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Structural Models for Power

Hybrid / structural models are alternatives to reducetfdfey steps:
Choice of Factors - Demand, Fuel Prices, Outages, etc.
Choice of functionS; = B(t, Dy, G, . . .) to map to spot power.

Calibration method for both components above.
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Exploit strong and intuitive relationships with easily ebsble
underlying price drivers (eg, load).
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Structural Models for Power

Hybrid / structural models are alternatives to reducetfdfey steps:
Choice of Factors - Demand, Fuel Prices, Outages, etc.
Choice of functionS; = B(t, Dy, G, . . .) to map to spot power.
Calibration method for both components above.

Pros and Cons:

Exploit strong and intuitive relationships with easily ebsble
underlying price drivers (eg, load).

Many factors and complex market structures leads to difiyanl
creating both realistic and mathematically tractable n®de

Examples include: Eydeland & Wolyniec (2003), Burgeal (2004),
Cartea, Figueroa and Geman (2009), Davigoal (2002),
Pirrong & Jermakyan (2008), Aid al (2009)
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The bid stack function

600 -
500 -

400 -

200 -

100

300 -

PJM sample bid stacks

—— 1st Feb 2003 rL
1st Mar 2003 t
oil b
gas fj
nuclear coal /,/)
10[;00 20(;00 30(;00 40(;00 50(;00 60(;00 70[;00 80[;00
quantit y (MW)

NE sample bid stacks

—— 1st Aug 2005 [
1st Sep 2005 [
}.
oil }
gas }(
b nuclear T /
#
£

0

5000 10000 15000 20000 25000 30000 35000
quantity (MW)

Generators make day-ahead bids based on production costs

Arrange by price (merit order) to form thed stack

Spot priceS; (market clearing price) is set by finding highest b
needed to match demarigl (often assumed inelastic).

Higher cost units are thus only needed for peak demand.

Actual bid data available in many US markets
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An alternative perspective

Can look at bid stack as a histogram of bids

Merit order is often visible through clusters of bids

PJM sample bid histogram
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Distributions of bids

Coulon, Howison (2009) - spot price/ demand / capacity / fuel price

Let Fi(x),..., Fx(z) equal the proportion of bids belowdollars for
generators of fuel type=1, ..., N, with weightsw., ..., wy.

We required < Cmm < 1. (demand cannot exceed max capacity)

Then the spot power pricg€,; solves:

Z ’UJ@ t Ciix

Hence the bid stack is the “inverse cdf” of our distributidrbmls.

C™ae% can be replaced by a proceSsfor capacity available.

Assuming0 < by, < g—: < by < 1, we can rescale the regidby,, by)
to equal(0, 1). This will improve the fit by ignoring highest and lowe:
bids (typically seb; = 0.2 andb;; = 0.9 or 0.95).

Enerav Prices — p. E



Distribution-based Bid Stack Model

Now choose two-parameter distributions for bids (locatiof scales;)
such as Gaussian, Logistic, Cauchy, Weibull.

One Fuel Case: (New England Market):
GaussiansS; = mq + s;® ! (g_f)
Logistic: S; = m1 + s1 (log(D¢) — log(Cy — Dy))
Cauchy:S; = m1 + s tan <7T (g—: — %))
Weibull: S; = —m (In(C; — Dy) — In(Cy))**
Two Fud Case: (PIJM Market, with wy =~ 0.5):
e.g. Gaussians, solves

w; B (St_m1> g (St—m2> _ &
S1 52 Cy

We estimaten, s1, mo, so by MLE independently for each day, and
then observe the relationship with fuel prices.
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Sample Bid Stack Fitting

Sample bid stacks for PIJM (left) and NEPOOL (right)
along with histogram representations and fits below:
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PJM Results (June 00 - Jul 07) forms and ss

As expected, the second distribution’s parameters show
very high correlation with natural gas prices (as high as
96% forms, In recent years).
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PJM Results (June 00 - Jul 07) form; and s;

The first distribution for PJM also shows reasonable
correlation with coal prices (86% fon; over entire
dataset).
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NE Results (Mar 03 - Jul 07) for ms and s

Again, very high correlation with gas prices (as high as
95% forms In recent years).
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Regression Results

Thus assume a linear dependence of parameters on fuel:prices
(G = gas price P; = coal price)

For PIM, mi = ag + a1 P,
mo = g + Oéth,

For NE, my = ag + a1 Gy,

S1 = BO _I_ Blph
sy = Bo + B1Gy
s1 = Bo + B1Gy

Regression results are encouraging, particularly fomegears.

m1 Or mso 81 Or s2
inter  slope  R? inter  slope R?

