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The three pillars approach

m |First pillar: Minimum capital requirements
(quantification of risk)

e Specifies the guiding principles for the estimation of
regulatory/economic capital.

e Operational risk 1s included as a new type of risk.
m Second pillar: Supervisory review process.

m Third pillar: Market discipline (+ public disclosure)
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Operational Risk: Definition

[source: Basel 11]

644. Operational risk 1s defined as the risk of
loss resulting from inadequate or failed
internal processes, people and systems
or from external events.

This definition includes legal risk, but
excludes strategic and reputational risk.
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Operational Risk: Measurement
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Measurement approaches

m Basic Indicator Approach (BIA)
o =0.15

K, = aXEl, where .
El=gross income (mean of the last 3 years)

m Standardised Approach (TSA)

8 . are defined by the regulator
Kisy =D B xEL, where {'Bl 4 .
i=1
m Advanced Measurement Approaches (AMA)
m Scorecard approach.

|m Loss Distribution approach. |

El. are the gross income for line 1.
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AMA Soundness Standard (Basel 1I)

667.

Given the continuing evolution of analytical approaches
for operational risk, the Committee 1s not specifying the
approach or distributional assumptions used to generate
the operational risk measure for regulatory capital purposes.
However, a bank must be able to demonstrate that its
approach captures potentially severe ‘tail’ loss events.
Whatever approach is used, a bank must demonstrate that
its operational risk measure meets a soundness standard
comparable to that of the internal ratings-based approach
for credit risk, (i.e. comparable to a one year holding
period and a 99.9th percentile confidence interval).
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Business lines & risk types

Risk type

Business Clients, Business

Employment Damage to | - Execution,
. Internal | External . Products & = disruption .
line fraud fraud P IS Eh ] and system Delivery &

l Workplace Safety assets failures Process
Management
Corporate

Finance
Trading &
Sales
I I B
Commercial
Banking
Payment and
Settlement
Agency
Services and
Custody
Asset
Management
Retail
Brokerage

Business
Practices
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Loss distribution approach

m Model the distribution of the aggregate losses for a
given business line & risk type
Nt[i’j]

[i.j1 _ (i1,
Loss, 7 = Z X
n=l

N "/ is the number of losses in year ¢

for business line i and risk type j.

m Calculate Capital at Risk (99.9% percentile) of the

aggregate loss distribution per E ~
business line & risk type CaR = Z Z CaR""/!
and add them. =1 j=1
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Actuarial models: Frequency + Severity

m Hypothesis
m Severities of losses are independent
m Severities and frequencies are independent
m Model separately
m Frequency {V,}
E.g. Poisson, negative binomial, Cox process,...
m Severity {X, }

E. g. Lognormal, Gaussian inverse, Gamma,
Weibull, ...

m Obtain the distribution of aggregate losses by
combining these distributions. [Panjer, FFT, MC sim.]
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Risk analysis

m Calculate aggregate yearly loss distribution from
the frequency and severity distributions.

m Compute risk measures

e Expected loss
e Capital at Risk (CaR)

e.g2. 99.9% percentile of the aggregate loss distribution.

e Conditional CaR (Expected shortfall)

Expected loss, given that the loss 1s above CaR

Robust estimation of OR measures
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Aggregation of frequency and severity dists.
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Expected & unexpected loss

pected Loss

=

Stress Loss

- . CcaR
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Computational 1ssues 1n risk analysis

Algorithms to compute risk measures
= Deterministic algorithms
Discretized approximation to aggregate loss distribution.
e Panjer
e Fast Fourier Transform (FFT)
= Monte Carlo algorithms
Empirical compound distribution obtained by simulation.
Computationally costly.
e Use variance reduction techniques
e Hardware solutions: Grid computing, GPU’s, ...

