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Back’s model of insider trading

Inspired by Kyle (1985), Back (1992) studies a market for a
bond and a risky asset with three types of participants:

1 Noise traders: The noise traders have no information about
the future value of the risky asset, their cumulative demand
is modeled by a standard BM B.

2 Informed trader: The insider knows the value V ∼ N(0,1),
V⊥B, of the risky asset at time 1. Being risk-neutral, her
objective is to maximize her expected profit.

3 Market maker: The market maker observes the total order,
sets the price of the risky asset and clears the market.
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The pricing mechanism of the market

The market maker decides the price looking at the total
order X θ given by

X θ
t = Bt + θt ,

where θt is the position of the insider in the risky asset at
time t .
Thus, the filtration of the market maker is FX . Note that θ
is not necessarily adapted to FX , i.e. the insider’s trade is
not observed directly by the market maker.
The market maker has a pricing rule, H : [0,1]× R 7→ R, to
assign the price in the following form:

St = H(t ,Xt ),

where St is the market price of the risky asset at time t .

Campi, Çetin & Danilova Markov Bridges and Insider Trading



Equilibrium

Definition 1

A pair (H∗, θ∗) is said to form an equilibrium if H∗ is a pricing
rule, θ∗ ∈ A, and the following conditions are satisfied:

1 Market efficiency condition: Given θ∗, H∗ is a rational
pricing rule, i.e.

H∗(t ,X ∗t ) = E[V |FX∗
t ], t ∈ [0,1],

where X ∗t = Bt + θ∗t .
2 The optimality condition: Given H∗, θ∗ maximizes the

expected profit of the insider.
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Equilibrium: Back’s solution.

In the equilibrium X ∗, the equilibrium level of the total
order, satisfies

dX ∗t = dBt +
V − X ∗t
1− t

dt ,

so that X ∗ is a Brownian bridge. The price is given by
St = X ∗t .
X ∗ is a BM in its own filtration: the insider cannot be
detected (so-called “Inconspicuous trade theorem”).
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An equilibrium model for a defaultable bond I

A company issues a bond that pays e1 at time 1 unless it
defaults before that time. Default time is given by

τ := inf{t > 0 : Zt = −1},

where Z is a BM starting at 0 and Z⊥B. C. & Çetin (2008)
study a similar problem where insider knows τ from the
beginning. In the equilibrium total order solves

dX ∗t = dBt +

{
1

1 + X ∗t
− 1 + X ∗t

τ − t

}
dt

and the price of the defaultable bond is given by H∗(t ,X ∗t )
where on the set {τ > t}

H∗(t , x) :=

∫ ∞
1−t

x + 1√
2πy3

e−
(x+1)2

2y dy = P(τ > 1|Zt = x).
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An equilibrium model for a defaultable bond II

Note that, this time, 1 + X ∗ is a 3-dimensional Bessel
bridge of length τ in insider’s view. Moreover, τ is an
FX∗-stopping time. Indeed,

τ = inf{t > 0 : X ∗t = −1}.

X ∗ is a BM in its own filtration: the insider cannot be
detected (Inconspicuous trade theorem).
Related literature: Wu (1999), Föllmer-Wu-Yor (1999), Cho
(2003), Lasserre (2004).
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One common mathematical characteristic

In the models above the insider’s optimal strategy, θ∗

satisfies
dθ∗t =

∂

∂x
logρ(t ,X ∗t , signal)dt

where
ρ(t , x , z) dz = P(signal ∈ dz|X ∗t = x).

This ensures the total demand dX ∗ = dB + dθ∗ is a BM in
its own filtration.

Indeed, by standard filtering theory,

dX ∗t = dBX∗
t + E

[
∂

∂x
logρ(t ,X ∗t , signal)

∣∣∣∣FX∗
t

]
dt

= dBX
t +

(∫
ρx (t ,X ∗t , z)

ρ(t ,X ∗t , z)
ρ(t ,X ∗t , z)dz

)
dt

= dBX
t +

(
∂

∂x

∫
ρ(t ,X ∗t , z)dz

)
dt

= dBX
t .
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This is not a coincidence!

Consider a more general Markov setting in which the
insider knows the price at time 1, Z1, where

Zt =

∫ t

0
a(Zs)dBZ

s (BZ⊥B)

Then in the equilibrium the market maker uses the
following process for the pricing purposes:

dXt = a(Xt ) (dBt + dθt ) .

