Dynamic Markov Bridges and Kyle-Back Models of Insider Trading

Luciano Campi¹ Umut Çetin² Albina Danilova²

¹Université Paris-Dauphine

²London School of Economics

Workshop on Foundations of Mathematical Finance Toronto, 11-15 January 2010

Back's model of insider trading

Inspired by Kyle (1985), Back (1992) studies a market for a bond and a risky asset with three types of participants:

- 1 Noise traders: The noise traders have no information about the future value of the risky asset, their cumulative demand is modeled by a standard BM B.
- 2 Informed trader: The insider knows the value $V \sim N(0, 1)$, $V \perp B$, of the risky asset at time 1. Being risk-neutral, her objective is to maximize her expected profit.
- 3 *Market maker:* The market maker observes the total order, sets the price of the risky asset and clears the market.

The pricing mechanism of the market

■ The market maker decides the price looking at the total order X^{θ} given by

$$X_t^{\theta} = B_t + \theta_t,$$

where θ_t is the position of the insider in the risky asset at time t.

- Thus, the filtration of the market maker is \mathcal{F}^X . Note that θ is not necessarily adapted to \mathcal{F}^X , i.e. the insider's trade is not observed directly by the market maker.
- The market maker has a *pricing rule*, $H:[0,1]\times\mathbb{R}\mapsto\mathbb{R}$, to assign the price in the following form:

$$S_t = H(t, X_t),$$

where S_t is the market price of the risky asset at time t.

Equilibrium

Definition 1

A pair (H^*, θ^*) is said to form an equilibrium if H^* is a pricing rule, $\theta^* \in \mathcal{A}$, and the following conditions are satisfied:

1 *Market efficiency condition:* Given θ^* , H^* is a rational pricing rule, i.e.

$$H^*(t, X_t^*) = \mathbb{E}[V|\mathcal{F}_t^{X^*}], \quad t \in [0, 1],$$

where
$$X_t^* = B_t + \theta_t^*$$
.

2 The optimality condition: Given H^* , θ^* maximizes the expected profit of the insider.

Equilibrium: Back's solution.

In the equilibrium X*, the equilibrium level of the total order, satisfies

$$dX_t^* = dB_t + \frac{V - X_t^*}{1 - t}dt,$$

so that X^* is a Brownian bridge. The price is given by $S_t = X_t^*$.

X* is a BM in its own filtration: the insider cannot be detected (so-called "Inconspicuous trade theorem").

An equilibrium model for a defaultable bond I

A company issues a bond that pays €1 at time 1 unless it defaults before that time. Default time is given by

$$\tau := \inf\{t > 0 : Z_t = -1\},$$

where Z is a BM starting at 0 and $Z \perp B$. C. & Çetin (2008) study a similar problem where insider knows τ from the beginning. In the equilibrium total order solves

$$dX_t^* = dB_t + \left\{ \frac{1}{1 + X_t^*} - \frac{1 + X_t^*}{\tau - t} \right\} dt$$

and the price of the defaultable bond is given by $H^*(t, X_t^*)$ where on the set $\{\tau > t\}$

$$H^*(t,x) := \int_{1-t}^{\infty} \frac{x+1}{\sqrt{2\pi y^3}} e^{-\frac{(x+1)^2}{2y}} dy = \mathbb{P}(\tau > 1 | Z_t = x).$$

An equilibrium model for a defaultable bond II

Note that, this time, $1 + X^*$ is a 3-dimensional Bessel bridge of length τ in insider's view. Moreover, τ is an \mathcal{F}^{X^*} -stopping time. Indeed,

$$\tau = \inf\{t > 0 : X_t^* = -1\}.$$

- X* is a BM in its own filtration: the insider cannot be detected (*Inconspicuous trade theorem*).
- Related literature: Wu (1999), Föllmer-Wu-Yor (1999), Cho (2003), Lasserre (2004).

In the models above the insider's optimal strategy, θ^* satisfies

$$d\theta_t^* = \frac{\partial}{\partial x} \log \rho(t, X_t^*, \text{ signal}) dt$$

where

$$\rho(t, x, z) dz = P(\text{signal} \in dz | X_t^* = x).$$

■ This ensures the total demand $dX^* = dB + d\theta^*$ is a BM in its own filtration.