Robust estimation of OR measures
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Modeling the frequency of events

m Use only internal data
m Time unit for fit: 1 day, Iweek, 1 month, 1 year (too few data!)
m Model distributions:
m Poisson
m Negative binomial
m Cox process
m Empirical
The differences between the risk measures obtained with
different models are generally small.

m Correct the distribution parameters to take into account the
collection threshold.
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Model distributions for frequencies

m Poisson model

One-parameter model

average frequency: A

mean = variance

m Negative binomial
Two parameters

mean < variance
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Modeling the severity of events

m Use internal + external + scenarios
m Take into account the collection threshold in the fit
(truncated data)
m Model distributions:
m Lognormal
m Piecewise models:
e Model for the body (e.g. empirical, lognormal)
e Model for the tail
e Generalized Pareto
e g-and-h distribution

The differences among the risk measures obtained with
different models are generally large.

Robust estimation of OR measures
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Modeling the severity of events

Prahability density
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Separate models for the body and tail
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A cautionary tale

Tails are notoriously difficult to model
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The lognormal distribution

LNpdf (x; 14,0) = ! - exp{— ! > (log x —,U)z}
20 x 20
x>0 LN distribution ( 1=10.00, 0 =2.50)
X ~exp(u+ozZ); Z~NQOD | AT
%Z ‘\‘
m exp(UL) = scale f X |
vl 7 A
T s
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The g-and-h distribution

8Z __
X =a+be—lexp(1h22)
g 2

Z ~ N(,1)

m g = skewness
m h = kurtosis

Advantages

m Flexible, realistic fits (Dutta & Perry, 2007)

Disadvantages
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m Slow convergence to asymptotic regime (EVT) (Degen et al., 2007)

m Unstable estimates of parameters
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Extreme Value Theory and operational risk

m Asymptotic regime:
CaR 1s dominated by single extreme events from the
tail of the severity distribution.

m Asymptotically, the tail of a distribution 1s has
Generalized Pareto form.

m These extreme events should be
e Independent.
e Identically distributed.
e Constant probability occurrence per unit time.
= Poisson distribution.

m Model: Poisson + Pareto tail.

Robust estimation of OR measures
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The Generalized Pareto distribution

m Probability density function

Gdef (x; u’ 169 5) . G: distribution (u = 3.00e+005, p =5.00e+005, & = 1.00)
L = —
1 £ wl|h
:—£1+é(x—u)+j \x
g\ b il
£B>0
xzu  (if §20) ) ‘

log(X)
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The parameter C

m If £ > 0.5 the variance diverges.
m If £ > 1 the mean diverges.
m The expected loss 1s not defined.

m Empirical estimates of the unexpected loss
(the difference between a high percentile of the
aggregate loss distribution and the expected loss)
can be negative !

m In Pareto fits to empirical operational loss data,
values of ¢ close to 1 and even larger can be found.

Robust estimation of OR measures
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Pareto fit: Estimates of ¢ (N = 10°)

m Theoretical value for Pareto data & = 0.7
m Theoretical value for lognormal data & =0
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Pareto fit: Estimates of ¢ (N = 10°)

m Theoretical value for Pareto data & = 0.7
m Asymptotic value for lognormal data & =0

0.9 . . — : : 0.8
— Lognormal
085 || — Pareto 075
08 07k
075
065
07r
ar 0B
0.65
nasr
06r
055 | el
05+ 0.45
— Lognormal
— Pareto
D45 1 1 | 1 1 D‘q T |
500 1000 1500 2000 2500 3000 3500 500 1000 1500

Threshald

Robust estimation of OR measures

| |
2000 2500
Threshold

|
3000

1
3500

4000

28



Sensitivity to single events (N=10°, M=100)