It can be shown along the similar lines that it is necessary
in the equilibrium that X is a FX -martingale and Z1 = X1.
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It is well-known, at least since Fitzsimmons, Pitman & Yor
(1993) (see also Baudoin (2002)), that the solution X of

dXt = a(Xt )dBt + a2(Xt )
Gx (1− t ,Xt , z)

G(1− t ,Xt , z)
dt ,

is a Markov process converging to z as t → 1, where G is
the transition density of

dξt = a(ξt )dβt , (1)

and β is a standard BM

If Z1, independent of B, has a density given by G(1,0, ·),
then defining

dXt = a(Xt )dBt + a2(Xt )
Gx (1− t ,Xt ,Z1)

G(1− t ,Xt ,Z1)
dt ,

gives the process we want: FX -martingale with X1 = Z1.
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Partial resumé so far

In the models presented so far
there is a private signal Z1 of the insider giving the true
price at the end of the trading horizon;
the cumulative demand does not change its law, i.e. it
stays as a Brownian motion if the insider trades optimally;
limt→1 St = Z1, where S is the market price of the asset.

Question: What about dynamic private information? Do we
have the same probabilistic structure?
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Dynamic information asymmetry

Back and Pedersen (1998) analyze the same problem
when the insider receives a continuous signal

Zt = Z0 +

∫ t

0
σ(u)dBZ

u

where Z0 is a N(0,1) r.v., BZ is a BM independent of B, the
noise demand, and Var(Z0) +

∫ 1
0 σ

2(s)ds = 1.
The asset value at time 1 is given by Z1. The equilibrium
demand in this case is given by

dX ∗t = dBt +
Zt − X ∗t
V (t)− t

dt ,

where V (t) = Var(Z0) +
∫ t

0 σ
2(s)ds. St = X ∗t and,

moreover, limt→1 St = Z1.
Similar problems in varying generality are discussed in Wu
(1999), Föllmer, Wu and Yor (1999) and Danilova (2008).
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Extension to a general diffusion setting

Goal: Given

Zt = Z0 +

∫ t

0
σ(s)a(Zs)dBZ

s

with a(z) satisfying regularity conditions, construct a process X
with X0 = 0 and adapted to FZ ,B

t (recall that BZ⊥B), such that:
C1 (X ,Z ) is Markov.
C2 X1 = Z1, Qz-a.s., where Qz is the law of (X ,Z ) with Z0 = z

and X0 = 0.
C3 X is a local martingale in its own filtration and

[X ,X ]t =
∫ t

0 a2(Xs)ds.
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Model assumptions

Föllmer, Wu and Yor (1999) showed that such a construction is
impossible when σ ≡ 1.

Assumption 1

Fix a real number c ∈ [0,1]. σ : [0,1] 7→ R+ and a : R 7→ R+ are
two measurable functions such that:

1 V (t) := c +
∫ t

0 σ
2(u)du > t for every t ∈ [0,1), and

V (1) = 1.
2 σ2(·) is bounded on [0,1].
3 a(·) is bounded away from zero.
4 a(·) is twice continuously differentiable, such that Z is

well-defined as unique strong solution.
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General solution

Conjecture: the solution to our problem is (X ,Z ) such that
Z0 ∼ G(c,0, z), X solves

dXt = a(Xt )dBt + a2(Xt )
ρx (t ,Xt ,Zt )

ρ(t ,Xt ,Zt )
dt , t < 1

and
ρ(t , x , z) = G(V (t)− t , x , z),

where
G(t , x , z) is the transition probability of dξt = a(ξt )dβt and
V (t) = c +

∫ t
0 σ

2(u)du.

We need to prove that
X is a FX -martingale⇐ ρ is the conditional density of Zt
given FX

t
limt→1 Xt = Z1
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Where does our guess for ρ come from? Some
heuristics

We expect ρ(t , x , z) to be the signal conditional density
given Xt = x , to have that dXt = a(Xt )dBX

t in its own
filtration, where BX is standard BM under FX

Compare with dZt = σ(t)a(Zt )dBZ
t

Recall that V (t) = c +
∫ t

0 σ
2(u)du, it suggests to use XV (t)

as a proxy for Zt

Moreover G(V (t)− t , x , z) is the transition density of XV (t)
given Xt = z, so that it’s natural to conjecture that
ρ(t , x , z) = G(V (t)− t , x , z)

We check our guess using a slight generalization of
Kurtz-Ocone (1988)
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Existence of G

We need assumptions to get existence of the transition
probabilities G(t , x , z) of dξt = a(ξt )dβt . Let

A(x) :=

∫ x

0

dy
a(y)

,

and ζt = A(ξt ). Itô’s formula yields

dζt = dβt + b(ζt )dt , where b(y) := −1
2

az(A−1(y)).