In the models above the insider's optimal strategy, θ^* satisfies

$$d\theta_t^* = \frac{\partial}{\partial x} \log \rho(t, X_t^*, \text{ signal}) dt$$

$$\rho(t, x, z) dz = P(\text{signal} \in dz | X_t^* = x).$$

- This ensures the total demand $dX^* = dB + d\theta^*$ is a BM in its own filtration.
- Indeed, by standard filtering theory,

$$dX_t^* = dB_t^{X^*} + \mathbb{E}\left[\frac{\partial}{\partial x}\log\rho(t, X_t^*, \text{ signal})\middle|\mathcal{F}_t^{X^*}\right]dt$$

In the models above the insider's optimal strategy, θ^* satisfies

$$d\theta_t^* = \frac{\partial}{\partial x} \log \rho(t, X_t^*, \text{ signal}) dt$$

$$\rho(t, x, z) dz = P(\text{signal} \in dz | X_t^* = x).$$

- This ensures the total demand $dX^* = dB + d\theta^*$ is a BM in its own filtration.
- Indeed, by standard filtering theory,

$$dX_t^* = dB_t^{X^*} + \mathbb{E}\left[\frac{\partial}{\partial x}\log\rho(t, X_t^*, \text{ signal})\middle|\mathcal{F}_t^{X^*}\right]dt$$
$$= dB_t^X + \left(\int \frac{\rho_X(t, X_t^*, z)}{\rho(t, X_t^*, z)}\rho(t, X_t^*, z)dz\right)dt$$

In the models above the insider's optimal strategy, θ^* satisfies

$$d\theta_t^* = \frac{\partial}{\partial x} \log \rho(t, X_t^*, \text{ signal}) dt$$

$$\rho(t, x, z) dz = P(\text{signal} \in dz | X_t^* = x).$$

- This ensures the total demand $dX^* = dB + d\theta^*$ is a BM in its own filtration.
- Indeed, by standard filtering theory,

$$dX_{t}^{*} = dB_{t}^{X^{*}} + \mathbb{E}\left[\frac{\partial}{\partial x}\log\rho(t, X_{t}^{*}, \text{ signal})\middle|\mathcal{F}_{t}^{X^{*}}\right]dt$$

$$= dB_{t}^{X} + \left(\int \frac{\rho_{X}(t, X_{t}^{*}, z)}{\rho(t, X_{t}^{*}, z)}\rho(t, X_{t}^{*}, z)dz\right)dt$$

$$= dB_{t}^{X} + \left(\frac{\partial}{\partial x}\int \rho(t, X_{t}^{*}, z)dz\right)dt$$

In the models above the insider's optimal strategy, θ^* satisfies

$$d\theta_t^* = \frac{\partial}{\partial x} \log \rho(t, X_t^*, \text{ signal}) dt$$

$$\rho(t, x, z) dz = P(\text{signal} \in dz | X_t^* = x).$$

- This ensures the total demand $dX^* = dB + d\theta^*$ is a BM in its own filtration.
- Indeed, by standard filtering theory,

$$dX_{t}^{*} = dB_{t}^{X^{*}} + \mathbb{E}\left[\frac{\partial}{\partial x}\log\rho(t, X_{t}^{*}, \text{ signal})\middle|\mathcal{F}_{t}^{X^{*}}\right]dt$$

$$= dB_{t}^{X} + \left(\int \frac{\rho_{X}(t, X_{t}^{*}, z)}{\rho(t, X_{t}^{*}, z)}\rho(t, X_{t}^{*}, z)dz\right)dt$$

$$= dB_{t}^{X} + \left(\frac{\partial}{\partial x}\int \rho(t, X_{t}^{*}, z)dz\right)dt$$

$$= dB_{t}^{X}.$$

This is not a coincidence!

Consider a more general Markov setting in which the insider knows the price at time 1, Z_1 , where

$$Z_t = \int_0^t a(Z_s) dB_s^Z \quad (B^Z \bot B)$$

Then in the equilibrium the market maker uses the following process for the pricing purposes:

$$dX_t = a(X_t) (dB_t + d\theta_t).$$

■ It can be shown along the similar lines that it is necessary in the equilibrium that X is a \mathcal{F}^X -martingale and $Z_1 = X_1$.

