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Structural Models for Power
Hybrid / structural models are alternatives to reduced-form. Key steps:

• Choice of Factors - Demand, Fuel Prices, Outages, etc.

• Choice of functionSt = B(t,Dt, Gt, . . .) to map to spot power.

• Calibration method for both components above.
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• Choice of functionSt = B(t,Dt, Gt, . . .) to map to spot power.

• Calibration method for both components above.

Pros and Cons:

• Exploit strong and intuitive relationships with easily observable

underlying price drivers (eg, load).

• Many factors and complex market structures leads to difficulty in

creating both realistic and mathematically tractable models.

Energy Prices – p. 2/33



Structural Models for Power
Hybrid / structural models are alternatives to reduced-form. Key steps:

• Choice of Factors - Demand, Fuel Prices, Outages, etc.

• Choice of functionSt = B(t,Dt, Gt, . . .) to map to spot power.

• Calibration method for both components above.

Pros and Cons:

• Exploit strong and intuitive relationships with easily observable

underlying price drivers (eg, load).

• Many factors and complex market structures leads to difficulty in

creating both realistic and mathematically tractable models.

Examples include: Eydeland & Wolyniec (2003), Burgeret al (2004),

Cartea, Figueroa and Geman (2009), Davisonet al (2002),

Pirrong & Jermakyan (2008), Aidet al (2009)
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The bid stack function
PJM sample bid stacks
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• Generators make day-ahead bids based on production costs

• Arrange by price (merit order) to form thebid stack

• Spot priceSt (market clearing price) is set by finding highest bid

needed to match demandDt (often assumed inelastic).

• Higher cost units are thus only needed for peak demand.

• Actual bid data available in many US markets
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An alternative perspective
• Can look at bid stack as a histogram of bids

• Merit order is often visible through clusters of bids

PJM sample bid histogram
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Distributions of bids
Coulon, Howison (2009) - spot price / demand / capacity / fuel price

• Let F1(x), . . . , FN (x) equal the proportion of bids belowx dollars for

generators of fuel typei = 1, . . . , N , with weightsw1, . . . , wN .

• We require0 < Dt

Cmax < 1. (demand cannot exceed max capacity)

• Then the spot power priceSt solves:

N
∑

i=1

wiFi(St) =
Dt

Cmax

• Hence the bid stack is the “inverse cdf” of our distribution of bids.

• Cmax can be replaced by a processCt for capacity available.

• Assuming0 < bL < Dt

Ct
< bU < 1, we can rescale the region(bL, bU )

to equal(0, 1). This will improve the fit by ignoring highest and lowest

bids (typically setbL = 0.2 andbU = 0.9 or 0.95).
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Distribution-based Bid Stack Model
• Now choose two-parameter distributions for bids (locationmi, scalesi)

such as Gaussian, Logistic, Cauchy, Weibull.

• One Fuel Case: (New England Market):

• Gaussian:St = m1 + s1Φ
−1

(

Dt

Ct

)

• Logistic: St = m1 + s1 (log(Dt) − log(Ct − Dt))

• Cauchy:St = m1 + s1 tan
(

π
(

Dt

Ct
− 1

2

))

• Weibull: St = −m1 (ln(Ct − Dt) − ln(Ct))
1/s1

• Two Fuel Case: (PJM Market, with w1 ≈ 0.5):

• e.g. Gaussian:St solves

w1Φ

(

St − m1

s1

)

+ w2Φ

(

St − m2

s2

)

=
Dt

Ct

• We estimatem1, s1, m2, s2 by MLE independently for each day, and

then observe the relationship with fuel prices.
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Sample Bid Stack Fitting
• Sample bid stacks for PJM (left) and NEPOOL (right)

along with histogram representations and fits below:
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PJM Results (June 00 - Jul 07) form2 and s2

• As expected, the second distribution’s parameters show

very high correlation with natural gas prices (as high as

96% form2 in recent years).

PJM results (2nd distribution)
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PJM Results (June 00 - Jul 07) form1 and s1

• The first distribution for PJM also shows reasonable

correlation with coal prices (86% form1 over entire

dataset).

PJM results (1st distribution)
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NE Results (Mar 03 - Jul 07) form2 and s2

• Again, very high correlation with gas prices (as high as

95% form2 in recent years).