U B g CaR (x1073)
Theoretical | 1930 2300 0.7 3604
Maximum 1900 2352 0.55 1144
excluded [1876, 1914] [2086, 2726] |[0.45, 0.70] [661, 3167]
Maximum 1928 2303 0.66 2492
included [1913, 1.934] [2022, 2619] |[0.55, 0.81] [1261, 7695]
32 -65 0.1 1335
variation [19, 50] [-107, -39] [0.08, 0.13] [538, 4537]
1.67 -2.78 17.92 104.01
% variation |[0.97, 2.69] [-4.48, -1.72] |[13.03, 26.96] | [70.36, 145.72]
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Model uncertainty

m [osses sampled from a lognormal distribution (U =5, ©)
m Sample size N = 10,000
— Poisson model (A = 2,000)

S yeas of loss data

m Collection threshold: u

Best severity fit

u = 3,000 u= 10,000
o best fit CaR error best fit CaR error
1.00 | LN-gamma  8.07E4-07 -0.01% | Gamma mixture 8.27E407 2.37%
1.25 g-and-h 1.15E408 0.29% | g-and-h 1.15E408 -0.26%
1.50 g-and-h 1.85E408 3.04% Burr 2.31E4+08 28.52%
1.75 | LN-gamma  2.73E4+08  -12.08% | LN-gamma 2. 7TAE4+08  -11.70%
2.00 LN 7.17E+08 0.43% | Lognormal 7.18E+08 0.50%
2.25 LN 1.99E+09 6.94% | LN mixture 1.85E+09 -0.74%
2.50 | LN mixture 3.25E+09 -30.54% | g-and-h 3.42E-+4+09 -26.92%
2.75 Burr 9.59E+10  462.20% | Burr 4.66E+10  173.29%
3.00 Burr 1.89E+11  201.73% | Burr 2.24E+11  257.60%

Robust estimation of OR measures
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Which model for the tail?

m 5 yeas of data of losses ) o __
m Data sampled from a p e

I
Lognormal (W=35,0=2) WHMM
Al B

m The sample size is N.

M= 10000

m Model: I e
frequency: mm
m Poisson A =N/5 i R -
Severity: x g

m lognormal

Pl

m LN body + g-and-h tail mm‘m
= LN body + Pareto tail -~

Robust estimation of OR measures
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Which model to measure of risk?

A Tail model

CaR x10—?

cCaR x10—?

200 LN 1.48 2.87
P 15.14 o0

g-and-h 3.49 9.75

2,000 LN 5.55 9.44
P 151.93 0O

g-and-h 16.98 42.79

20,000 LN 23.60 33.76
=P 1522.28 o0

g-and-h 80.48 181.61

Robust estimation of OR measures
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Statistics for goodness of fit tests

Fy(x) : Empirical cdf
F(x) : Model distribution (fitted to the data)

m Kolmogorov-Smirnov (KS) KS = arg max| F (x) - Fy ()|
m Cramer-von Mises (CvM) CvM = f dF (x)(F (x) = Fyy (x))
m Anderson-Darling (AD) + right-tailed variant (rt-AD)

(F(x)-F, (%))’
F(x)(1- F(x))

(F(x)-Fy (%))
1-F(x)

AD = j: dF (x)

rt-AD = J‘: dF (x)

Robust estimation of OR measures
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Goodness of fit tests (lognormal sample)

N  Tail model KS CvM AD rt-AD
1,000 LN 0.457  0.597  0.627 0.705
GP 0.540  0.657  0.710 0.836

g-and-h 0.653  0.797  0.828 0.891

10,000 LN 0.618 0.572  0.673 0.682
GP 0.071  0.104  0.124 0.066

g-and-h 0.180  0.143  0.183 0.238

100,000 LN 0.769  0.785  0.899 0.838
GP 0.006  0.004  0.003 0.002

g-and-h 0.007  0.014 0.019 0.027

Robust estimation of OR measures
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Goodness of fit tests (LN body + g-and-h tail)