It is well-known, at least since Fitzsimmons, Pitman & Yor (1993) (see also Baudoin (2002)), that the solution X of

$$dX_t = a(X_t)dB_t + a^2(X_t)\frac{G_x(1-t,X_t,z)}{G(1-t,X_t,z)}dt,$$

is a Markov process converging to z as $t \to 1$, where G is the transition density of

$$d\xi_t = a(\xi_t)d\beta_t, \tag{1}$$

and β is a standard BM

■ It is well-known, at least since Fitzsimmons, Pitman & Yor (1993) (see also Baudoin (2002)), that the solution X of

$$dX_t = a(X_t)dB_t + a^2(X_t)\frac{G_x(1-t,X_t,z)}{G(1-t,X_t,z)}dt,$$

is a Markov process converging to z as $t \to 1$, where G is the transition density of

$$d\xi_t = a(\xi_t)d\beta_t, \tag{1}$$

and β is a standard BM

■ If Z_1 , independent of B, has a density given by $G(1,0,\cdot)$, then defining

$$dX_t = a(X_t)dB_t + a^2(X_t)\frac{G_X(1-t,X_t,Z_1)}{G(1-t,X_t,Z_1)}dt,$$

gives the process we want: \mathcal{F}^X -martingale with $X_1 = Z_1$.

Partial resumé so far

In the models presented so far

- there is a private signal Z_1 of the insider giving the true price at the end of the trading horizon;
- the cumulative demand does not change its law, i.e. it stays as a Brownian motion if the insider trades optimally;
- $\lim_{t\to 1} S_t = Z_1$, where S is the market price of the asset.

Partial resumé so far

In the models presented so far

- there is a private signal Z_1 of the insider giving the true price at the end of the trading horizon;
- the cumulative demand does not change its law, i.e. it stays as a Brownian motion if the insider trades optimally;
- $\lim_{t\to 1} S_t = Z_1$, where S is the market price of the asset.

Question: What about <u>dynamic</u> private information? Do we have the same probabilistic structure?

Dynamic information asymmetry

 Back and Pedersen (1998) analyze the same problem when the insider receives a continuous signal

$$Z_t = Z_0 + \int_0^t \sigma(u) dB_u^Z$$

where Z_0 is a N(0,1) r.v., B^Z is a BM independent of B, the noise demand, and $Var(Z_0) + \int_0^1 \sigma^2(s) ds = 1$.

■ The asset value at time 1 is given by Z_1 . The equilibrium demand in this case is given by

$$dX_t^* = dB_t + rac{Z_t - X_t^*}{V(t) - t}dt,$$

where $V(t) = Var(Z_0) + \int_0^t \sigma^2(s) ds$. $S_t = X_t^*$ and, moreover, $\lim_{t\to 1} S_t = Z_1$.

 Similar problems in varying generality are discussed in Wu (1999), Föllmer, Wu and Yor (1999) and Danilova (2008).

Extension to a general diffusion setting

Goal: Given

$$Z_t = Z_0 + \int_0^t \sigma(s) a(Z_s) dB_s^Z$$

with a(z) satisfying regularity conditions, construct a process X with $X_0 = 0$ and adapted to $\mathcal{F}_t^{Z,B}$ (recall that $B^Z \perp B$), such that:

- C1 (X, Z) is Markov.
- C2 $X_1 = Z_1$, Q^z -a.s., where Q^z is the law of (X, Z) with $Z_0 = z$ and $X_0 = 0$.
- C3 X is a local martingale in its own filtration and $[X,X]_t = \int_0^t a^2(X_s)ds$.

Model assumptions

Föllmer, Wu and Yor (1999) showed that such a construction is impossible when $\sigma \equiv 1$.

Assumption 1

Fix a real number $c \in [0,1]$. $\sigma : [0,1] \mapsto \mathbb{R}_+$ and $a : \mathbb{R} \mapsto \mathbb{R}_+$ are two measurable functions such that:

- 1 $V(t) := c + \int_0^t \sigma^2(u) du > t$ for every $t \in [0, 1)$, and V(1) = 1.
- $\sigma^2(\cdot)$ is bounded on [0,1].
- $oxed{3}$ $a(\cdot)$ is bounded away from zero.
- 4 $a(\cdot)$ is twice continuously differentiable, such that Z is well-defined as unique strong solution.