Entire dataset] 3.38 0.408 0.727| -1.57 0.123 0.703
PJM (Coal)

Last 2yrs 7.02 0.390 0.749 -5.32 0.198 0.869

Entire dataset| 35.15 8.51 0.833| 17.82 1.25 0.233
PJM (Gas)

Last 2yrs 31.03 9.20 0.927| 15.23 1.53 0.674

Entire dataset| 17.35 7.67 0.701] 7.36 1.29 0.168
NE (Gas)

Last 2yrs 27.36 6.58 0.908| 8.63 1.11 0.557
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Fuel Price Models

For G4, use two-factor Schwartz model, common for commodities:

dX! = rk(u — X}dt + o1dW,
dX? = podt+ oxdW,
G, = exp(g(t) + X; + X7).

For coal priceP;, a simple one-factor model:

dX} = psdt+ o3dW},
dWrdW? = piadt
AWZ2AW? = posdt

P, = exp(X}).

(Parameter estimation using MLE, Kalman Filtering anddristal gas
forward curves. Can then calibrate to current coal and gagafals.)
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Demand and Capacity Model

AssumeD; inelastic and bid stack a function @;—

AssumeD; andC; are independent of fuel pricés;, P;
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Demand and Capacity Model

AssumeD; inelastic and bid stack a function @;—

AssumeD; andC; are independent of fuel pricés;, P;

imp
t

For C,, calculate implied capacity availablg; = B (_Dt )

Cfmp describes an aggregation of several factors:

Seasonal maintenance schedules (planned outages), dagla
forced generator outages, Transmission constraints,afipeal
Constraints, Imports & Exports, Other effects.
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Demand and Capacity Model

AssumeD; inelastic and bid stack a function @;—

AssumeD; andC; are independent of fuel pricés;, P;

imp
t

For C,, calculate implied capacity availablg; = B (_Dt )

Cfmp describes an aggregation of several factors:

Seasonal maintenance schedules (planned outages), dagla
forced generator outages, Transmission constraints,afipeal
Constraints, Imports & Exports, Other effects.

Modelling D; andC'; separately leads to difficulty in satisfying
0 < % < 1, as required for the bid stack approach.

Problem avoided by using margin as a factof; = C; — D;

Model D, = log D, andM; = log M, to ensurd) < 5ot <1
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Instead: Demand and Margin Model

Log-demand well modelled as the sum of a seasonal componédrara
Ornstein-Uhlenbeck process:

logD: = f(t)+Y:
f(t) = a1+ ast+ agcos(2wt + ayq) + a5 cos(4nt + ag)
dY, = /iD(,LLD —}/t)dt—i—O'DdBt

Log-margin features short-term outages and recoveriass e
choose a regime switching process with ‘normal’ and ‘sprkgimes:

ZPU  with probability 1 — p;
log M, = op N
Z; with probability p;

whereZ?Y = kz (pz — ZPY) dt + 0zdBy,  dBydB; = p dt,
andZ’" = a—J, J~Exp(\;), forseasons=1,2, 3 4
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Parameter Estimates

Parameters ab; estimated by maximum likelihood methods.

Parameters a¥/; estimated by a combination of maximum likelihooc
and moment matching techniques.