N  Tail model KS CvM AD rt-AD
1,000 LN 0.640 0.674  0.695 0.703
P 0.875  0.755  0.735 0.839

g-and-h 0.770  0.752  0.768 0.776

10,000 LN 0.116  0.240  0.163 0.120
P 0.440 0.372  0.239 0.205

g-and-h 0.525 0.684  0.568 0.414

100,000 LN 0.026  0.050  0.045 0.025
P 0.022  0.098  0.042 0.010

g-and-h 0.247 0.233  0.170 0.252

Robust estimation of OR measures
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Goodness of fit tests (LN body + GP tail)

N  Tail model KS CvM AD rt-AD
1,000 LN 0.827 0.681  0.813 0.775
GP 0.810 0.889  0.949 0.962

g-and-h 0.694  0.734  0.831 0.859

10,000 LN 0.649 0.659  0.370 0.222
<P 0.586  0.468  0.532 0.493

g-and-h 0.245  0.290  0.288 0.304

100,000 LN 0.003  0.006  0.000 0.000
<P 0.254  0.195  0.177 0.163

g-and-h 0.007  0.008  0.002 0.002

Robust estimation of OR measures
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Lognormal vs. Pareto

m It is extremely difficult to distinguish between
lognormal and Pareto tails for small data samples.

m If data 1s actually lognormal, but we describe 1t using
a Pareto model, CaR 1is typically overestimated.

m If data 1s actually Pareto , but we describe it using a
lognormal model, CaR is typically underestimated.

m Is EVT directly applicable?
® We may not be in the asymptotic regime yet.

m There 1s an upper bound for the losses an institution
can have (use of distributions with finite support?)
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Lognormal vs. Pareto (in the Internet)

A. B. Downey (2005) Computer communications,
“Lognormal and Pareto distributions in the Internet”

m Insufficient or ambiguous evidence for long-tailed
(Pareto) behavior in many datasets

Example: Distribution of file sizes

m In many cases lognormal fit as good as Pareto
model

m  Some evidence for long-tailed distributions in
m Interarrival times of TCP packets

m Distribution of transfer times
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It data were Pareto

m Empirical estimates of ¢ can be close to 1 for real
operational loss data.

m Extremely large unrealistic estimates of CaR
(economic interpretation?).

m Very unstable estimates in samples with less than
T =10%- 10° events
e Difficulties in the choice of threshold for POT fit.
e Sensitivity to the presence or absence of extreme events.
e Lack of stability of risk measures with time.

Robust estimation of OR measures
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Assuming a cap on the losses

m Fits become more robust T

e Models with finite moments. |
* Less sensitive to single events.

a4
©
Q

* Risks measures more stable
with time.

m Loss cap can be used as a

single control parameter e

e Can be set using economic arguments.

e Less arbitrary than other modeling choices (in particular,
than the parametric form of the severity distribution).

Robust estimation of OR measures
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CaR estimates with LN data + loss cap

m Frequency: Poisson losses (A= 200) T
m Severity: ARCEA
LN distribution gulicisziss
=5 0=2. p—
Plots Il |
m without right truncation (top plot) o
m truncated at u,;,,, = 10° (middle plot) il { I

m truncated at u

_ 1010 P
right = 10*Y (bottom plot) - T+ e
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CaR estimates with g-and-h tail + loss cap

m Frequency: Poisson losses (A= 200) -

m Severity:
LN body n=>3, o=2.
g-and-h tail (p,;, = 0.15)
u=3x10° a=0;b=5x10% L
¢=2.10;h=0.25, RS

]
Plots
m without right truncation (top plot) Ril
m truncated at u,,,, = 10° (middle plot) .= "=~ 7o
_ 1010 5] |] H
m truncated at u,,,,, = 10" (bottom plot) “ibii i [T

o o
o 2 F & 19 o 2 4 5 &8 W
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CaR estimates with GP tail + loss cap

m Frequency: Poisson losses (A= 200) Il

m Severity: =
LN body L=>5,6=2. B

GP tail (p, , = 0.15) e —
u=3x10% B=5x10% & = 1, LSS

e . ]
§s z
e § 5
2 5
—— meoretical Cas) —— meoretical condrional CaR
] 2 [ 3 & 10 ] 2 4 3 3 10
Years Years
truncation: w,.; = 1010
d + Upight =

m without right truncation (top plot) iinin

m truncated at u

=10° (middle plot)

right

m truncated at u

= 10'0 (bottom plot) |||} {{[HEILELN

] 2 [ 6 8 0
Yo

right
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Robustness vs. sensitivity

