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Analytical approximations
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Analytical approximationsAggregation Methods

Closed-form of G(x) not available

Numerical approximations (e.g. Monte Carlo simulation, Fast Fourier, Panjer recursion)

Advantage
Easy to implement
Robust

Disadvantage
Time consuming
Black box

Analytical approximations

Advantage
Not time consuming
Makes relation with underlying characteristics of model explicit

Disadvantage
Valid for limited set of underlying parameters

V = f (frequency, severity, dependence)
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Analytical approximations

High severityLow severity
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Central Limit asymptotics

High quantile

 

asymptotics

Phantom risks

Insignificant contribution

Approximation regimes
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Analytical approximations

Single Cell High Quantile
 

Approximation

Reference: Anupam

 

sahay, Zailong

 

Wan and Brian Keller. Operational risk capital: 
asymptotics

 

in the case of heavy-tailed severity. J Operational Risk, Vol

 

2 No 2, 2007.
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Analytical approximationsBackground

Well-known first order approximation (a.k.a

 

single-loss approximation)

L aggregate loss over certain time horizon (random variable)
p(n)

 

frequency mass function
F(x)

 

severity distribution function; F*n(x)

 

n-fold convolution
G(x)

 

aggregate loss distribution function

E[N]

 

frequency mean

Can this approximation be improved by developing higher-order asymptotic terms?
YES.

For severity distributions with power-law tail (more generally heavy-tailed distributions)

ξ

 

tail index
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Analytical approximations

Key underlying mathematical result (Omey86, 87),

Seek asymptotic approximation of remainder R(x)

Finite mean

Infinite mean

leads to second-order correction

f(x)

 

severity density function
FI

 

(x) integrated tail function

Second-order approximation
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Frequency

Severity

Poisson
Negative Binomial

Lognormal (body) –

 

GPD (tail)

Model for comparison with simulation
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Analytical approximationsQuality of approximation
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Analytical approximationsQuality of approximation
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Analytical approximationsSingle Cell Approximation Recap

First order approximation is good for very heavy severity (infinite mean)

Second order approximation significantly improves upon the first order in 
the range 0.5 <  ξ < 1

Simulation studies map variation of approximation error with 
characteristics of underlying frequency and severity distribution, identifying 
ranges of practical use
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Multi Cell High Quantile
 

Approximation
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Analytical approximations

Assume dependence only among frequency of cells

Rationale

1.

 

Analytical tractibility

2.

 

Intuition: To a first approximation, underlying drivers affect frequency and not 
severity; co-movement of drivers creates dependence among cells

3.

 

Indirect empirical evidence: aggregate loss correlation implied from empirical 
frequency correlation is a significant part of the empirical loss correlation

Frequency dependence assumption
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Key underlying mathematical result (Omey86, 87, 94) is the asymptotic 
expansion of the severity convolutions. 

Two-cell approximation

Assuming only frequency dependence

P joint probability mass function of frequencies in cell 1 and cell 2
G(x)

 

aggregate loss distribution function of losses in cell 1 and cell 2

Three cases arise:

(1)

 

Finite mean case (ξ1

 

< 1, ξ2

 

< 1)

(2)

 

Infinite mean case (ξ1

 

≥

 

1, ξ2

 

≥

 

1)

(3)

 

Mixed mean case (ξ1

 

< 1, ξ2

 

≥

 

1)
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Analytical approximationsTwo-cell approximation

I, II:    First and Second order approximation for cell 1
III, IV: First and Second order approximation for cell 2
V:       Mixing terms

Finite Mean Case

leading to
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Analytical approximationsImplied aggregate loss dependence (linear correlation)

1.

 

0 ≤

 

abs(ρL

 

) ≤

 

abs(ρ)

 

≤

 

1; sgn(ρL

 

) = sgn(ρ).

2.  ρL

 

= ρ if and only if either V[X1

 

] = V[X2

 

] = 0 or φ1

 

E[N1

 

] = φ2

 

E[N2

 

] = ∞.

3.  φ

 

= 0 corresponds to the Poisson case as reported in Frachot

 

et al. (2004).

4.  An increase in V[Xj

 

]

 

/ E2[Xj ], for either j=1 or j=2, implies a decrease in ρL

 

/ρ .

5.  An increase in φ1

 

E[N1

 

] or φ2

 

E[N2

 

] implies an increase in ρL

 

/ρ .
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Analytical approximationsImplied aggregate loss dependence (tail dependence)

Tail Dependence Function

Asymptotic Tail Dependence

1.

 

λ

 

= 0

2.

 

λ(q) increases as φj increases or ρ

 

increases

3.

 

λ(q)

 

decreases as E[Nj

 

]

 

increases
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0.99 0.992 0.994 0.996 0.998 1
0.95

1

1.05

1.1

 

 

Gaussian
t-2
t-5
Clayton
Gumbel
Frank

Quantile

V / Vind

ξ

 

=0.9, φ

 

= 0.5, ρ

 

= 0.5

Result depends only on ρ; largely independent of choice of copula

Two cell V / Vind

 

versus quantile

 

(simulation)
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ξ=0.6, φ=0.5 ξ=0.9, φ=0.5

ξ=1.2, φ=0.5
0.99 0.992 0.994 0.996 0.998 1

1

1.1

1.2

1.3

1.4

 

 
ρ=0.16 ρ=0.71 ρ=0.99

0.99 0.992 0.994 0.996 0.998 1

1

1.1

1.2

1.3

1.4

 

 
ρ=0.16 ρ=0.71 ρ=0.99

0.99 0.992 0.994 0.996 0.998 1

1

1.1

1.2

1.3

1.4

 

 
ρ=0.16 ρ=0.71 ρ=0.99

Two cell V / Vind

 

versus quantile

 

(simulation)

Effect of dependence, both absolute value and sensitivity, decreases as tail becomes heavier
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Analytical approximations

ξ=0.6, φ=0 ξ=0.9, φ=0

ξ=1.2, φ=0
0.99 0.992 0.994 0.996 0.998 1

1

1.1

1.2

1.3

 

 

ρ=0.16
ρ=0.71
ρ=0.99

0.99 0.992 0.994 0.996 0.998 1

1

1.1

1.2

1.3

 

 

ρ=0.16
ρ=0.71
ρ=0.99

0.99 0.992 0.994 0.996 0.998 1

1

1.1

1.2

1.3

 

 

ρ=0.16
ρ=0.71
ρ=0.99

Effect of dependence is negligible for Poisson frequency distribution

Two cell V / Vind

 

versus quantile

 

(simulation)
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Single cell dominance (simulation)

E[N2

 

] / E[N1

 

]

ξ2

 

/ ξ1

Contours of VaR1

 

/ VaR1+2

 

; ξ1

 

=0.9, E[N1

 

]

 

=100, ρ=0.16
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Analytical approximationsQuality of two-cell approximation; identical cells
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Analytical approximations

Approximation depends only on the correlation, and is independent of any 
other characteristic of the copula (dependence structure)

Effect of dependence decreases as severity tail(s) become heavier

Insignificant effect of dependence in the case of Poisson

Quality of approximation is similar to single cell result

Multi Cell Approximation Recap
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