Dynamics of underlying factors different significantly ime-scales:

Mean-Reversion \olatility

Gas X? none 0.14

X} 1.14 0.70

Y: 64.2 1.39
PIM | ZOU 133.6 6.12

Z2F | (seasavgp = 0.129, X\ =1.21,a = —1.91)

Y; 132.1 2.70
NE | ZOU 76.0 4.79

Z7F | (seasavgp = 0.072, X =1.89,a = —2.05)
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Summary of Model Performance

Encouraging results in terms of:
Simulated forward curves vs market data (eg, for PIJM below)
Behaviour / statistics of simulated price paths vs marké&t da
Regression coefficients in line with market heat rates

Implied generation volumes (ie, % of power from gas vs coal)

PJM Forward Curve (Mar 31st 2006) PJM Forward Curve (Dec 30th 2005)
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Additional Challenges

While the basic assumptions here provide a good approamé&i PJM and
NEPOOL, other markets require additional modifications.
E.g., in the German market (EEX), there are many more clggleto tackle:

Non-mandatory bidding means that total capacity (and wisigh in
the bid stack vary significantly.

The total available capacity depends strongly on highhatialy wind
capacity (can provide: 25% of demand) as well as imports / exports

Demand elasticity to price is significart= combined bid and offer
curve behaviour replaces bid stack.

Big variety of power sources: hydro, wind, nuclear, ligntteal, gas,
oil.

Carbon market in EU introduces a key additional underlyangdr.
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Carbon Price Modelling

The European Union Emissions Trading Scheme (EU ETS) begun
In 2005 has added a new dimension to energy markets.

A North American market will/may/should some day do the same

We let A; represent carbon spot (current vintage year) prices. Fromn
structural perspectived, joins fuel prices as a new cost of power
generation.

Thus the bid stack model can also be adapted to understasel the
relationships:

Parameters of bid distributions;, s; depend also on allowance
price and emission rates of coal and gas

Demand for allowances is driven both by exogenous variables
(eg weather, economy) and the merit order of the bid stack

Fuel-switching as an abatement tool captured via changes in
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Carbon Price Modelling - Literature

Common simplifying assumptions:

There is finite maturityl’ corresponding to the end of the trading
period, where a fixed penalty is paid per ton of {@ver-polluted.

Supply is strictly fixed by the annual emissions cap.

Penalties are not paid befdfédue to intra-period borrowing.
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Carbon Price Modelling - Literature

Common simplifying assumptions:

There is finite maturityl’ corresponding to the end of the trading
period, where a fixed penalty is paid per ton of {@ver-polluted.

Supply is strictly fixed by the annual emissions cap.

Penalties are not paid befdfédue to intra-period borrowing.
Key results:

Equivalence of representative agent optimisation problem

A unique equilibrium allowance pricd; exists.

Discounted allowance prices must be martingales and gatisf
Ay = (discouni x (penalty x (probability of shortfall at

Papers include: Seifert, Uhrig-Homburg, Wagner (2008 g<Diey and
Taschini (2008), Fehr and Hinz (2006), Carmanal (2008).
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Carbon Price Modelling - Bid Stack Model

How do we adapt the bid stack model to carbon markets?

A simple assumption is that, m+ are also a linear i;:
mi = o + o1 P + a Ay, mo = oo + o1Gy + ag Ay

Similarly for s; andss (due to heat rate differences)

We would expects = e, andas = e, the average emission
rates of coal and gas generators (per MWh of power).

Enerav Prices — n. 2(



Carbon Price Modelling - Bid Stack Model

How do we adapt the bid stack model to carbon markets?

A simple assumption is that, m+ are also a linear i;:
mi = o + o1 P + a Ay, mo = oo + o1Gy + ag Ay

Similarly for s; andss (due to heat rate differences)

We would expects = e, andas = e, the average emission
rates of coal and gas generators (per MWh of power).

How do fuel price movements lead to equilibrium carbon gtice
Note thatec >> e = merit order changes for high;.

‘Fuel switching’ (changes i, wy) amplifies the effect of
merit order changes.
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Carbon Price Modelling - Bid Stack Model

At expiry T', Ar has is worth either O or the penalty pricelike a
digital option. Thus for the single-period model,

A = e_T(T_t)E(t@ [7T1{YT>K}] :

whereY; is the total emissions process, alds total market cap.
Write Y = Zle Xu, WhereX; is CO, emissions ift — 1, t].

Using our frameworkX; is a function ofG,, C;, D;, M;, but alsoA;.