Risk measures need to be

m Sensitive, so that it captures changes in the risk profile of
the 1nstitution.

m Robust, so it 1s not affected by spurious fluctuations in the
data sample.

These are conflicting objectives.

Need to strike a balance between robustness and sensitivity.

Robust estimation of OR measures
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Simulations: robustness vs. sensitivity:

Original sample: N = 1,000 events (5 years of data
m Case 0: original sample.
m Case 1: bootstrap sample (resampling with replacement).
m Case 2: eliminate maximum loss from the original sample.
m Case 3: double maximum loss in the original sample.
m Case 4: repeat maximum loss in the original sample.
Fit model:
= Frequency: Poisson (A = N/5 =200)
= Severity:  Fit to data assuming form of true model known.

Report statistics (median, interquartile range) for M=100 simulations.
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Lognormal data

. sensitivity

Robustness vs

Sample distribution: Lognormal
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g-and-h tail

. sensitivity

Robustness vs

Sample distribution: Lognormal body & g-and-h tail
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Robustness vs. sensitivity: GP tail

Sample distribution: Lognormal body & GP tail

Case ¢ CaR x10—? cCaR x10 9
theoretical 1.00 15.14 oo
0o | 0,00 [0.03,1.00] | 14.25 [8.18,34.75] | 162.80 [62.20,00]
1 | 0,97  [0.82,1.08] 12.00 [3.05,31.42] 130.50 [12.88, oc]
2 | 0.93  [0.84,1.02] 7.60 [3.50,17.50] 54.54 [16.19,00]
3 | 1.01 [0.05,1.10] | 16.24 [0.41,39.16] oo [81.74, oo
4 | 1.06 [0.99,1.16] | 26.27  [14.13,67.63] o [160.70,00]
Right truncation: u,.; ¢ = 109
Case ¢ CaR x10 Y cCaR x10—9
theoretical 1.00 1.06 1.20
0o | 1.00 [0.01,1.09] 1.06 [1.00,1.16] 1.19 [1.00,1.34]
1 | o0.98 [0.84,1.11] 1.05 [0.93,1.19] 1.17 [1.02,1.38]
2 | 0.92  [0.82,1.00] 1.00 [0.90,1.06] 1.09 [1.00,1.20]
3 | 1.00 [0.91,1.08] 1.07 [1.00,1.15] 1.20 [1.00,1.33]
4 | 1.07  [0.98,1.17] 1.13 [1.05,1.28] 1.31 [1.17,1.48]
Right truncation: w,.; ¢ = 1010
Case ¢ CaR x 10— Y cCaR x10—9
theoretical 1.00 6.15 7.83
0 | 0.08  [0.00,1.06] 5.69 [4.04,7.19] 7.48 [6.11,8.54]
1 | 0.95 [0.85,1.08] 5.16 [3.01,7.39] 7.08 [5.05,8.68]
2 | o0.01 [0.83,0.08] 4.19 [2.68,5.81] 6.25 [4.67,7.58]
3 0.99 [0.91,1.07] 5.95 (4.36,7.29] 7.68 [6.40,8.61]
4 | 1.05  [0.98,1.13] 6.97 [5.69,8.09] 8.39 [7.48,9.14]
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CaR

