Using Hybrid Dynamic Bayesian Networks to model Operational Risk in Finance

Prof Martin Neil
Queen Mary, University of London
& Agena Ltd
London, UK

Contents

- Overview of Bayesian Networks
 - Discrete/Hybrid BNs
 - Dynamic discretization
- Operational Risk Application
 - Resiliency perspective
 - Rogue Trading

Bayesian networks

Use DAG to factorise Joint Distribution

Full probability model specified by graph and by conditional probabilities:

Step 1: Identify Cliques and Create Junction Tree

Step Two: Propagation – Collect and Distribute

Properties and Problems

- Inference in discrete models is:
 - Exact
 - Modular
 - NP hard in principle but in practice many models are feasible with acceptable performance
- If all variables are continuous then use analytical solutions (assuming conjugacy) or approximations
- But what about continuous variables in BNs?
 - Continuous Gaussian (CG) distributions
 - Uniform (static) discretisation

Properties and Problems

What about Bayesian statistical inference?

Need to use stochastic approximations: Monte Carlo Markov Chain (MCMC) – Gibbs sampling

Bayesian Hierarchical Models

- Two level hierarchical normal model as HBN
- Take four groups, A-D, learn hyper parameters from data
- Predict parameters for unknown, new group, E

Static Discretization

 χ Continuous valued node

$$\Omega_X = [x_1, x_2],]x_1, x_2], \dots,]x_{n-1}, x_n]$$

 $\Omega_{\!\scriptscriptstyle S} \quad \text{Cartesian product of } X \in S \quad \Omega_{\!\scriptscriptstyle S} = \otimes \{\Omega_{\!\scriptscriptstyle X} \mid X \in S\}$

$$P(X) = \sum_{\mathbf{y} \in \Omega_{S-X}} P(X, \mathbf{y})$$

Intervals of $\Omega_{\!\scriptscriptstyle S}$ defined in advance

- 1. Discretize uniformly the domain $\Omega_{\!\scriptscriptstyle X}$ of the density function f as $\Omega_{\scriptscriptstyle X}=\bigcup \omega_{\!\scriptscriptstyle i}$
- 2. Define the discretized density function f_D as piecewise uniform (with constant value given by the mean value of f in each subregion)

Problems with Static Discretization

- The discretization is defined in advance and remains fixed throughout all subsequent stages regardless of any new conditional evidence
- High density regions (HDRs) need to be known in advance
- Trade-off between precision and computational cost

Example:

$$f(Y) = N(10,100)$$

Solution - Dynamic Discretisation

Stage 1: Given a discretisation $\Omega = \bigcup_{\mathcal{O}_i}$ of the domain Ω of the density function f, define the discretised density function f_D as piecewise constant in each subregion \mathcal{O}_i (with constant given by the mean value of f)

Stage 2: Find a discretisation $\{\omega_i\}$ that minimises the relative entropy error

$$E_{j} = \left[\frac{f_{\text{max}} - \overline{f}}{f_{\text{max}} - f_{\text{min}}} f_{\text{min}} \log \frac{f_{\text{min}}}{\overline{f}} + \frac{\overline{f} - f_{\text{min}}}{f_{\text{max}} - f_{\text{min}}} f_{\text{max}} \log \frac{f_{\text{max}}}{\overline{f}} \right] |\omega_{j}|$$

^{*} Upper bound approximation to Kullback-Leibler (KL) distance

Outline of DD Algorithm

- Convert BN to Junction Tree
- Choose initial discretisation $\Omega^{(0)}$ for all continuous variables
- FOR iterations k = 1, 2,, n
 - FOR all continuous nodes X_i Calculate $p^{(k)}(X_i \mid parents\{X\},e)$ on $\Omega^{(k-1)}$
 - Propagate model using collect() and distribute()
 - Query model to get posterior marginal $p^{(k)}(X_i \mid e)$
 - Calculate Sum Entropy Error E_k for $p^{(k)}(X_i \mid e)$
 - IF E_k is acceptable STOP
 - ELSE create new $\Omega^{(k)}$ by splitting interval with $\max(E_j)$

ENDFOR

ENDFOR

Example: Mixture of Gaussians

Conditional distributions:

$$p(X = false) = 0.5, p(X = true) = 0.5$$

$$p(Y \mid X) = \begin{cases} Normal(10,100) & X = false \\ Normal(50,10) & X = true \end{cases}$$

Marginal distribution:

$$p(Y) = \sum_{X} p(X) p(Y|X) = \frac{1}{2} [Normal(y;10,100) + Normal(y;50,10)]$$

$$E[Y] = \int yf(y)dy = \lambda_1 \int yN(y \mid \mu_1, \sigma_1^2)dy + \lambda_2 \int yN(y \mid \mu_2, \sigma_2^2)dy = \lambda_1 \mu_1 + \lambda_2 \mu_2 = 30$$

$$Var[Y] = \lambda_1 (\sigma_1^2 + \mu_1^2) + \lambda_2 (\sigma_2^2 + \mu_2^2) - (\lambda_1 \mu_1 + \lambda_2 \mu_2)^2 = 455$$