For the Gaussian bid stack model, in simplest case of canstan
emissions rategs- andeg, we have (wherd™®is max demand) :

St — Ci, A St — G A
thwleaxecCI)< t ml( t t))+w2Dmax6Gq)< t mz( ty t))7

s1(Ct, At) s2(Gt, At)

- A — A D
where wﬁI)(St m1(Ct, t)> _|_w2q)(5t ma(Gt, t)> _ t
51(Ct, At) s2(Gt, At) Dy + My

High dimensional problem to solve (numerically) {4y and.S;
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Carbon Price Modelling - Simplest Bid Stack

Let the bid stack consist of two point masses, one for coal at
be = fe + hCt +e.Ay and one for gas dt, = f, + h,G: + ez A;.

Then A; depends on coal and gas only through the fuel switching p
F, = heGemheCitlo—Je fike in Fehr and Hinz (2006).

ec_eg

SupposeD; is power demand ovet, ¢t + 1] and thatD, + M; = 1.

EmissionsX; are a piecewise linear function of demahg

Xt:

Xe=e.Di+ (6. —ey)(Dy —wy) ™ if A, < F;
X7 =e,Di+ (eg —ec)(Dy — (1 —wn)) ™t if A, > F,

As before, for a given current emissions le¥eland fuel switching
price F}, carbon priced; solves

T
Ay =nme " TP {Y; + > Xu(Du, Fu, Ay) > K} .

u=t-+1
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Carbon Price Modelling - Simplest Bid Stack

Over each time step\t, we haved; = e "2 EQ[A;, ¢ Ay].

A; can be found as RHS above is a step function decreasidg.in

LetEY [Ay | X ] = e AR [Aya¢| V2, Gi, X = X¢] and same fo.

Working backwards from maturity,

[ E2[4,|X{]
At = 4 Ft
| E2[Ay| X7

nght hand Left hand
Side Side

/

Xt

if > E(t@ Ay | XF]
if E2[Ay|X7) < F, < E2[Ay]XE]
it Fy <Ef[Av|X]].

max|
DD ey

gas

both -~ coal

coal jointly

gas

1 D
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Carbon Price Modelling - Adding more bids

It is easy to make this simple model more realistic by addiogenpoint
masses of bids (eg, categories of cleaner and dirty gasajensx.

Assumen different groups of coal generators, with:
weightsw!, w?, ... w?c,

C

heat rated., h%, ..., h"c (k% < bl fori < j),

emissions rates!, e?, ..., e"c (e’ < el fori < j),
fixed costsf!, f2,..., fre (ft < f7 fori < j).
Analogous assumptions fai; groups of gas generators
Of course requirg "% w? + > w! =1
For appropriate parameter choiceg, = ng ~ 6 already gives a
good approximation to carbon dynamics in the full bid stack.

Then at any, there are up tac + ng possible power priceS;, and up to
ncng + 1 possible permutations of the merit order (plus up¢o o cases of
matching coal and gas bids), with corresponding caseX{0D, ).
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Carbon Price Modelling - Adding more bids

As before, for each nodgs,, Y;) on our grid, A, = E¥ [A,.1|Y;, G,] We
now have a matri¥; of possible ‘fuel-switching prices’:

( hyGi—hiCi+fi—fh
el—el

hyCGGr—hlCi+fg G —fl
\ e

hyGi—heC Citfi—fe©
ngc 1

e —e
¢ g

hgGGr—heCCL+fa G fe©

n
e.© —eénG

)

/

although only elements in the ranf§e | are relevant. lhe = ng = 2:

Right hand
1 b Side Left hand

E Side

E2+ 3

el _

s E—
| S — 1

o F? F2 FPF® F4 40

Xt

max|

)
)
cl s
g
,

gl
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Carbon Price Modelling - One-Period Results

To reduce dimensionality od,(Cy, G, D;, Y;), we can assume powe
demandD; is i.i.d, and(; fixed (since impact is similar that @f,).