NE results (only distribution)
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Regression Results
• Thus assume a linear dependence of parameters on fuel prices:

(Gt = gas price,Pt = coal price)

• For PJM, m1 = α̃0 + α̃1Pt, s1 = β̃0 + β̃1Pt,

m2 = α0 + α1Gt, s2 = β0 + β1Gt

• For NE, m1 = α0 + α1Gt, s1 = β0 + β1Gt

• Regression results are encouraging, particularly for recent years.

m1 or m2 s1 or s2

inter slope R2 inter slope R2

PJM (Coal)
Entire dataset 3.38 0.408 0.727 -1.57 0.123 0.703

Last 2yrs 7.02 0.390 0.749 -5.32 0.198 0.869

PJM (Gas)
Entire dataset 35.15 8.51 0.833 17.82 1.25 0.233

Last 2yrs 31.03 9.20 0.927 15.23 1.53 0.674

NE (Gas)
Entire dataset 17.35 7.67 0.701 7.36 1.29 0.168

Last 2yrs 27.36 6.58 0.908 8.63 1.11 0.557
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Fuel Price Models
• ForGt, use two-factor Schwartz model, common for commodities:

dX1
t = κ(µ1 − X1

t )dt + σ1dWt

dX2
t = µ2dt + σ2dW̃t

Gt = exp(g(t) + X1
t + X2

t ).

• For coal pricePt, a simple one-factor model:

dX3
t = µ3dt + σ3dW 3

t ,

dW 1
t dW 3

t = ρ13dt

dW 2
t dW 3

t = ρ23dt

Pt = exp(X3
t ).

(Parameter estimation using MLE, Kalman Filtering and historical gas

forward curves. Can then calibrate to current coal and gas forwards.)
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Demand and Capacity Model
• AssumeDt inelastic and bid stack a function ofDt

Ct
.

• AssumeDt andCt are independent of fuel pricesGt, Pt
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Demand and Capacity Model
• AssumeDt inelastic and bid stack a function ofDt

Ct
.

• AssumeDt andCt are independent of fuel pricesGt, Pt

• ForCt, calculate implied capacity available:St = Bobs
(

Dt

C
imp
t

)

• C
imp
t describes an aggregation of several factors:

Seasonal maintenance schedules (planned outages), Unplanned /

forced generator outages, Transmission constraints, Operational

Constraints, Imports & Exports, Other effects.
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Demand and Capacity Model
• AssumeDt inelastic and bid stack a function ofDt

Ct
.

• AssumeDt andCt are independent of fuel pricesGt, Pt

• ForCt, calculate implied capacity available:St = Bobs
(

Dt

C
imp
t

)

• C
imp
t describes an aggregation of several factors:

Seasonal maintenance schedules (planned outages), Unplanned /

forced generator outages, Transmission constraints, Operational

Constraints, Imports & Exports, Other effects.

• ModellingDt andCt separately leads to difficulty in satisfying

0 < Dt

Ct
< 1, as required for the bid stack approach.

• Problem avoided by using margin as a factor:Mt = Ct − Dt

• Model D̃t = log Dt andM̃t = log Mt to ensure0 < Dt

Dt+Mt
< 1
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Instead: Demand and Margin Model
• Log-demand well modelled as the sum of a seasonal component and an

Ornstein-Uhlenbeck process:

log Dt = f(t) + Yt

f(t) = a1 + a2t + a3 cos(2πt + a4) + a5 cos(4πt + a6)

dYt = κD(µD − Yt)dt + σDdBt

• Log-margin features short-term outages and recoveries. Thus we

choose a regime switching process with ‘normal’ and ‘spike’regimes:

log Mt =







ZOU
t with probability1 − pi

ZSP
t with probabilitypi

whereZOU
t = κZ

(

µZ − ZOU
t

)

dt + σZdB̃t, dBtdB̃t = ρ dt,

andZSP
t = α − J , J ∼ Exp(λi), for seasonsi = 1, 2, 3, 4.
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Parameter Estimates
• Parameters ofDt estimated by maximum likelihood methods.

• Parameters ofMt estimated by a combination of maximum likelihood

and moment matching techniques.

• Dynamics of underlying factors different significantly in time-scales:

Mean-Reversion Volatility

Gas
X2

t none 0.14

X1
t 1.14 0.70

PJM

Yt 64.2 1.39

ZOU
t 133.6 6.12

ZSP
t (seas avg:p = 0.129, λ = 1.21, α = −1.91)

NE

Yt 132.1 2.70

ZOU
t 76.0 4.79

ZSP
t (seas avg:p = 0.072, λ = 1.89, α = −2.05)
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Summary of Model Performance
Encouraging results in terms of:

• Simulated forward curves vs market data (eg, for PJM below)

• Behaviour / statistics of simulated price paths vs market data

• Regression coefficients in line with market heat rates

• Implied generation volumes (ie, % of power from gas vs coal)

PJM Forward Curve (Mar 31st 2006)
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PJM Forward Curve (Dec 30th 2005)
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Additional Challenges
While the basic assumptions here provide a good approximation to PJM and

NEPOOL, other markets require additional modifications.

