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Please, ask questions!
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Basel II

http://www.bis.org/publ/bcbs128.htm

Robust estimation of OR measures
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The three pillars approach

� First pillar: Minimum capital requirements

(quantification of risk)

• Specifies the guiding principles for the estimation of 

regulatory/economic capital. 

• Operational risk is included as a new type of risk.

� Second pillar: Supervisory review process.

� Third pillar: Market discipline (+ public disclosure)
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Operational Risk: Definition 

[source: Basel II]

644. Operational risk is defined as the risk of              

loss resulting from inadequate or failed

internal processes, people and systems

or from  external events. 

This definition includes legal risk, but           

excludes strategic and reputational risk.
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Operational Risk: Measurement
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Measurement approaches 

� Basic Indicator Approach (BIA)

� Standardised Approach (TSA)

� Advanced Measurement Approaches (AMA)

� Scorecard approach.

� Loss Distribution approach.
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AMA Soundness Standard (Basel II)

667. Given the continuing evolution of analytical approaches   

for operational risk, the Committee is not specifying the 

approach or distributional assumptions used to generate   

the operational risk measure for regulatory capital purposes. 

However, a bank must be able to demonstrate that its 

approach captures potentially severe ‘tail’ loss events. 

Whatever approach is used, a bank must demonstrate that 

its operational risk measure meets a soundness standard 

comparable to that of the internal ratings-based approach 

for credit risk, (i.e. comparable to a one year holding

period and a 99.9th percentile confidence interval).
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Business lines & risk types

Business 
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Loss distribution approach 

� Model the distribution of the aggregate losses for a 
given business line & risk type

� Calculate Capital at Risk (99.9% percentile) of the 

aggregate loss distribution per                                 

business line &  risk type

and add them.
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Actuarial models: Frequency + Severity 

� Hypothesis

� Severities of losses are independent

� Severities and frequencies are independent

� Model separately

� Frequency {Nt} 

E.g. Poisson, negative binomial, Cox process,…

� Severity {Xnt}

E. g. Lognormal, Gaussian inverse, Gamma, 
Weibull, …

� Obtain the distribution  of aggregate losses  by 
combining these distributions. [Panjer, FFT, MC sim.]
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Risk analysis

� Calculate aggregate yearly loss distribution from 

the frequency and severity distributions.

� Compute risk measures

• Expected loss

• Capital at Risk (CaR)

e.g. 99.9%  percentile of the aggregate loss distribution.

• Conditional CaR (Expected shortfall)

Expected loss, given that the loss is above CaR
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Aggregation of frequency and severity dists. 
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Expected & unexpected loss
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Computational issues in risk analysis

Algorithms to compute risk measures

� Deterministic algorithms

Discretized approximation to aggregate loss distribution.

• Panjer

• Fast Fourier Transform (FFT)

� Monte Carlo algorithms

Empirical compound distribution obtained by simulation.

Computationally costly.

• Use variance reduction techniques

• Hardware solutions: Grid computing, GPU’s, …
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Modeling the frequency of events

� Use only internal data

� Time unit for fit: 1 day, 1week, 1 month, 1 year (too few data!)

� Model distributions:

� Poisson

� Negative binomial

� Cox process

� Empirical

The differences between the risk measures obtained with 
different models are generally small.

� Correct the distribution parameters to take into account the 
collection threshold.
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Model distributions for frequencies

� Poisson model

One-parameter model 

average frequency: λ

mean = variance

� Negative binomial

Two parameters

mean < variance
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Modeling the severity of events

� Use internal + external + scenarios

� Take into account the collection threshold in the fit 

(truncated data)

� Model distributions:

� Lognormal

� Piecewise models: 

• Model for the body (e.g. empirical, lognormal)

• Model for the tail    

• Generalized Pareto

• g-and-h distribution

The differences among the risk measures obtained with

different models are generally large.
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Modeling the severity of events

Focus on the tail
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Separate models for the body and tail
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A cautionary tale 

Tails are notoriously difficult to model
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The lognormal distribution

� exp(µ) ⇒ scale

� σ ⇒ tails
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The g-and-h distribution

� g ⇒ skewness

� h ⇒ kurtosis

Advantages

� Flexible, realistic fits (Dutta & Perry, 2007)

Disadvantages 

� Slow convergence to asymptotic regime (EVT) (Degen et al., 2007)

� Unstable estimates of parameters

)1,0(~

2

1
exp

1 2

NZ

Zh
g

e
baX

gZ








−
+=

Robust estimation of OR measures



24

Extreme Value Theory and operational risk

� Asymptotic regime: 

CaR is dominated by single extreme events from the 

tail of the severity distribution.

� Asymptotically, the tail of a distribution is has  

Generalized Pareto form. 

� These extreme events should be 
• Independent.

