} c^{S S}}+\frac{c^{S R} c^{R a}-c^{S a} c^{R R}}{c^{S S} c^{R R}-c^{S R} c^{S R}}-\frac{c^{S R}}{c^{S S}} \frac{\gamma}{\gamma^{a}}\left(n+\frac{c^{S S} c^{R A}-c^{S R} c^{S A}}{c^{S S} c^{R R}-c^{S R} c^{S R}}\right) \\
\widehat{\vartheta}_{t+h}^{a, 2} & =n \frac{\gamma}{\gamma^{a}}+\frac{c^{S R} c^{S a}-c^{R a} c^{S S}-\frac{\gamma}{\gamma^{a}}\left(c^{S R} c^{S A}-c^{S S} c^{R A}\right)}{c^{S S} c^{R R}-c^{S R} c^{S R}}
\end{aligned}
$$

for

$$
\gamma:=\left(\sum_{a}\left(\gamma^{a}\right)^{-1}\right)^{-1}
$$

$c^{S S}:=Z_{t+h}^{S} \cdot Z_{t+h}^{S}, \quad c^{S R}:=Z_{t+h}^{S} \cdot Z_{t+h}^{R}, \quad c^{S A}:=Z_{t+h}^{S} \cdot \sum_{a} Z_{t+h}^{a}, \quad \cdots$

Example (continuous time)

Let $B_{t}^{S}, B_{t}^{R}, B_{t}^{a}, a \in \mathbb{A}$, be independent Brownian motions

$$
d S_{t}=\mu S_{t} d t+\sigma S_{t} d B_{t}^{S}, \quad S_{0}=s
$$

and

$$
R_{T}=r\left(B_{T}^{R}\right), \quad H^{a}=h^{a}\left(B_{T}^{S}, B_{T}^{R}+B_{T}^{a}\right)
$$

for bounded Lipschitz functions r, h^{a}.
Suppose that agent a's preference functional is

$$
U_{t}^{a}(X)=-\frac{1}{\gamma^{a}} \log E\left[\exp \left(-\gamma^{a} X\right) \mid \mathcal{F}_{t}\right] \quad \text { for some } \quad \gamma^{a}>0
$$

The BSDE corresponding to the above $B S \triangle E$ is

$$
\begin{aligned}
d R_{t} & =g_{t}^{R} d t+Z_{t}^{R} \cdot d B_{t}, & & R_{T}=R \\
d H_{t}^{a} & =g_{t}^{a} d t+Z_{t}^{a} \cdot d B_{t}, & & H_{T}^{a}=H^{a}
\end{aligned}
$$

where

$$
\begin{aligned}
g_{t}^{R} & =\frac{1}{c^{S S}}\left[c^{R S} \mu S_{t}+\gamma\left(n\left\{c^{S S} c^{R R}-c^{S R} c^{S R}\right\}+c^{R A} c^{S S}-c^{S R_{c} S A}\right)\right] \\
g_{t}^{a} & =\frac{\gamma^{a}}{2}\left\|Z_{t}^{a}+\widehat{\vartheta}_{t}^{a, 1} Z_{t}^{S}+\widehat{\vartheta}_{t}^{a, 2} Z_{t}^{R}\right\|_{2}^{2}-\widehat{\vartheta}_{t}^{a, 1} \mu S_{t}-\widehat{\vartheta}_{t}^{a, 2} g_{t}^{R} \\
\widehat{\vartheta}_{t}^{a, 1} & =\frac{\mu S_{t}}{\gamma^{a} c^{S S}}+\frac{c^{S R} c^{R a}-c^{S a} c^{R R}}{c^{S S} c^{R R}-c^{S R} c^{S R}}-\frac{c^{S R}}{c^{S S}} \frac{\gamma}{\gamma^{a}}\left(n+\frac{c^{S S} c^{R A}}{c^{S S} c^{R R}-c^{S R} c^{S A}}\right) \\
\widehat{\vartheta}_{t}^{a, 2} & =n \frac{\gamma}{\gamma^{a}}+\frac{c^{S R} c^{S a}-c^{R a} c^{S S}-\frac{\gamma}{\gamma^{a}}\left(c^{S R} c^{S A}-c^{S S} c^{R A}\right)}{c^{S S} c^{R R}-c^{S R} c^{S R}}
\end{aligned}
$$

for

$$
c^{S S}:=Z_{t}^{S} \cdot Z_{t}^{S}, \quad c^{S R}:=Z_{t}^{S} \cdot Z_{t}^{R}, \quad c^{S A}:=Z_{t}^{S} \cdot \sum_{a} Z_{t}^{a}, \quad \cdots
$$