E.g., in the German market (EEX), there are many more challenges to tackle:

• Non-mandatory bidding means that total capacity (and weightswi) in

the bid stack vary significantly.

• The total available capacity depends strongly on highly volatility wind

capacity (can provide≈ 25% of demand) as well as imports / exports.

• Demand elasticity to price is significant=⇒ combined bid and offer

curve behaviour replaces bid stack.

• Big variety of power sources: hydro, wind, nuclear, lignite, coal, gas,

oil.

• Carbon market in EU introduces a key additional underlying factor.
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Carbon Price Modelling
• The European Union Emissions Trading Scheme (EU ETS) begun

in 2005 has added a new dimension to energy markets.

• A North American market will/may/should some day do the same?

• We letAt represent carbon spot (current vintage year) prices. From a

structural perspective,At joins fuel prices as a new cost of power

generation.

• Thus the bid stack model can also be adapted to understand these

relationships:
• Parameters of bid distributionsmi, si depend also on allowance

price and emission rates of coal and gas

• Demand for allowances is driven both by exogenous variables

(eg weather, economy) and the merit order of the bid stack
• Fuel-switching as an abatement tool captured via changes inwi.
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Carbon Price Modelling - Literature
Common simplifying assumptions:

• There is finite maturityT corresponding to the end of the trading

period, where a fixed penalty is paid per ton of CO2 over-polluted.

• Supply is strictly fixed by the annual emissions cap.

• Penalties are not paid beforeT due to intra-period borrowing.
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Carbon Price Modelling - Literature
Common simplifying assumptions:

• There is finite maturityT corresponding to the end of the trading

period, where a fixed penalty is paid per ton of CO2 over-polluted.

• Supply is strictly fixed by the annual emissions cap.

• Penalties are not paid beforeT due to intra-period borrowing.

Key results:

• Equivalence of representative agent optimisation problem.

• A unique equilibrium allowance priceAt exists.

• Discounted allowance prices must be martingales and satisfy:

At = (discount) × (penalty) × (probability of shortfall at T)

Papers include: Seifert, Uhrig-Homburg, Wagner (2008), Chesney and

Taschini (2008), Fehr and Hinz (2006), Carmonaet al (2008).
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Carbon Price Modelling - Bid Stack Model

How do we adapt the bid stack model to carbon markets?

• A simple assumption is thatm1,m2 are also a linear inAt:

m1 = α̃0 + α̃1Pt + α̃2At, m2 = α0 + α1Gt + α2At

• Similarly for s1 ands2 (due to heat rate differences)

• We would expect̃α2 = eC , andα2 = eG, the average emission

rates of coal and gas generators (per MWh of power).
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Carbon Price Modelling - Bid Stack Model

How do we adapt the bid stack model to carbon markets?

• A simple assumption is thatm1,m2 are also a linear inAt:

m1 = α̃0 + α̃1Pt + α̃2At, m2 = α0 + α1Gt + α2At

• Similarly for s1 ands2 (due to heat rate differences)

• We would expect̃α2 = eC , andα2 = eG, the average emission

rates of coal and gas generators (per MWh of power).

How do fuel price movements lead to equilibrium carbon price?

• Note thateC >> eG =⇒ merit order changes for highAt.

• ‘Fuel switching’ (changes inw1, w2) amplifies the effect of

merit order changes.
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Carbon Price Modelling - Bid Stack Model
• At expiry T , AT has is worth either 0 or the penalty priceπ, like a

digital option. Thus for the single-period model,

At = e−r(T−t)
E

Q
t

[

π1{YT >K}

]

,

whereYt is the total emissions process, andK is total market cap.

• Write YT =
∑T

u=1 Xu, whereXt is CO2 emissions in[t − 1, t].

• Using our framework,Xt is a function ofGt, Ct, Dt, Mt, but alsoAt.
• For the Gaussian bid stack model, in simplest case of constant

emissions rateseC andeG, we have (whereDmax is max demand) :

Xt = w1DmaxeCΦ

(

St − m1(Ct, At)

s1(Ct, At)

)

+ w2DmaxeGΦ

(

St − m2(Gt, At)

s2(Gt, At)

)

,

where w1Φ

(

St − m1(Ct, At)

s1(Ct, At)

)

+ w2Φ

(

St − m2(Gt, At)

s2(Gt, At)

)

=
Dt

Dt + Mt

.