• Identically distributed.

• Constant probability occurrence per unit time.            

⇒⇒⇒⇒ Poisson distribution.

� Model: Poisson + Pareto tail.
Robust estimation of OR measures
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The Generalized Pareto distribution

� Probability density function
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The parameter ξ

� If ξ ≥ 0.5 the variance diverges.

� If ξ ≥ 1 the mean diverges.

� The expected loss is not defined.

� Empirical estimates of the unexpected loss

(the difference between a high percentile of the 

aggregate loss distribution and the expected loss) 

can be negative !

� In Pareto fits to empirical operational loss data,    

values of ξξξξ close to 1 and even larger can be found.
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Pareto fit: Estimates of ξ (N = 105)

� Theoretical value for Pareto data ξξξξ = 0.7

� Theoretical value for lognormal data ξξξξ = 0
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Pareto fit: Estimates of ξ (N = 103)

� Theoretical value for Pareto data ξξξξ = 0.7

� Asymptotic value for lognormal data ξξξξ = 0

28Robust estimation of OR measures
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Sensitivity to single events (N=103, M=100)

u β ξ CaR (×10-3)

Theoretical      1930            2300             0.7 3604  

Maximum 

excluded 

1900

[1876, 1914] 

2352

[2086, 2726] 

0.55

[0.45, 0.70] 

1144

[661, 3167] 

Maximum 

included

1928

[1913, 1.934] 

2303

[2022, 2619]   

0.66

[0.55, 0.81] 

2492

[1261, 7695] 

variation        
32

[19, 50]     

-65

[-107, -39]    

0.1

[0.08, 0.13] 

1335

[538, 4537] 

% variation    

1.67

[0.97, 2.69] 

-2.78

[-4.48, -1.72] 

17.92

[13.03, 26.96] 

104.01

[70.36, 145.72] 
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Model uncertainty

� Losses sampled from a lognormal distribution (µµµµ = 5, σσσσ)

� Sample size  N = 10,000  

5 yeas of loss data ⇒ Poisson model (λλλλ = 2,000)

� Collection threshold: u

Best severity fit 

Robust estimation of OR measures
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Which model for the tail?

� 5 yeas of data of losses 

� Data sampled from a

Lognormal (µµµµ = 5, σσσσ = 2)

� The sample size is N.

� Model:

frequency: 

� Poisson λλλλ = N/5

Severity:

� lognormal 

� LN body + g-and-h tail 

� LN body + Pareto tail

Robust estimation of OR measures
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Which model to measure of risk?

32Robust estimation of OR measures
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Statistics for goodness of fit tests

Robust estimation of OR measures
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Goodness of fit tests (lognormal sample)
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Goodness of fit tests (LN body + g-and-h tail)
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Goodness of fit tests (LN body + GP tail)
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Lognormal vs. Pareto 

� It is extremely difficult to distinguish between 

lognormal and Pareto tails for small data samples.

� If data is actually lognormal, but we describe it using 

a Pareto model, CaR is typically overestimated. 

� If data is actually Pareto , but we describe it using a 

lognormal model, CaR is typically underestimated. 

� Is EVT directly applicable?

� We may not be in the asymptotic regime yet.

� There is an upper bound for the losses an institution 

can have (use of distributions with finite support?)
Robust estimation of OR measures
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Lognormal vs. Pareto (in the Internet) 

A. B. Downey (2005) Computer communications,  

“Lognormal and Pareto distributions in the Internet”

� Insufficient or ambiguous evidence for long-tailed 

(Pareto) behavior in many datasets 

Example: Distribution of file sizes

� In many cases lognormal fit as good as Pareto 

model

� Some evidence for long-tailed distributions in

� Interarrival times of TCP packets 

� Distribution of transfer times 
Robust estimation of OR measures



39

If data were Pareto

� Empirical estimates of ξ can be close to 1 for real 

operational loss data.

� Extremely large unrealistic estimates of CaR

(economic interpretation?).

� Very unstable estimates in samples with less than    

T = 104 - 105 events

• Difficulties in the choice of threshold for POT fit.

• Sensitivity to the presence or absence of extreme events.

• Lack of stability of risk measures with time.

Robust estimation of OR measures
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Assuming a cap on the losses

� Fits become more robust

• Models with finite moments.

• Less sensitive to single events.

• Risks measures more stable

with time.

� Loss cap can be used as a                                       

single control parameter

• Can be set using economic arguments.

• Less arbitrary than other modeling choices (in particular, 

than the parametric form of the severity distribution).

40Robust estimation of OR measures
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CaR estimates with LN data + loss cap

� Frequency: Poisson losses (λ= 200) 

� Severity:

LN distribution

µ = 5, σ= 2.