General solution

■ Conjecture: the solution to our problem is (X, Z) such that $Z_0 \sim G(c, 0, z)$, X solves

$$dX_t = a(X_t)dB_t + a^2(X_t)\frac{\rho_X(t, X_t, Z_t)}{\rho(t, X_t, Z_t)}dt, \quad t < 1$$

and

$$\rho(t,x,z)=G(V(t)-t,x,z),$$

- G(t, x, z) is the transition probability of $d\xi_t = a(\xi_t)d\beta_t$ and
- $V(t) = c + \int_0^t \sigma^2(u) du.$

General solution

Conjecture: the solution to our problem is (X, Z) such that $Z_0 \sim G(c, 0, z)$, X solves

$$dX_t = a(X_t)dB_t + a^2(X_t)\frac{\rho_X(t, X_t, Z_t)}{\rho(t, X_t, Z_t)}dt, \quad t < 1$$

and

$$\rho(t,x,z)=G(V(t)-t,x,z),$$

- G(t, x, z) is the transition probability of $d\xi_t = a(\xi_t)d\beta_t$ and
- $V(t) = c + \int_0^t \sigma^2(u) du$.
- We need to prove that
 - X is a \mathcal{F}^X -martingale $\Leftarrow \rho$ is the conditional density of Z_t given \mathcal{F}^X_t
 - $\blacksquare \lim_{t\to 1} \dot{X_t} = Z_1$

Where does our guess for ρ come from? Some heuristics

- We expect $\rho(t, x, z)$ to be the signal conditional density given $X_t = x$, to have that $dX_t = a(X_t)dB_t^X$ in its own filtration, where B^X is standard BM under \mathcal{F}^X
- Compare with $dZ_t = \sigma(t)a(Z_t)dB_t^Z$
- Recall that $V(t) = c + \int_0^t \sigma^2(u) du$, it suggests to use $X_{V(t)}$ as a proxy for Z_t
- Moreover G(V(t) t, x, z) is the transition density of $X_{V(t)}$ given $X_t = z$, so that it's natural to conjecture that $\rho(t, x, z) = G(V(t) t, x, z)$
- We check our guess using a slight generalization of Kurtz-Ocone (1988)

Existence of G

We need assumptions to get existence of the transition probabilities G(t, x, z) of $d\xi_t = a(\xi_t)d\beta_t$. Let

$$A(x) := \int_0^x \frac{dy}{a(y)},$$

and $\zeta_t = A(\xi_t)$. Itô's formula yields

$$d\zeta_t = d\beta_t + b(\zeta_t)dt$$
, where $b(y) := -\frac{1}{2}a_z(A^{-1}(y))$.

Assumption 2

b and b_y are bounded and b_y is Hölder.

Under all our assumptions, there exists a fund. solution, G, to $u_t = (1/2)(a^2(z)u)_{zz}$.

Moreover, $G(t-s,y,x) = \Gamma(t-s,A(y),A(x))\frac{1}{a(x)}$, where Γ is transition density of ζ_t .

■ We have seen that $\rho(t, x, z) = G(V(t) - t, x, z)$ is a good candidate for the conditional density of Z given \mathcal{F}_t^X . Let's verify our guess.

- We have seen that $\rho(t, x, z) = G(V(t) t, x, z)$ is a good candidate for the conditional density of Z given \mathcal{F}_t^X . Let's verify our guess.
- Let $U_t = A(Z_t)$ and $R_t = A(X_t)$ so that

$$dU_{t} = \sigma(t)d\beta_{t} + \sigma^{2}(t)b(U_{t})dt$$

$$dR_{t} = dB_{t} + \left\{\frac{p_{x}(t, R_{t}, U_{t})}{p(t, R_{t}, U_{t})} + b(R_{t})\right\}dt, \qquad (2)$$

where $p(t, x, z) := a(A^{-1}(z))\rho(t, A^{-1}(x), A^{-1}(V(z)).$

- We have seen that $\rho(t, x, z) = G(V(t) t, x, z)$ is a good candidate for the conditional density of Z given \mathcal{F}_t^X . Let's verify our guess.
- Let $U_t = A(Z_t)$ and $R_t = A(X_t)$ so that

$$dU_{t} = \sigma(t)d\beta_{t} + \sigma^{2}(t)b(U_{t})dt$$

$$dR_{t} = dB_{t} + \left\{\frac{p_{x}(t, R_{t}, U_{t})}{p(t, R_{t}, U_{t})} + b(R_{t})\right\}dt, \qquad (2)$$

where $p(t, x, z) := a(A^{-1}(z))\rho(t, A^{-1}(x), A^{-1}(V(z)).$

■ Then, $p(t, R_t, \cdot)$ is the \mathcal{F}_t^R -conditional density of U_t if and only if $\rho(t, X_t, \cdot)$ is the conditional density of Z_t given \mathcal{F}_t^X .