After 2 iterations

After 4 iterations

After 6 iterations

[43.75 - 55] = 0.45E = 3.94

After 25 iterations

Convergence of sum Entropy Errors for Y

Operational risk

Resiliency Perspective

- Operational risk is faced by all organisations.
 - Human error main cause of a catastrophic event
 -but without latent weaknesses in organisation the event would not reach catastrophic proportions.
- OpRisk modelling cannot solely involve the investigation of statistical phenomena

The "Swiss Cheese" Accident Model

The "Swiss Cheese" Accident Model

Rogue Trading

Process

- Trade request Conduct Trade Registration of Trade –
 Reconciliation check, Settlement and Netting Entering of Trade on Trading Books
- Controls (prevent, limit and mitigate loss)
 - Front office control environment (the control environment affects the probability of unauthorised trading)
 - Back office reconciliation checks (performed per trade)
 - Market positions and results monitoring, VaR calculation (periodical)
 - Audit checks (periodical but not as often as the market checks)

Loss Model

$$p(E,C,O,F,D) = \prod_{t=1}^{T} \prod_{s=1}^{t} \prod_{j=1}^{m} \prod_{i=1}^{n} \prod_{k=1}^{o} p(E_{t} \mid E_{t-1},C_{t}) p(C_{t} \mid O_{C_{t}}) p(O_{j} \mid F_{O_{j}},D_{O_{j}}) p(D_{k} \mid O_{C_{t-s}}) p(F_{i}) p(C_{0})$$

Conditional Probability Tables

$$p(C_1 = fail \mid O_1, O_2) = \begin{cases} 1 & \text{if } O_1 \cup O_2 = fail \\ 0 & \text{otherwise} \end{cases}$$

	$O_1 = fail$	$O_1 = Ok$
$C_1 = fail$	0.8	0
$C_1 = Ok$	0.2	1

Example Loss Model

Executing the Loss Model

Loss Severity Model

$$p(E_t = e_t^L) = p_{e_t^L}$$

Probability of loss for particular event type

$$N_{e_t^L} \sim Bin(W_{e_{t-1}^L}, p_{e_t^L})$$

 $N_{e_{\perp}^{L}} \sim Bin(W_{e_{\perp}^{L}}, p_{e_{\perp}^{L}})$ Number of events per type

$$W_{e_{t-1}^{L}} = V - \sum_{t=1}^{t-1} N_{e_{t-1}^{L}}$$

Volume of events (transactions)

$$T_{e_t^L} = S_{e_t^L} \times N_{e_t^L}$$

Total losses = severity x number of events

$$f(T_{e_{t}^{L}}) = \sum_{S_{e_{t}^{L}}, N_{e_{t}^{L}}, W_{e_{t-1}^{L}}} f(T_{e_{t}^{L}} \mid S_{e_{t}^{L}}, N_{e_{t}^{L}}) f(N_{e_{t}^{L}} \mid W_{e_{t-1}^{L}}, p_{e_{t}^{L}}) f(S_{e_{t}^{L}})$$

$$f(A) = \sum_{\mathbf{T}_{e_t^L}} f(A \mid \mathbf{T}_{e_t^L}) f(\mathbf{T}_{e_t^L})$$
 Total aggregated losses

Loss Severity Model

Executing Loss Severity Model

Loss severity	μ	σ^2
$S_{e_{\!\scriptscriptstyle 1}^{dis {\scriptscriptstyle m cov} {\scriptscriptstyle ered}}}$	100	100,000
$S_{e_2^{dis { m cov} ered}}$	200	100,000
$S_{e_3^{ m discov}{ m ered}}$	500	100,000
$S_{e_{\!\scriptscriptstyle 1}^{accidental}}$	800	1,000,000
$S_{e_{\!\scriptscriptstyle 1}^{illegalfame}}$	1000	1,000,000
$S_{e_{\scriptscriptstyle \! 1}^{illegalfand}}$	5000	1,000,000

Total losses for all events

Final Remarks

Structured Method

- Bayesian networks are extremely flexible
- Can combine subjective judgements with data
- Supports stress testing and scenarios

Benefits for Operational Risk

- Supports LDA approach
- Supports causal modelling
- Flexible modelling framework
- Optimise capital allocation

Some References

Finance

- Neil, M. and Hager, D., Modeling Operational Risk in Financial Institutions using Hybrid Dynamic Bayesian Networks. Journal of Operational Risk, Volume 4/Number 1, Spring, 2009.
- Neil M. Marquez D. And Fenton N. Using Bayesian Networks to model operational risk to information technology infrastructure in financial institutions. Cass-Capco Institute Paper series on risk - Journal Vol. 22., April 2008.

Engineering

 Neil M. Marquez D. Fenton N. Improved Reliability Modeling using Bayesian Networks and Dynamic Discretization. Reliability Engineering & System Safety, Volume 95, Issue 4, April 2010, Pages 412-425.

Algorithm

 Neil M. Tailor M. Marquez D. Inference in Bayesian Networks using Dynamic Discretisation. Statistics and Computing 17:3 September 2007.