Assumption 2

b and by are bounded and by is Hölder.

Under all our assumptions, there exists a fund. solution, G, to
ut = (1/2)(a2(z)u)zz .
Moreover, G(t − s, y , x) = Γ(t − s,A(y),A(x)) 1

a(x) , where Γ is
transition density of ζt .
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Is ρ indeed the conditional density?

We have seen that ρ(t , x , z) = G(V (t)− t , x , z) is a good
candidate for the conditional density of Z given FX

t . Let’s
verify our guess.

Let Ut = A(Zt ) and Rt = A(Xt ) so that

dUt = σ(t)dβt + σ2(t)b(Ut )dt

dRt = dBt +

{
px (t ,Rt ,Ut )

p(t ,Rt ,Ut )
+ b(Rt )

}
dt , (2)

where p(t , x , z) := a(A−1(z))ρ(t ,A−1(x),A−1(V (z)).
Then, p(t ,Rt , ·) is the FR

t -conditional density of Ut if and
only if ρ(t ,Xt , ·) is the conditional density of Zt given FX

t .
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Is ρ indeed the conditional density?

How to check that p(t ,Rt , ·) is the FR
t -conditional density of Ut?

Our approach is based on the following steps: Let P the set of
all probability measures on B(R)

the P-valued process πt (ω,dx) is well-defined by
πt f = E[f (Ut )|FR

t ], f measurable bounded
consider the operator

A0 := ∂t +
1
2
σ2(t)∂2

xx + σ2(t)b(t , x)∂x

the corresponding martingale problem is well-posed and
has a unique solution (t ,Ut ) so that ...
... we can apply arguments from Kurtz-Ocone (1988)
implying that the Kushner-Stratonovich equation satisfied
by Ut ’s conditional density has a unique solution under our
assumptions
since p(t ,Rt , ·) satisfies that equation, thus it equals the
FR

t -conditional density of Ut .
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Convergence : Gaussian case I

When a ≡ 1, dZt = σ(t)dBZ
t , BZ standard BM. It’s

well-known that G(t − s, y , x) = 1√
2π(t−s)

exp(− (x−y)2

2(t−s) ). In

this case
dXt = dBt +

Zt − Xt

V (t)− t
dt .

This is the equilibrium demand obtained by Back and
Pedersen (1998).
Back and Pedersen (1998) and Wu (1999) only prove the
convergence

lim
t→1

Xt = Z1

in L2(P) where P is the market maker’s probability given by

P(E) =

∫
Qz(E)P(Z0 ∈ dz), for E ∈ F .
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Convergence of Xt : Gaussian case II

We shall now give a proof of the convergence with respect to
the insider’s probability given Z0 = z, i.e.

lim
t→1

Xt = Z1, Qz − a.s.

Here are the main steps:

Find a cont. function ϕ(t , x , z) such that (ϕ(t ,Xt ,Zt ))t∈[0,1)

is a positive Qz-supermartingale and, under some mild
conditions on σ,

lim
t→1

ϕ(t , x , z) = +∞, x 6= z

Let Mt := ϕ(t ,Xt ,Zt ). Supermartingale conv theorem gives
that limt→1 Mt = M1, Qz-a.s. By Fatou’s lemma we have

M0 ≥ lim inf
t→1

Ez [Mt ] ≥ Ez
[

lim
t→1

ϕ(t ,Xt ,Zt )

]
This yields Qz(limt→1 Xt 6= Z1) = 0.
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Convergence of Xt : The general case.

Let Ut = A(Zt ) and Rt = A(Xt ), where A(x) =
∫ x

0 a(y)−1dy .
Recall that

dUt = σ(t)dβt + σ2(t)b(Ut )dt

dRt = dBt +

{
px (t ,Rt ,Ut )

p(t ,Rt ,Ut )
+ b(Rt )

}
dt ,

with p(t , x , z) := a(A−1(z))ρ(t ,A−1(x),A−1(z)).
Note that Xt → Z1 ⇐⇒ Rt → U1.

