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Aggregation Methods Analytical approximations

» Closed-form of G(x) not available

» Numerical approximations (e.g. Monte Carlo simulation, Fast Fourier, Panjer recursion)

Advantage
Easy to implement
Robust

Disadvantage
Time consuming

Black box
\» V = f (frequency, severity, dependence)

= Analytical approximations

Advantage
Not time consuming
Makes relation with underlying characteristics of model explicit

Disadvantage
Valid for limited set of underlying parameters



Approximation regimes Analytical approximations
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Analytical approximations

Single Cell High Quantile Approximation

Reference: Anupam sahay, Zailong Wan and Brian Keller. Operational risk capital:
asymptotics in the case of heavy-tailed severity. J Operational Risk, Vol 2 No 2, 2007.



Background Analytical approximations
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L  aggregate loss over certain time horizon (random variable)
p(n) frequency mass function

F(x) severity distribution function; F*(x) n-fold convolution
G(x) aggregate loss distribution function

For severity distributions with power-law tail (more generally heavy-tailed distributions)
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Well-known first order approximation (a.k.a single-loss approximation)
Glr)=1—-Gx) o EINF{z). = — oo
E[N] frequency mean

Can this approximation be improved by developing higher-order asymptotic terms?
YES.



Second-order approximation

Seek asymptotic approximation of remainder R(x)
Gizr) = E[N]Fiz) + R(x)

Key underlying mathematical result (Omey86, 87),
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f(x) severity density function
F,(x) integrated tail function

leads to second-order correction
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Model for comparison with simulation Analytical approximations

Frequency

Poisson
Negative Binomial

Severity
Lognormal (body) — GPD (tail)

Fhodyl =) 0 < xr< u

Fiz) = T — ' THE
1—r_1—Fu_:u(1+F. )




Quality of approximation Analytical approximations
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Quality of approximation Analytical approximations

35F : .
F'I,body = 0.4, u = 1.68
3l — — = Il body = 0.6,u = 2.08
....... FTI pody = 0.8, = 2,42

ﬁaud;} (:"' }

60_ ...............................................................................
— (FT pody = 0.8, u = 2.12)
— — =2 (FT pody = 0.8, 1 = 2.42)
—a— D (FT body = 0.4, 1 = 1.68)
- =2 'ij'-f,body = (4, u = 1.63)
400

[~}
o

‘E(lj_ £(2) ([/.)

Pl

—
o

10



Quality of approximation Analytical approximations
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Single Cell Approximation Recap Analytical approximations

»First order approximation is good for very heavy severity (infinite mean)

»Second order approximation significantly improves upon the first order in
therange 0.5 < £ <1

»Simulation studies map variation of approximation error with

characteristics of underlying frequency and severity distribution, identifying
ranges of practical use
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Analytical approximations

Multi Cell High Quantile Approximation
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Frequency dependence assumption Analytical approximations

Assume dependence only among frequency of cells

Rationale

1. Analytical tractibility

2. Intuition: To a first approximation, underlying drivers affect frequency and not
severity; co-movement of drivers creates dependence among cells

3. Indirect empirical evidence: aggregate loss correlation implied from empirical
frequency correlation is a significant part of the empirical loss correlation
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Two-cell approximation Analytical approximations

Assuming only frequency dependence
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P joint probability mass function of frequencies in cell 1 and cell 2
G(x) aggregate loss distribution function of losses in cell 1 and cell 2

Key underlying mathematical result (Omey86, 87, 94) is the asymptotic
expansion of the severity convolutions.

Three cases arise:
(1) Finite mean case (§;<1,&,<1)
(2) Infinite mean case (§;=1,&,=>1)

(3) Mixed mean case (§;<1,¢,>1)
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Two-cell approximation Analytical approximations

Finite Mean Case
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I, Il:  First and Second order approximation for cell 1
[, 1V: First and Second order approximation for cell 2
V. Mixing terms
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Implied aggregate loss dependence (linear correlation) Analytical approximations
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1. 0= abs(p) < abs(p) < 1; sgn(p;) = sgn(p).

2. p, = p ifand only if either V[X,] = VIX,] = 0 or ¢4E[N,] = d,E[N,] = .
3. ¢ = 0 corresponds to the Poisson case as reported in Frachot et al. (2004).
4. Anincrease in V[X] /E2[Xj], for either j=1 or j=2, implies a decrease in p, /p.

5. Anincrease in ¢,E[N,] or ¢,E[N,] implies an increase in p, /p .
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Implied aggregate loss dependence (tail dependence)
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Tail Dependence Function Mgl =FiY > Fylgl | X = Fxlgl) = PX = F(a)
Asymptotic Tail Dependence 4 = él_ll'tg Alg)
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1. A=0

2. M(q) increases as (I)j increases or p increases

3. A(q) decreases as E[N] increases
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Two cell V/ V, , versus quantile (simulation) Analytical approximations

Result depends only on p; largely independent of choice of copula
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Two cell V/ V, , versus quantile (simulation) Analytical approximations

Effect of dependence, both absolute value and sensitivity, decreases as tail becomes heavier
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Two cell V/ V, , versus quantile (simulation) Analytical approximations

Effect of dependence is negligible for Poisson frequency distribution
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Single cell dominance (simulation) Analytical approximations

Contours of VaR, / VaR,,,; §,=0.9, E[N,] =100, p=0.16

62/ 1

E[N,] 7 E[N]
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Quality of two-cell approximation; identical cells Analytical approximations
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Multi Cell Approximation Recap Analytical approximations

»Approximation depends only on the correlation, and is independent of any
other characteristic of the copula (dependence structure)

»Effect of dependence decreases as severity tail(s) become heavier
=|nsignificant effect of dependence in the case of Poisson

=Quality of approximation is similar to single cell result
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