Lognormal vs. g-and-h tail vs. GP tail

woMax

< CaR, = CaR
Loss cap reduces uncertainty in model choice, parameter

bootstrap

estimates and therefore in risk measures

< CaRy,upiemax< CaR

repeatMax

CaR %109

cCaR x10~—Y

CaR x10 Y cCaR x10
1.48 2.87
1.47 [1.26,1.72] 2.76 [2.36,3.28]
1.44 [1.13,1.85] 2.72 [2.09,3.60]
1.37 [1.20,1.60] 2.57 [2.22,3.06]
1.48 [1.27,1.74] 2.79 [2.39,3.32]
1.55 [1.35,1.83] 2.02 [2.54,3.51]
CaR x10 Y cCaR x10 2
0.88 0.99
0.88 [0.82,0.93] 0.99 [0.95,1.03]
0.88 [0.79,0.96] 0.99 [0.92,1.06]
0.87 [0.80,0.91] 0.98 [0.93,1.01]
0.89 [0.83,0.93] 1.00 [0.95,1.03]
0.90 [0.84,0.95] 1.01 [0.96,1.05]
CaR x10 Y cCaR =109
1.47 2.56
1.46 [1.22,1.75] 2.54 [2.14,3.01]
1.42 [1.11,1.84] 2.48 [1.96,3.13]
1.37 [1.15,1.66] 2.40 [2.03,2.87]
1.47 [1.23,1.77] 2.57 [2.16,3.04]
1.54 [1.31,1.87] 2.67 [2.30,3.19]

CaR x10— cCaR x10 9
3.49 Q.75
2.57 [1.51,7.88)] 6.17 [2.86,31.29]
2.53 [1.47,7.20) 5.41 [2.78,25.12]
1.41 [0.94,2.25] 2.82 [1.69,4.76]
4.19 [1.70,12.36] 12.60 [3.56,60.41]
8.39 [2.17,24.83)] 36.70 [4.28,220.60]

CaR x10 9 cCaR x10 9
1.00 1.10
0.99 [0.87,1.13] 1.09 [0.98,1.30]
0.08 [0.76,1.12] 1.07 [0.90,1.29]
0.88 [0.68,1.01] 0.99 [0.83,1.10]
1.03 [0.89,1.16) 1.13 [1.00,1.24]
1.09 [0.95,1.31] 1.24 [1.05,1.51]

CaR %109 cCaR x10 9
3.00 5.00
2.47 [1.48,4.52] 4.12 [2.63,6.50]
2.11 [1.06,6.83] 3.57 [1.90,8.29]
1.34 [0.86,1.97] 2.34 [1.50,3.37
3.37 [1.73,5.54] 5.20 [3.03,7.36]
4.29 [2.12,7.34] 6.28 [3.57,8.64]

Robust estimation of OR measures

15.14 =)

14.25 [5.18,34.75] | 162.80 [62.20,00]
12.00 [3.05,31.42] | 130.50  [12.88, oc]
7.60 [3.50,17.50] 54.54 [16.19,00]
16.24 [0.41,39.16] oo [81.74, o]
26.27  [14.13,67.63] oc  [160.70,00]
CaR %10~ cCaR x10—

1.06 1.20

1.06 [1.00,1.16] 1.19 [1.09,1.34]
1.05 [0.93,1.19] 117 [1.02,1.38]
1.00 [0.90,1.06] 1.09 [1.00,1.20]
1.07 [1.00,1.15] 1.20 [1.09,1.33]
1.13 [1.05,1.28] 1.31 [1.17,1.48]

CaR x10— cCaR x10—

G.15 T.83

5.69 [4.04,7.19] 7.48 [6.11,8.54]
5.16 [3.01,7.39] 7.08 [5.05,8.68]
4.19 [2.68,5.81] 6.25 [4.67,7.58]
5.05 [4.36,7.29] 7.68 [6.40,8.61]
6.97 [5.69,8.00] 8.39 [7.48,9.14]
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Interpretation of risk analysis

