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Asset price models

Mathematical Finance:

I price dynamics exogenous:
semimartingale models

I stochastic analysis

+ mathematically tractable

+ dynamic model: hedging

+ ‘easy’ to calibrate: volatility

– only suitable for (very) liquid
markets or small investors

Economics:

I prices endogeneous: demand
matches supply

I equilibrium theory

+ undeniably reasonable
explanation for price formation

+ excellent qualitative properties

– difficult to calibrate:
preferences, endowments

– quantitative accuracy?

Our goal:

Bridge the gap between these price formation principles!
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Basic principle: Stay close to Black-Scholes

I Wealth dynamics induced by ‘small’ trades should be given by
the usual stochastic integrals at least to first order:

VT (εQ) = ε

∫ T

0
Qs dS0

s + o(ε) for ε→ 0

I Specify wealth dynamics for ‘any’ predictable trading strategy

I Asset prices for small exposures should allow for an expansion
of the form

p(εψ) = ε EQψ︸︷︷︸
Black-Scholes price

+
1

2
ε2C (ψ)︸ ︷︷ ︸

liquidity correction

+o(ε2) for ε→ 0

Main idea:
Use dynamic indifference prices!
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General setting

Financial model

I beliefs and information flow described by stochastic basis
(Ω,FT , (Ft)0≤t≤T ,P)

I marketed claims: European with payoff profiles
ψi ∈ L0(FT ) (i = 1, . . . , I ) possessing all exponential
moments

I utility functions um : R→ R (m = 1, . . . ,M) with bounded
absoulte risk aversion:

0 < c∗ ≤ −
u′′m(x)

u′m(x)
≤ c∗ <∞

; similar to exponential utilities

I initial endowments αm
0 ∈ L0(FT ) (m = 1, . . . ,M) have finite

exponential moments and form a Pareto-optimal allocation



Pareto-optimal allocations

Recall:

I α = (αm) ∈ L0(FT ,RM) is Pareto-optimal if Σ = Σmα
m

cannot be re-distributed to form a better allocation α̃ = (α̃m):

Eum(α̃m) ≥ Eum(αm) with ‘>’ for some m ∈ {1, . . . ,M} .

I α = (αm) Pareto-optimal iff same marginal indifference price
quotes from all market makers, i.e., we have a universal
marginal pricing measure Q(α) for the market:

dQ(α)

dP
∝ u′m(αm) independent of m

I Pareto-optimal allocations realized through trades among
market makers ; complete OTC-market

I 1-1 correspondence to weight vectors w ∈ RM
+ ,
∑

wm = 1.



A single transaction

I pre-transaction endowment of market makers: α = (αm) with
total endowment Σ =

∑
m α

m

I investor submits passes q = (q1, . . . , qI ) claims on to the
market makers along with a cash transfer of size x

I total endowment of market makers after transaction

Σ̃ = Σ + (x + 〈q, ψ〉)

is redistributed among the market makers to form a new
Pareto optimal allocation of endowments α̃ = (α̃m)

Obvious question:

How exactly to determine the cash transfer x and the new
allocation α̃?



A single transaction

Theorem
There exists a unique cash transfer x = x(q) and a unique
Pareto-optimal allocation α̃ = (α̃m(q)) of the total endowment
Σ̃(x , q) = Σ + (x + 〈q, ψ〉) such that each market maker is as
well-off after the transaction as he was before:

Eum(α̃m) = Eum(αm) (m = 1, . . . ,M) .

Note:
The cash transfer x can be viewed as the market’s indifference
price for the transaction q: it is the minimal amount for which the
market makers can accommodate the investor’s order without
anyone of them being worse-off.
; most friendly market environment for our investor!
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Basic questions about market indifference prices

I How does the market indifference price depend on the
transaction’s size?

I Under what conditions is there a liquidity premium?

I What are its key determinants?

I How does the market’s pre-transaction exposure affect the
market indifference price?

I How to take into account the market makers’ risk aversion
and ability to hedge?

I Is there a difference between a model with several market
makers and one with a representative market maker?

I . . .



Expansions of market indifference prices

Theorem
The indifference price x = x(q) is twice cont. differentiable with

x(q + ∆q)− x(q) = −EQ[〈∆q, ψ〉]

+
1

2R0
ER[(〈∆q, ψ〉 − EQ〈∆q, ψ〉)2] +

R0

2
ER

[(
dQ
dR

)2

varρ[Z ∆q]

]
+ o(|∆q|2), ∆q → 0,

where

I Q ∼ P is the equilibrium pricing measure determined by the
market makers’ Pareto allocation

I R0 is the market’s risk tolerance at transaction time

I R ∼ Q is the market’s risk tolerance measure

I ρ is the vector of the market makers’ risk relative tolerances

I Z describes the sensitivities of Pareto weights w.r.t. q



Some observations

x(q + ∆q)− x(q) = −EQ[〈∆q, ψ〉]

+
1

2R0
ER[(〈∆q, ψ〉 − EQ〈∆q, ψ〉)2] +

R0

2
ER

[(
dQ
dR

)2

varρ[Z ∆q]

]
+ o(|∆q|2), ∆q → 0,

I Up to 1st order, the transaction costs are as in a small
investor setting with pricing measure Q.

I The market indifference price is convex in the transaction size.

I The liquidity premium is always nonnegative and vanishes if
and only if we have a pure (and pointless) cash transaction:
〈∆q, ψ〉 ≡ const
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I The liquidity premium splits into an aggregate component and
one featuring the relative risk tolerances ρm = Rm/

∑
l R l .