Plots

� without right truncation (top plot)

� truncated at  uright = 109 (middle plot) 

� truncated at  uright = 1010 (bottom plot)

41Robust estimation of OR measures
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CaR estimates with g-and-h tail + loss cap

� Frequency: Poisson losses (λ= 200) 

� Severity:

LN body µ = 5, σ= 2.

g-and-h tail (ptail = 0.15)

u = 3 × 105;  a = 0; b = 5 × 104;

g = 2.10; h = 0.25, 

Plots

� without right truncation (top plot)

� truncated at  uright = 109 (middle plot) 

� truncated at  uright = 1010 (bottom plot) 

42Robust estimation of OR measures



43

CaR estimates with GP tail + loss cap

� Frequency: Poisson losses (λ= 200) 

� Severity:

LN body µ = 5, σ= 2.

GP tail (ptail = 0.15)

u = 3 × 105; β = 5 × 105; ξ = 1, 

Plots

� without right truncation (top plot)

� truncated at  uright = 109 (middle plot) 

� truncated at  uright = 1010 (bottom plot) 

43Robust estimation of OR measures



44

Robustness vs. sensitivity

Risk measures need to be 

� Sensitive,  so that it captures changes in the risk profile of 

the institution.

� Robust, so it is not affected by spurious fluctuations in the 

data sample.

These are conflicting objectives.

Need to strike a balance between robustness and sensitivity.

44Robust estimation of OR measures



45

Simulations: robustness vs. sensitivity:

Original sample: N = 1,000 events (5 years of data

� Case 0: original sample.

� Case 1: bootstrap sample (resampling with replacement).

� Case 2: eliminate maximum loss from the original sample.

� Case 3: double maximum loss in the original sample.

� Case 4: repeat maximum loss in the original sample.

Fit model:

� Frequency:  Poisson (λ = N/5 = 200)

� Severity:      Fit to data assuming form of true model known.

Report statistics (median, interquartile range) for  M=100 simulations.
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Robustness vs. sensitivity: Lognormal data
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Robustness vs. sensitivity: g-and-h tail
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Robustness vs. sensitivity: GP tail

48Robust estimation of OR measures
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Lognormal vs. g-and-h tail vs. GP tail

49Robust estimation of OR measures

CaRwoMax< CaR0 ≈≈≈≈ CaRbootstrap< CaRdoubleMax< CaRrepeatMax

Loss cap reduces uncertainty in model choice, parameter 

estimates and therefore in risk measures



50

Interpretation of risk analysis

Risk measures are just numbers, they need to be interpreted

� Data sources

• Reliability: Correctness / completeness

• Relevance

� Limitations of the analysis.

• Model uncertainty

• Uncertainty in the estimates of the model parameters

• Fits using different criteria (likelihood, probability weighted 

moments, robust fitting techniques, etc.)

• Multiple local optima.

� Robustness and stability of the results

50Robust estimation of OR measures
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Economic sense in economic capital

Desirable properties of risk measures

� Sensitive to changes in the risk profile.

� Robust to spurious fluctuations in data used to fit models.

� Reasonably stable with time.

Alternatives

� Use a lower percentile (e.g. operational VaR at 99%)

� Assume a loss cap: Sharp / exponential

� Set the loss cap on the basis of economic analysis 

� Use the loss cap as a control / sensitivity parameter

� Generative models for operational risk events (???)

51Robust estimation of OR measures
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Single loss approximation

Single loss approximation   [Böcker + Klüppelberg (2005)]

Single loss approximation + mean correction

[Böcker + Sprittulla (2005)]
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Second order asymptotic approximation

[Omey & Willekens (1986-7)],  [Sahay, Wan & Keller (2007)]

Iterative algorithm 
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Second order estimate for Pareto severity 

54Robust estimation of OR measures
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Mean-corrected single-loss approximation

55Robust estimation of OR measures
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Second order correction [Degen, 2010] 
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Performance of the correction by the mean

57Robust estimation of OR measures

� Poisson: λλλλ = 200

� Longnormal: σσσσ = 1.5, 2, 2,5
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Poisson (λ = 200) + LN (µ = 200)
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Poisson (λ = 200) + GP (u = 2, θ = 1)
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Asymptotic formulas to operational VaR

� The single-loss approximation is insufficient, specially with

� Lower percentiles.

� Less heavy tails.

� Higher frequencies.

� The second order asymptotic approximation

� Improves estimate and is easy to compute.

� Can diverge.

� The single loss formula corrected by the mean

� Can be derived from the second order asymptotic.

� Accurate in a wide range of cases
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Estimation of the mean can be difficult

61Robust estimation of OR measures
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State of things

� Economic sense is needed in OR measurements

� Imposing a cap (soft / hard) on OR losses introduces a 

scale in the data.  

� Generative models.

� Challenges.

� Back-testing

� Benchmarking
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