Then discretiz&~; (trinomial tree with mean reversion) ang
(non-recombining grid) and solve backwards fr@hfior A;(Gy, Y;).
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Carbon Price Modelling - One-Period Results

To reduce dimensionality od,(Cy, G, D;, Y;), we can assume powe
demandD; is i.i.d, and(; fixed (since impact is similar that @f,).

Then discretiz&~; (trinomial tree with mean reversion) ang

(non-recombining grid) and solve backwards fr@hfior A;(Gy, Y;).

Three regions emerge away from maturity (here 40, r = 0.05):
In outer regions, high sensitivity t6;, as we approach O ar.

In middle region, high correlation wit&'; due to ‘merit order
abatement mechanism’. Fuel switching widens this region.
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Carbon Price Modelling - One-Period Results

Simulations reveal interesting correlation structurevMeetin carbon and gas.
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Carbon Price Modelling - Multi-Period Model

Amended banking rules now imply no final maturity
Trading phasesityears each) end &t for: =1,2. ..

Shortfall at7; implies payment of penalty (since no borrowing) as
well as a debt carried into the next phase.

Assuming fixed cag per period, let; = Y; — £+¢.
Hence at time = T, — At,

At — e_TAtEQ |:AT1 _|_ 7-(-1{?,1_1>0}|Yt, Gt:| .

Within n-year trading periods, annual penalty also possible bst les
likely. eg, att =T, — 1 — At,

At p— e_TAtE@ |:AT,L_1 _|_ Wl{?Ti—l>%}|Yt7 Gt:| .
Analogy: stock paying annual dividend in event of non-caame.
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Carbon Price Modelling - Multi-Period Model

Can solve an infinite horizon problem fdy (G, Y;) under the
following (very unrealistic!) assumptions:

Fixed carbon market structure (eg, constantr)

Fixed power market structure (eg, constant generation mdx a
technology includingu;, h;, €;).

No impact from non-power sector, government interventsom
new supply sources (eg, CDM credits), etc.

Now A; < = (ie, price of a risk-free perpetual bond), allowing the
dynamic programming algorithm to converge to a solutiQ(Gy, Y;)
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Carbon Price Modelling - Infinite-Horizon

Using a cap similar to the average emissions over all gaoaratenarios:
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Carbon Markets - Back to Reality

Industry research suggests:

Majority of remaining power-sector demand before 2012 s fo
forward hedging (next phase compliance).

Utilities are hedging 30-50% two-years ahead and 60-80%
one-year ahead—- penalty payment currently very unlikely

Significant supply uncertainty due to NER mechanism, early
auctioning, CER credits, industry (non-power sector)sglland
rate of long-term cap level decrease.

Long-term supply elasticity to price also likely (eg, almagnt
technologies, offset project creation, government irgation)
— ‘production’ and ‘storage’ decisions relevant.

While many modifications are needed, the simple model canugv
some intuition about the key price dependencies.
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Summary of Dependencies in Energy Markets

Outages, other

Before { - el Market structure,

Car bon mix of fuels

Market [Power Deman(j ¥ \ > Fuel Prices
(Coal, Gas,etc.)

Vi | POWER .
: . PRICE (Merit Order)
Business Activity \

Carbon { Demand for l CARBON _—
Market emissions allowance PRICE | * [Other strategies for}

Created reducing emissions

Higher carbon prices automatically lead to emissions reolg in the
power market (through merit order changes and/or fuel switg, thus
reducing carbon prices again - an equilibrium exists.

Strength of gas, power and carbon relationships depend @hwh
scenario we consider (eg high or low demand, high or low gas/c
price ratio)
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Carbon Model Conclusions

The bid stack model successfully captures power price
behaviour and dependencies on supply and demand dr
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Carbon Model Conclusions

The bid stack model successfully captures power price
behaviour and dependencies on supply and demand dr

Extension to carbon markets is straightforward under
artificially simple assumptions. Power sector abatemem
be intuitively understood through bid stack changes.

Behaviour of non-power sector and offset supply less cl

Multi-phase modelling necessary but very challenging,
especially to non-stationarity of markets and political or
regulatory uncertainty.

Model testing and calibration to historical data is limited
but increased option price data could be beneficial.

Many interesting topics for research!
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