How to check that $p(t, R_t, \cdot)$ is the \mathcal{F}_t^R -conditional density of U_t ? Our approach is based on the following steps: Let \mathcal{P} the set of all probability measures on $\mathcal{B}(\mathbb{R})$

- the \mathcal{P} -valued process $\pi_t(\omega, dx)$ is well-defined by $\pi_t f = \mathbb{E}[f(U_t)|\mathcal{F}_t^R], f$ measurable bounded
- consider the operator

$$A_0 := \partial_t + \frac{1}{2}\sigma^2(t)\partial_{xx}^2 + \sigma^2(t)b(t,x)\partial_x$$

the corresponding martingale problem is well-posed and has a unique solution (t, U_t) so that ...

- ... we can apply arguments from Kurtz-Ocone (1988) implying that the Kushner-Stratonovich equation satisfied by U_t 's conditional density has a unique solution under our assumptions
- since $p(t, R_t, \cdot)$ satisfies that equation, thus it equals the \mathcal{F}_t^R -conditional density of U_t .

Convergence: Gaussian case I

When $a \equiv 1$, $dZ_t = \sigma(t)dB_t^Z$, B^Z standard BM. It's well-known that $G(t-s,y,x) = \frac{1}{\sqrt{2\pi(t-s)}} \exp(-\frac{(x-y)^2}{2(t-s)})$. In this case

$$dX_t = dB_t + rac{Z_t - X_t}{V(t) - t}dt.$$

- This is the equilibrium demand obtained by Back and Pedersen (1998).
- Back and Pedersen (1998) and Wu (1999) only prove the convergence

$$\lim_{t\to 1}X_t=Z_1$$

in $L^2(\mathbb{P})$ where \mathbb{P} is the market maker's probability given by

$$\mathbb{P}(E) = \int Q^z(E) P(Z_0 \in dz), \qquad \text{for } E \in \mathcal{F}.$$

Convergence of X_t : Gaussian case II

We shall now give a proof of the convergence with respect to the insider's probability given $Z_0 = z$, i.e.

$$\lim_{t\to 1}X_t=Z_1,\quad Q^z-a.s.$$

Here are the main steps:

Convergence of X_t : Gaussian case II

We shall now give a proof of the convergence with respect to the insider's probability given $Z_0 = z$, i.e.

$$\lim_{t\to 1}X_t=Z_1,\quad Q^z-a.s.$$

Here are the main steps:

■ Find a cont. function $\varphi(t, x, z)$ such that $(\varphi(t, X_t, Z_t))_{t \in [0,1)}$ is a positive Q^z -supermartingale and, under some mild conditions on σ ,

$$\lim_{t\to 1}\varphi(t,x,z)=+\infty,\quad x\neq z$$

Convergence of X_t : Gaussian case II

We shall now give a proof of the convergence with respect to the insider's probability given $Z_0 = z$, i.e.

$$\lim_{t\to 1}X_t=Z_1,\quad Q^z-a.s.$$

Here are the main steps:

■ Find a cont. function $\varphi(t, x, z)$ such that $(\varphi(t, X_t, Z_t))_{t \in [0,1)}$ is a positive Q^z -supermartingale and, under some mild conditions on σ ,

$$\lim_{t\to 1}\varphi(t,x,z)=+\infty,\quad x\neq z$$

Let $M_t := \varphi(t, X_t, Z_t)$. Supermartingale conv theorem gives that $\lim_{t\to 1} M_t = M_1$, Q^z -a.s. By Fatou's lemma we have

$$M_0 \ge \liminf_{t \to 1} E^z[M_t] \ge E^z \left[\lim_{t \to 1} \varphi(t, X_t, Z_t) \right]$$

This yields $Q^z(\lim_{t\to 1} X_t \neq Z_1) = 0$.

Convergence of X_t : The general case.

Let $U_t = A(Z_t)$ and $R_t = A(X_t)$, where $A(x) = \int_0^x a(y)^{-1} dy$. Recall that

$$dU_t = \sigma(t)d\beta_t + \sigma^2(t)b(U_t)dt$$

$$dR_t = dB_t + \left\{\frac{p_x(t, R_t, U_t)}{p(t, R_t, U_t)} + b(R_t)\right\}dt,$$

with
$$p(t, x, z) := a(A^{-1}(z))\rho(t, A^{-1}(x), A^{-1}(z)).$$

■ Note that $X_t \rightarrow Z_1 \iff R_t \rightarrow U_1$.