• High dimensional problem to solve (numerically) forAt andSt
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Carbon Price Modelling - Simplest Bid Stack
• Let the bid stack consist of two point masses, one for coal at

bc = fc + hcCt + ecAt and one for gas atbg = fg + hgGt + egAt.

• ThenAt depends on coal and gas only through the fuel switching price

Ft =
hgGt−hcCt+fg−fc

ec−eg
, like in Fehr and Hinz (2006).

• SupposeDt is power demand over(t, t + 1] and thatDt + Mt = 1.

• EmissionsXt are a piecewise linear function of demandDt

Xt =







Xc
t = ecDt + (ec − eg)(Dt − w1)

+ if At < Ft

X
g
t = egDt + (eg − ec)(Dt − (1 − w1))

+ if At > Ft

• As before, for a given current emissions levelYt and fuel switching

priceFt, carbon priceAt solves

At = πe−r(T−t)P

{

Yt +

T
∑

u=t+1

Xu(Du, Fu, Au) > K

}

.
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Carbon Price Modelling - Simplest Bid Stack
• Over each time step∆t, we haveAt = e−r∆t

E
Q[At+∆t|At].

• At can be found as RHS above is a step function decreasing inAt.

• Let E
Q
t [At′ |X

c
t ] = e−r∆t

E
Q
t [At+∆t|Yt, Gt, Xt = Xc

t ] and same forg.

• Working backwards from maturity,

At =















E
Q
t [At′ |X

c
t ] if Ft > E

Q
t [At′ |X

c
t ]

Ft if E
Q
t [At′ |X

g
t ] < Ft < E

Q
t [At′ |X

c
t ]

E
Q
t [At′ |X

g
t ] if Ft < E

Q
t [At′ |X

g
t ] .

Side

0

Right hand Left hand
Side

0
Ft

0
0 1 Dt

Xt

D max

gas

coal coal

gas

both
jointly
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Carbon Price Modelling - Adding more bids

It is easy to make this simple model more realistic by adding more point

masses of bids (eg, categories of cleaner and dirty gas generators):

• AssumenC different groups of coal generators, with:
• weightsw1

c , w2
c , . . . , wnC

c ,

• heat ratesh1
c , h

2
c , . . . , h

nC
c (hi

c ≤ hj
c for i < j),

• emissions ratese1
c , e

2
c , . . . , e

nC
c (ei

c ≤ ej
c for i < j),

• fixed costsf1
c , f2

c , . . . , fnC
c (f i

c ≤ f j
c for i < j).

• Analogous assumptions fornG groups of gas generators

• Of course require
∑nC

i=1 wi
c +

∑nG

i=1 wi
g = 1

• For appropriate parameter choices,nC = nG ≈ 6 already gives a

good approximation to carbon dynamics in the full bid stack.

Then at anyt, there are up tonC + nG possible power pricesSt, and up to

nCnG + 1 possible permutations of the merit order (plus up tonCnG cases of

matching coal and gas bids), with corresponding cases forXt(Dt).
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Carbon Price Modelling - Adding more bids

As before, for each node(Gt, Yt) on our grid,At = E
Q
t [At+1|Yt, Gt] We

now have a matrixFt of possible ‘fuel-switching prices’:

Ft =















h1

gGt−h1

cCt+f1

g−f1

c

e1
c−e1

g
· · ·

h1

gGt−h
nC
c Ct+f1

g−f
nC
c

e
nC
c −e1

g

...
. . .

...
h

nG
g Gt−h1

cCt+f
nG
g −f1

c

e1
c−e

nG
g

· · ·

h
nG
g Gt−h

nC
c Ct+f

nG
g f

nC
c

e
nC
c −e1

gnG















,

although only elements in the range[0, π] are relevant. IfnC = nG = 2:

Side

0 F4F2F1 40

Left hand
Right hand

SideE1

E2

E3

E4

E5

F3F3 0
0 1 Dt

Xt

D max

c1 c1

c1

c2
c2

c2

g1

g1

g1

g2

g2

g2
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Carbon Price Modelling - One-Period Results
• To reduce dimensionality ofAt(Ct, Gt, Dt, Yt), we can assume power

demandDt is i.i.d, andCt fixed (since impact is similar that ofGt).