I Up to 2nd order, there is no difference between our multiple
market maker model and a representative market maker model
if and only if

ERlψ = ERmψ (l ,m = 1, . . . ,M)

where Rm is market maker m’s risk tolerance measure, i.e., if
and only if the extra endowment with any tradable claim has
the same 2nd order impact on every market maker’s expected
utility.



Key tool: Convex duality of saddle functions

Theorem
The representative agent’s utility

r(v , x , q) = max
α :

P
m α

m=Σ+(x+〈q,ψ〉)

∑
m

vmEum(αm)

has the dual

r̃(u, y , q) = sup
v

inf
x
{〈v , u〉+ xy − r(v , x , q)}

in the sense that

r(v , x , q) = inf
u

sup
y
{〈v , u〉+ xy − r̃(u, y , q)}

and, for fixed q, (v , x) is a saddle point for r̃(u, y , q) if and only if
(u, y) is a saddle point for r(v , x , q).



Implications of duality

I properties of r translate into properties of r̃

I r ∈ C 2 iff r̃ ∈ C 2

I derivatives of r can be computed in terms of derivatives of r̃

I For conjugate saddle points (v , x) and (u, y):

v = ∂u r̃(u, y , q), x = ∂y r̃(u, y , q),

and
u = ∂v r(v , x , q), y = ∂x r(v , x , q) .

; explicit construction of cash transfer x = r̃(u, 1, q) and
Pareto weights w = ∂u r̃(u, 1, q)/|∂u r̃(u, 1, q)|1 for given
utility vector u and transaction q



The wealth dynamics for simple strategies

When our investor follows a simple strategy

Qt =
∑
n

qn1(tn−1,tn](t) with qn ∈ L0(Ftn−1)

we can proceed inductively to determine the corresponding cash
balance process

Xt =
∑
n

xn1(tn−1,tn](t)

and (conditionally) Pareto-optimal allocations

At =
∑
n

αn1(tn−1,tn](t) .

In particular, we obtain the investor’s terminal wealth mapping:

Q 7→ VT (Q) == 〈QT , ψ〉 = XT =
∑
m

αm
T −

∑
m

αm
0

Mathematical challenge:

How to consistently pass to general predictable strategies?
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The technical key observation

Hence: Sufficient to track the evolution of weight vectors Wt and
of the overall endowment Σt . . .

or more simply, given the current
cumulatively generated position Qt , keep track of the amount of
cash Xt exchanged so far:

Σt = Σ0 + (Xt + 〈Qt , ψ〉) .

But: (Wt ,Xt) changes whenever Qt does: ‘wild’ dynamics!

Fortunately: Given q = Qt , (Wt ,Xt) can be recovered from the
vector of the market makers’ expected utilities u = Ut :

Wt = Wt(u, q), Xt = Xt(u, q)

— and these utilities evolve as martingales:
I no changes because of transactions: indifference pricing

principle
I changes induced by arrival of new information: martingales
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An SDE for the utility process

We need to understand the martingale dynamics of expected
utilities.

Assumption

I filtration generated by Brownian motion B

I contingent claims ψ and total initial endowment Σ0 Malliavin
differentiable with bounded Malliavin derivatives

I bounded prudence:
∣∣∣−u′′′m (x)

u′′m(x)

∣∣∣ ≤ K < +∞

Notation:

I A(w , x , q) = Pareto allocation of Σ0 + (x + 〈q, ψ〉) with
weights w

I Ut(w , x , q) = (E [um(Am(w , x , q)) |Ft ])m=1,...,M

I dUt(w , x , q) = Ft(w , x , q) dBt



An SDE for the utility process

Theorem
For every simple strategy Q the induced process of expected
utilities for our market makers solves the SDE

dUt = Gt(Ut ,Qt) dBt , U0 = (Eum(αm
0 ))

where
Gt(u, q) = Ft(Wt(u, q),Xt(u, q), q) .

Note:
This SDE makes sense for any predictable (sufficiently integrable)
strategy Q!



The rest: Stability theory for SDEs

Corollary

For Qn such that
∫ T

0 (Qn
t − Qt)2 dt → 0 in probability, the

corresponding solutions Un converge uniformly in probability to the
solution U corresponding to Q.
In particular, we have a consistent and continuous extension of our
terminal wealth mapping Q 7→ VT (Q) from simple strategies to
predictable, a.s. square-integrable strategies.



No arbitrage

Theorem
There is no arbitrage opportunity for the large investor among all
predictable strategies.

Sketch of Proof: For the large investor to make a profit, some market
makers have to lose in terms of expected utility.

However, utility processes are local martingales and bounded from above

— thus submartingales!
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Hedging of contingent claims

Problem
Large investor wishes to hedge against a claim H using the assets
ψ available on the market.

I Is it possible at all?

I How much initial capital is needed?

I How to determine the hedging strategy?

Solution
Assume that H has all exponential moments and let ψ = WT .
Then the initial capital the large investor needs to replicate the
option H is given by the market indifference price that would be
quoted for H if this claim was traded at time 0. The hedging
strategy can be computed in terms of the martingale
representations for the utility processes induced by the
corresponding Pareto allocation:

Gt(Ut ,Qt) = It .
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Conclusion

I new model for obtaining endogenous price dynamics of illiquid
assets: market indifference pricing

I 2nd order expansions of transaction prices with insights into
the structure of liquidity premia

I nonlinear wealth dynamics accounting for liquidity premia

I consistent and continuous extension from simple to general
predictable strategies via SDE for utility process

I complete market with simple pricing rule: indifference yet
again

I only a model for permanent price impact! market resilience?
lack of counterparties?

I manipulable claims?
. . .

THANK YOU VERY MUCH!
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