Convergence of X_t : The general case.

Let $U_t = A(Z_t)$ and $R_t = A(X_t)$, where $A(x) = \int_0^x a(y)^{-1} dy$. Recall that

$$\begin{split} dU_t &= \sigma(t)d\beta_t + \sigma^2(t)b(U_t)dt \\ dR_t &= dB_t + \left\{\frac{p_x(t,R_t,U_t)}{p(t,R_t,U_t)} + b(R_t)\right\}dt, \end{split}$$

with $p(t, x, z) := a(A^{-1}(z))\rho(t, A^{-1}(x), A^{-1}(z)).$

- Note that $X_t \rightarrow Z_1 \iff R_t \rightarrow U_1$.
- It is easy to show that $p(t, x, z) = \Gamma(V(t) t, x, z)$ where Γ is the transition density of

$$d\zeta_t = d\beta_t + b(\zeta_t)dt,$$

As the law of ζ is equivalent to the Wiener measure, we can write

$$\Gamma(t,x,z) = h(t,x,z)q(t,x,z)$$

where q is the transition density of a standard BM.

Sketch of proof for convergence of R_t

Consider a new measure, P^z under which, and with an abuse of notation,

$$dU_{t} = \sigma(t)d\beta_{t}$$

$$dR_{t} = dB_{t} + \frac{p_{x}(t, R_{t}, U_{t})}{p(t, R_{t}, U_{t})}dt =$$

$$= dB_{t} + \frac{U_{t} - R_{t}}{V(t) - t}dt + \frac{h_{x}(V(t) - t, R_{t}, U_{t})}{h(V(t) - t, R_{t}, U_{t})}dt.$$
(3)

Let

$$r_t = R_t - e^{-\int_0^t rac{ds}{V(s) - s}} \int_0^t e^{\int_0^s rac{du}{V(u) - u}} rac{h_X(V(s) - s, R_s, U_s)}{h(V(s) - s, R_s, U_s)} ds.$$

Sketch of proof for convergence of R_t

Consider a new measure, P^z under which, and with an abuse of notation,

$$dU_{t} = \sigma(t)d\beta_{t}$$

$$dR_{t} = dB_{t} + \frac{p_{x}(t, R_{t}, U_{t})}{p(t, R_{t}, U_{t})}dt =$$

$$= dB_{t} + \frac{U_{t} - R_{t}}{V(t) - t}dt + \frac{h_{x}(V(t) - t, R_{t}, U_{t})}{h(V(t) - t, R_{t}, U_{t})}dt.$$
(3)

Let

$$r_t = R_t - e^{-\int_0^t rac{ds}{V(s) - s}} \int_0^t e^{\int_0^s rac{du}{V(u) - u}} rac{h_X(V(s) - s, R_s, U_s)}{h(V(s) - s, R_s, U_s)} ds.$$

This r_t satisfies

$$dr_t = dB_t + rac{U_t - r_t}{V(t) - t}ds.$$

So as in the Gaussian case r_t converges to U_1 .

So we need

$$\lim_{t \to 1} e^{-\int_0^t \frac{ds}{V(s)-s}} \int_0^t e^{\int_0^s \frac{du}{V(u)-u}} \frac{h_X(V(s)-s,R_s,U_s)}{h(V(s)-s,R_s,U_s)} ds = 0.$$

So we need

$$\lim_{t \to 1} e^{-\int_0^t \frac{ds}{V(s)-s}} \int_0^t e^{\int_0^s \frac{du}{V(u)-u}} \frac{h_X(V(s)-s,R_s,U_s)}{h(V(s)-s,R_s,U_s)} ds = 0.$$

by de L'Hôpital rule the limit equals

$$\lim_{t \to 1} (V(t) - t) \frac{h_{x}(V(t) - t, R_{t}, U_{t})}{h(V(t) - t, R_{t}, U_{t})} = 0$$

due to the following: Let $x_n \to x$, $z_n \to z$ and $t_n \to 0$. Then

$$\lim_{n\to\infty}t_n\frac{h_x}{h}(t_n,x_n,z_n)=0.$$

The result above continues to hold when $x = \pm \infty$ as well.