• Then discretizeGt (trinomial tree with mean reversion) andYt

(non-recombining grid) and solve backwards fromT for At(Gt, Yt).
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• To reduce dimensionality ofAt(Ct, Gt, Dt, Yt), we can assume power

demandDt is i.i.d, andCt fixed (since impact is similar that ofGt).

• Then discretizeGt (trinomial tree with mean reversion) andYt

(non-recombining grid) and solve backwards fromT for At(Gt, Yt).

• Three regions emerge away from maturity (hereπ = 40, r = 0.05):
• In outer regions, high sensitivity toYt, as we approach 0 orπ.

• In middle region, high correlation withGt due to ‘merit order

abatement mechanism’. Fuel switching widens this region.
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Carbon Price Modelling - One-Period Results

Simulations reveal interesting correlation structure between carbon and gas.
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Carbon Price Modelling - Multi-Period Model

Amended banking rules now imply no final maturityT .

• Trading phases (n-years each) end atTi for i = 1, 2 . . .

• Shortfall atTi implies payment of penaltyπ (since no borrowing) as

well as a debt carried into the next phase.

• Assuming fixed capK per period, let̃Yt = Yt −
K
n t.

• Hence at timet = Ti − ∆t,

At = e−r∆t
E

Q
[

ATi
+ π1{ỸTi

>0}|Yt, Gt

]

.

• Within n-year trading periods, annual penalty also possible but less

likely. eg, att = Ti − 1 − ∆t,

At = e−r∆t
E

Q
[

ATi−1 + π1{ỸTi−1> K
n
}|Yt, Gt

]

.

• Analogy: stock paying annual dividend in event of non-compliance.
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Carbon Price Modelling - Multi-Period Model

Can solve an infinite horizon problem forAt(Gt, Yt) under the

following (very unrealistic!) assumptions:

• Fixed carbon market structure (eg, constantK, π)

• Fixed power market structure (eg, constant generation mix and

technology includingwi, hi, ei).

• No impact from non-power sector, government intervention,and

new supply sources (eg, CDM credits), etc.

Now At ≤
π
r

(ie, price of a risk-free perpetual bond), allowing the

dynamic programming algorithm to converge to a solutionAt(Gt, Yt)
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Carbon Price Modelling - Infinite-Horizon

Using a cap similar to the average emissions over all generation scenarios:
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Carbon Markets - Back to Reality
Industry research suggests:

• Majority of remaining power-sector demand before 2012 is for

forward hedging (next phase compliance).

• Utilities are hedging 30-50% two-years ahead and 60-80%

one-year ahead=⇒ penalty payment currently very unlikely

• Significant supply uncertainty due to NER mechanism, early

auctioning, CER credits, industry (non-power sector) selling, and

rate of long-term cap level decrease.

• Long-term supply elasticity to price also likely (eg, abatement

technologies, offset project creation, government intervention)

=⇒ ‘production’ and ‘storage’ decisions relevant.

While many modifications are needed, the simple model can give us

some intuition about the key price dependencies.

Energy Prices – p. 31/33



Summary of Dependencies in Energy Markets

POWER 

Market structure,
    mix of fuels

(Merit Order)
   Bid Stack

(Coal, Gas,etc.)
   Fuel Prices

emissions allowances

       Demand for

  PRICE

Other strategies for
reducing emissions

Power Demand

Outages, other
capacity issues

         Weather,

Business Activity

Fuel Switching

   PRICE

CARBON

Before 
Carbon

Carbon
Market
Created

Market

• Higher carbon prices automatically lead to emissions reductions in the

power market (through merit order changes and/or fuel switching), thus

reducing carbon prices again - an equilibrium exists.

• Strength of gas, power and carbon relationships depend on which

scenario we consider (eg high or low demand, high or low gas/coal

price ratio)
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Carbon Model Conclusions
• The bid stack model successfully captures power price

behaviour and dependencies on supply and demand drivers.
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Carbon Model Conclusions
• The bid stack model successfully captures power price

behaviour and dependencies on supply and demand drivers.

• Extension to carbon markets is straightforward under

artificially simple assumptions. Power sector abatement can

be intuitively understood through bid stack changes.

• Behaviour of non-power sector and offset supply less clear.

• Multi-phase modelling necessary but very challenging, due

especially to non-stationarity of markets and political or

regulatory uncertainty.

• Model testing and calibration to historical data is limited,

but increased option price data could be beneficial.

• Many interesting topics for research!
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