It is easy to show that p(t , x , z) = Γ(V (t)− t , x , z) where Γ
is the transition density of

dζt = dβt + b(ζt )dt ,

As the law of ζ is equivalent to the Wiener measure, we
can write

Γ(t , x , z) = h(t , x , z)q(t , x , z)

where q is the transition density of a standard BM.
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Sketch of proof for convergence of Rt

Consider a new measure, Pz under which, and with an abuse
of notation,

dUt = σ(t)dβt

dRt = dBt +
px (t ,Rt ,Ut )

p(t ,Rt ,Ut )
dt =

= dBt +
Ut − Rt

V (t)− t
dt +

hx (V (t)− t ,Rt ,Ut )

h(V (t)− t ,Rt ,Ut )
dt . (3)

Let

rt = Rt − e−
∫ t

0
ds

V (s)−s

∫ t

0
e
∫ s

0
du

V (u)−u
hx (V (s)− s,Rs,Us)

h(V (s)− s,Rs,Us)
ds.

This rt satisfies

drt = dBt +
Ut − rt

V (t)− t
ds.

So as in the Gaussian case rt converges to U1.

Campi, Çetin & Danilova Markov Bridges and Insider Trading



Sketch of proof for convergence of Rt

Consider a new measure, Pz under which, and with an abuse
of notation,

dUt = σ(t)dβt

dRt = dBt +
px (t ,Rt ,Ut )

p(t ,Rt ,Ut )
dt =

= dBt +
Ut − Rt

V (t)− t
dt +

hx (V (t)− t ,Rt ,Ut )

h(V (t)− t ,Rt ,Ut )
dt . (3)

Let

rt = Rt − e−
∫ t

0
ds

V (s)−s

∫ t

0
e
∫ s

0
du

V (u)−u
hx (V (s)− s,Rs,Us)

h(V (s)− s,Rs,Us)
ds.

This rt satisfies

drt = dBt +
Ut − rt

V (t)− t
ds.

So as in the Gaussian case rt converges to U1.
Campi, Çetin & Danilova Markov Bridges and Insider Trading



So we need

lim
t→1

e−
∫ t

0
ds

V (s)−s

∫ t

0
e
∫ s

0
du

V (u)−u
hx (V (s)− s,Rs,Us)

h(V (s)− s,Rs,Us)
ds = 0.

by de L’Hôpital rule the limit equals

lim
t→1

(V (t)− t)
hx (V (t)− t ,Rt ,Ut )

h(V (t)− t ,Rt ,Ut )
= 0

due to the following: Let xn → x , zn → z and tn → 0. Then

lim
n→∞

tn
hx

h
(tn, xn, zn) = 0.

The result above continues to hold when x = ±∞ as well.
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A straightforward corollary: signal with drift

Let Z be the unique strong solution to

Zt = Z0 +

∫ t

0
σ(s)dβs +

∫ t

0
σ2(s)b(Zs)ds,

where b ∈ C2
b with bounded derivatives, σ is as before and

P(Z0 ∈ dz) = Γ(c,0, z)dz for some c ∈ (0,1). Define X by

dXt = dBt +

{
b(Xs) +

ρx (t ,Xt ,Zt )

ρ(t ,Xt ,Zt )

}
dt ,

for t ∈ (0,1) with X0 = 0. Here ρ(t , x , z) := Γ(V (t)− t , x , z)
where V (t) = c +

∫ t
0 σ

2(u)du and Γ(t , x , z) is the transition
density of ζt = βt + b(ζt )dt . Then

1 Xt −
∫ t

0 b(Xs)ds is a standard BM;
2 X1 = Z1, Qz-a.s. where Qz is the law of (X ,Z ) with Z0 = z

and X0 = 0.
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An example

Suppose Z is an Ornstein-Uhlenbeck type process, i.e.

dZt = σ(t)dβt − bσ2(t)Ztdt ,

where b > 0 is a constant and Z0 has law G(c,0, ·).

Note that in this case

Γ(t , x , z) = q((1− e−2bt )/2b, xe−bt , z).

Let X be defined by X0 = 0 and

dXt = dBt +

{
Zt − Xte−b(V (t)−t)

eb(V (t)−t) − e−b(V (t)−t) − bXt

}
dt ,

for t ∈ (0,1). Then, the previous theorem implies that X is an
Ornstein-Uhlenback process in its own filtration and a bridge,
i.e. X1 = Z1, Qz-a.s.
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