Risk measures are just numbers, they need to be interpreted
m Data sources
e Reliability: Correctness / completeness
e Relevance

m Limitations of the analysis.
e Model uncertainty

e Uncertainty in the estimates of the model parameters

* Fits using different criteria (likelihood, probability weighted
moments, robust fitting techniques, etc.)

e Multiple local optima.
m Robustness and stability of the results

Robust estimation of OR measures
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Economic sense 1n economic capital

Desirable properties of risk measures
m Sensitive to changes in the risk profile.
m Robust to spurious fluctuations in data used to fit models.
m Reasonably stable with time.
Alternatives
m Use a lower percentile (e.g. operational VaR at 99%)
m Assume a loss cap: Sharp / exponential
m Set the loss cap on the basis of economic analysis
m Use the loss cap as a control / sensitivity parameter
m Generative models for operational risk events (7?7?)

Robust estimation of OR measures
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Single loss approximation

Single loss approximation [Bocker + Kliippelberg (2005)]
1—
VaR, = F<|1-—&
E[N]

Single loss approximation + mean correction
[Bocker + Sprittulla (20035)]

|-«
E[N]

VaR, = F*(l— j+(E[N]—1),u

Robust estimation of OR measures
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Second order asymptotic approximation

[Omey & Willekens (1986-7)], [Sahay, Wan & Keller (2007)]

VaR , = Feil—l_—a+[E[N ]—lj,uf(VaRa)j

E[N] E[N]
o o [0] «— 1—0(
Iterative algorithm VaR,' = F 1———
E[N]
. 2
VaRg‘“] =F"|1- L + ELN ]—1 ,uf(VaR([Ik]) . k=0,12,...
E[N] E[N]
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Second order estimate for Pareto severity

E[N*]

—1=4
E[N]

Poisson E[N]=1; E[N’] = AMA+1);

1/ 1/£

1 u u - _
Pareto  f(0=_ | FO=1- .5 F(p=0-p)u

-5
VaR," = F*( —1_“j =(1_0‘j 1
A A

¢
-« 1 Au
[l _ e 101) | _ v/, plo]
VaRY = F (1— PR f(Var! )j—VaRa ( = §VaR,5§”]
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Mean-corrected single-loss approximation
)

VaR"' = 1;0( U

X3
VaR,' =VaR| 1- L =
o T T g var

2
—var"| 14 # 4o M
“ VaR([ZO] VaRéO]

VaR!' =VaR'™ + Au [Bocker + Sprittulla, 2006

Robust estimation of OR measures
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Second order correction [Degen, 2010]

f(x)= ; ;i/li U= Idx x f(x)= 1_15 u; VaRY = (I—/fzjfu
‘;‘;};g]] ~1=~ K A(a) =
VaR" = VaR" (1+ K A(@))" =VaR"(1- K A(x))

K Al@)= A (11—_02)5 ‘ ﬁ(l—ﬂ “f s ngém

VaR.' =VaR"" + Au

Robust estimation of OR measures
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Performance of the correction by the mean

m Poisson: A =200
m Longnormal: ¢=1.5,2,25

0.2 —single-loss

relative error

——mean corrected

oL

Robust estimation of OR measures

57



Poisson (A =200) + LN (u = 200)
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Poisson (A =200)+ GP (u=2,6=1)
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Asymptotic formulas to operational VaR

m The single-loss approximation is insufficient, specially with
m [Lower percentiles.
m [ess heavy tails.
m Higher frequencies.
m The second order asymptotic approximation
m Improves estimate and 1s easy to compute.
m Can diverge.
m The single loss formula corrected by the mean
m Can be derived from the second order asymptotic.

m Accurate 1n a wide range of cases

Robust estimation of OR measures
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Estimation of the mean can be difficult

Relative error
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20H

20 H

anH

-60

-a0
a
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atl]
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State of things

m Economic sense is needed in OR measurements

m Imposing a cap (soft / hard) on OR losses introduces a
scale 1n the data.

m Generative models.
m Challenges.

m Back-testing
m Benchmarking
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