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Bayesian networks



BAYESIAN NETWORK

Properties

Full probability model specified by graph and by conditional probabilities:
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Step 1: Identify Cliques and Create Junction Tree

• Aim to compute posterior marginal 
distributions for variables of interest 
conditioned on evidence/data

• Methods:
– Variable elimination or message passing 

algorithms: JunctionTree, PolyTree, Shenoy-Shafer 
etc.

• Propagate evidence through junction tree
– When evidence entered calculate changes to BN 

locally

– Propagate impact of evidence globally through 
junction tree
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– Use message passing to update likelihoods 
throughout BN

– Calculations done using:

• Bayes theorem (table multiplication and 
modular calculation)

• Fundamental rule (table division)

• Marginalisation (table factoring)



Step Two: Propagation – Collect and Distribute
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Properties and Problems

• Inference in discrete models is:
– Exact

– Modular

– NP hard in principle but in practice many models are 
feasible with acceptable performancefeasible with acceptable performance

• If all variables are continuous then use analytical 
solutions (assuming conjugacy) or 
approximations

• But what about continuous variables in BNs?
• Continuous Gaussian (CG) distributions

• Uniform (static) discretisation
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Properties and Problems

What about Bayesian statistical inference?

• (Near) Impossible in previous
generation of BN algorithms

( )?P X xβ =( )?P X xα =

~ ( , )X Bin n µ

~ ( , )Betaµ α β

generation of BN algorithms

• E.g. for hybrid models

Need to use stochastic approximations: Monte Carlo Markov Chain 
(MCMC) – Gibbs sampling
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Bayesian Hierarchical Models

• Two level hierarchical normal model as HBN

• Take four groups, A-D, learn hyper parameters from data

• Predict parameters for unknown, new group, E



Static Discretization
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1. Discretize uniformly the domain        of the density 

function f as

2. Define the discretized density function fD as piecewise 
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Problems with Static 

Discretization
• The discretization is 

defined in advance and 
remains fixed throughout 
all subsequent stages 
regardless of any new 
conditional evidence
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Example:

conditional evidence

• High density regions 
(HDRs) need to be known 
in advance

• Trade-off between 
precision and 
computational cost   
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Stage 1: Given a discretisation                of  the domain     of the density 

function f , define the discretised density function fD as piecewise 

constant in each subregion        (with constant given by the mean 

value of  f )

BAYESIAN NETWORK

Approximate Inference
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Solution - Dynamic 

Discretisation
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Stage 2: Find a discretisation          that minimises the relative entropy error{ }iω

* Upper bound approximation to Kullback-Leibler (KL) distance

max maxmin min
min max

max min max min

log log
j j

f f ff f f
E f f

f f f f f f
ω

 − −
= + 

− − 



Outline of DD Algorithm

• Convert BN to Junction Tree

• Choose initial discretisation       for all continuous variables

• FOR iterations 

• FOR all continuous nodes 

Calculate                                       on
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Query model to get posterior marginal

Calculate Sum Entropy Error      for 

IF      is acceptable STOP
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BAYESIAN NETWORK
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Conditional distributions:
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Example: Mixture of Gaussians
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After 2 iterations



After 4 iterations



After 6 iterations
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After 25 iterations
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Convergence of sum Entropy 

Errors for Y



Operational risk



Resiliency Perspective

• Operational risk is faced by all 
organisations.

– Human error main cause of a catastrophic 

eventevent

– ....but without latent weaknesses in 

organisation the event would not reach 

catastrophic proportions.

• OpRisk modelling cannot solely involve 
the investigation of statistical phenomena



The “Swiss Cheese” Accident Model



The “Swiss Cheese” Accident Model



Rogue Trading

• Process

– Trade request – Conduct Trade – Registration of Trade –
Reconciliation check, Settlement and Netting – Entering of Trade 
on Trading Books

• Controls (prevent, limit and mitigate loss)

– Front office control environment (the control environment affects 
the probability of unauthorised trading)

– Back office reconciliation checks (performed per trade)

– Market positions and results monitoring, VaR calculation 
(periodical)

– Audit checks (periodical but not as often as the market checks)



E - Events

C - Controls

O – Operational

Failures

Loss Model
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C - Causal Factors

D – Dependency

Factors
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Example Loss Model



Executing the Loss Model



Loss Severity Model
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Loss Severity Model



Executing Loss Severity Model

99% 99.9%

Total losses for all events



Final Remarks

• Structured Method
– Bayesian networks are extremely flexible

– Can combine subjective judgements with data

– Supports stress testing and scenarios

• Benefits for Operational Risk• Benefits for Operational Risk
– Supports LDA approach

– Supports causal modelling

– Flexible modelling framework

– Optimise capital allocation
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