A straightforward corollary: signal with drift

Let *Z* be the unique strong solution to

$$Z_t = Z_0 + \int_0^t \sigma(s) d\beta_s + \int_0^t \sigma^2(s) b(Z_s) ds,$$

where $b \in C_b^2$ with bounded derivatives, σ is as before and $P(Z_0 \in dz) = \Gamma(c, 0, z)dz$ for some $c \in (0, 1)$. Define X by

$$dX_t = dB_t + \left\{b(X_s) + \frac{\rho_X(t, X_t, Z_t)}{\rho(t, X_t, Z_t)}\right\}dt,$$

for $t \in (0,1)$ with $X_0 = 0$. Here $\rho(t,x,z) := \Gamma(V(t)-t,x,z)$ where $V(t) = c + \int_0^t \sigma^2(u) du$ and $\Gamma(t,x,z)$ is the transition density of $\zeta_t = \beta_t + b(\zeta_t) dt$. Then

A straightforward corollary: signal with drift

Let *Z* be the unique strong solution to

$$Z_t = Z_0 + \int_0^t \sigma(s) d\beta_s + \int_0^t \sigma^2(s) b(Z_s) ds,$$

where $b \in C_b^2$ with bounded derivatives, σ is as before and $P(Z_0 \in dz) = \Gamma(c, 0, z)dz$ for some $c \in (0, 1)$. Define X by

$$dX_t = dB_t + \left\{b(X_s) + \frac{\rho_X(t, X_t, Z_t)}{\rho(t, X_t, Z_t)}\right\}dt,$$

for $t \in (0,1)$ with $X_0 = 0$. Here $\rho(t,x,z) := \Gamma(V(t)-t,x,z)$ where $V(t) = c + \int_0^t \sigma^2(u) du$ and $\Gamma(t,x,z)$ is the transition density of $\zeta_t = \beta_t + b(\zeta_t) dt$. Then

- 1 $X_t \int_0^t b(X_s) ds$ is a standard BM;
- 2 $X_1 = Z_1$, Q^z -a.s. where Q^z is the law of (X, Z) with $Z_0 = z$ and $X_0 = 0$.

Suppose Z is an Ornstein-Uhlenbeck type process, i.e.

$$dZ_t = \sigma(t)d\beta_t - b\sigma^2(t)Z_tdt,$$

where b > 0 is a constant and Z_0 has law $G(c, 0, \cdot)$.

Suppose Z is an Ornstein-Uhlenbeck type process, i.e.

$$dZ_t = \sigma(t)d\beta_t - b\sigma^2(t)Z_tdt,$$

where b > 0 is a constant and Z_0 has law $G(c, 0, \cdot)$. Note that in this case

$$\Gamma(t, x, z) = q((1 - e^{-2bt})/2b, xe^{-bt}, z).$$

Suppose Z is an Ornstein-Uhlenbeck type process, i.e.

$$dZ_t = \sigma(t)d\beta_t - b\sigma^2(t)Z_tdt,$$

where b > 0 is a constant and Z_0 has law $G(c, 0, \cdot)$. Note that in this case

$$\Gamma(t, x, z) = q((1 - e^{-2bt})/2b, xe^{-bt}, z).$$

Let X be defined by $X_0 = 0$ and

$$dX_t = dB_t + \left\{ \frac{Z_t - X_t e^{-b(V(t)-t)}}{e^{b(V(t)-t)} - e^{-b(V(t)-t)}} - bX_t \right\} dt,$$

for $t \in (0, 1)$.

Suppose Z is an Ornstein-Uhlenbeck type process, i.e.

$$dZ_t = \sigma(t)d\beta_t - b\sigma^2(t)Z_tdt,$$

where b > 0 is a constant and Z_0 has law $G(c, 0, \cdot)$. Note that in this case

$$\Gamma(t, x, z) = q((1 - e^{-2bt})/2b, xe^{-bt}, z).$$

Let X be defined by $X_0 = 0$ and

$$dX_t = dB_t + \left\{ \frac{Z_t - X_t e^{-b(V(t)-t)}}{e^{b(V(t)-t)} - e^{-b(V(t)-t)}} - bX_t \right\} dt,$$

for $t \in (0,1)$. Then, the previous theorem implies that X is an Ornstein-Uhlenback process in its own filtration and a bridge, i.e. $X_1 = Z_1$, Q^z -a.s.