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Our work in short

Focus:
Illustrate some possible limitations of the standard techniques in operational
risk quantification.

Motivation:

Scarce literature with practical applications.

Usually focus either on the modeling of operational risk using Extreme
Value Theory (EVT) or on the aggregation of with copulas, not on both.

Contribution:

Make the link between the existing theory on EVT and on Copulas using
real heavy-tailed data.

Evaluate and compare the impact of the different parameters involved in
the process.

Elise Gourier Operational Risk Quantification 2 / 29



Introduction
Modeling loss distributions

Aggregating losses with copulas
Conclusion

1 Introduction

2 Modeling loss distributions

3 Aggregating losses with copulas

4 Conclusion

Elise Gourier Operational Risk Quantification 3 / 29



Introduction
Modeling loss distributions

Aggregating losses with copulas
Conclusion

Operational risk: an acute challenge

Several examples:

December 2008: Fraud at Bernard Madoff’s firm → 50 billion dollar loss.

January 2008: Fraud at the Société Générale → 4.9 billion euro loss.

⇒ 2004: The Basel II Accord gives the first response to the need of a
regulatory framework for operational risk, defined as:

“the risk of direct or indirect loss resulting from inadequate or failed
internal processes, people and systems or from external events. This

definition includes legal risk, but excludes strategic and reputational risk.”

New features in Basel II: Capital charges allocated to operational risk.

⇒ How to determine these capital charges?
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The Advanced Measurement Approach (Basel II)

Losses classified in 8 business lines and 7 event types.

Collection of internal and external data.

Relies on internal simulations of potential loss distributions.

Aggregation of losses.

Stress scenarios.

We will examine the following points, based on real data:

1 How does Classical analysis perform to model OR losses?

2 Extreme Value Theory: a solution to fit the tail?

3 Is the VaR a reliable measure of risk for calculating capital charges?

4 How do copulas perform to aggregate the capital charges of different
business lines?
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Description of the data

Main features:

7514 data points collected from an individual bank database between
2002 and 2006.

9 business lines (BL), 7 event types (ET).

Business lines
BL1: Agency Services
BL2: Asset Management
BL3: Commercial Banking
BL4: Corporate Finance
BL5: Payment & Settlement
BL6: Private Banking
BL7: Retail Banking
BL8: Retail Brokerage
BL9: Trading & Sales

Event types
ET1: Business Disruption and System Failures
ET2: Clients, Products and Business Practices
ET3: Damage to Physical Assets
ET4: Employment Practices and Workplace Safety
ET5: Execution, Delivery and Process Management
ET6: External Fraud
ET7: Internal Fraud
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Graphical overview of the losses

1 Some statistics after bootstrapping:
skewness=64.17; kurtosis=4630.

2 Very heavy-tailed data, due to large impact events.
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Conventional inference

Goodness-of-fit tests: Kolmogorov-Smirnov / Anderson-Darling.

Calculated for classical distribution functions.

K-S A-D c.v5% K-S c.v5% A-D
Exponential 0.43 +∞ 0.007 0.20
Weibull 0.07 +∞ 0.007 0.23
Gamma 0.07 +∞ 0.007 0.21

Lognormal 0.015 3.78 0.007 0.23

⇒ Bad fitting of the tail.
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Extreme Value Theory

Objective: Fit the tail of the distribution: rare, extreme events.

Provides a model for exceedances over a given threshold u.

Generalized Pareto Distribution

GPDξ,β(x) =


1− (1 + ξx

β
)
−1
ξ , ξ 6= 0

1− exp(− x
β

), ξ = 0.

where β > 0, x ≥ 0 when ξ ≥ 0 and 0 ≤ x ≤ −β
ξ

when ξ < 0. The parameters
ξ and β are referred to, respectively, as the shape and scale parameters.

ξ < 0 indicates a short-tail Pareto type II distribution.

ξ = 0 yields for exponential distributions.

ξ > 0 is satisfied for heavy-tailed ordinary Pareto distributions
(infinite-mean if ξ > 1).
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Extreme Value Theory

Define the excess distribution over a threshold u:

Fu(x) = P(X − u ≤ x |X > u) =
F (x + u)− F (u)

1− F (u)

for 0 ≤ x < xF − u, where xF ≤ ∞ is the right endpoint of F.

Balkema-De Haan (1974) and Pickands (1975)

Under certain conditions (which are satisfied for most of the classical
distributions),

lim
u→xF

sup
0≤x<xF−u

|Fu(x)− GPDξ,β(u)(x)| = 0
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Tail estimation

Mean-excess plot

Define the mean-excess function:

e(u) = E(X − u|X > u) =

∫
xdFu(x)

For a GPDξ,β random variable:

e(u) =
β + ξu

1− ξ

where 0 ≤ u <∞ and
0 ≤ u ≤ −β

ξ
if ξ < 0.

⇒ The GPD seems to be a good candidate.
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Selection of a threshold

Objective: Select the optimal threshold:

Balkema-de Haan and Pickands theorem ⇒ high threshold.

If too high ⇒ too little data for the fitting.

⇒ Trade-off between bias and variance!

1 Stability of the
shape parameter
estimate ξ̂ against
the threshold.

2 We fix the threshold
at the 90% percentile
(736 excesses).
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Fitting the tail

We fit the GPD to excesses:

0.95 confidence interval for the shape parameter (bootstrapping
procedure): ξ̂ ∈ [0.75, 1.05] ⇒ Infinite-mean model?

Tail plot: {log(x), log(1− F̂ (x))}

QQ-Plot

GoF tests:

K-S A-D c.v5% K-S c.v5% A-D
GPD 0.003 0.026 0.005 0.13
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Final model

Let us define F1 distribution before the threshold and F2 distribution of the
excesses. We have:

F (x) = [F1(x) · 0.90 + 0].1x≤u + [1 · 0.90 + F2(x) · 0.10].1x>u
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Capital charges

Total claim amount:
SN =

∑
i≤N

Xi

N: claim counting process ≡ Poisson process.

Distribution of SN :

P(SN ≤ x) =
∞∑
n=0

P(SN ≤ x ,N = n) =
∞∑
n=0

P(N = n)F n∗(x)

where F n∗(x) = P(SN ≤ x) is the n-th convolution of F.
⇒ FFT, Panjer, Monte-Carlo.

α 0.90 0.95 0.99 0.999
VaRα 26 36 104 639

1-year Value at Risk (in million)
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Stability of the VaR

Sensitivity with respect to the shape parameter:

Sensitivity with respect to the confidence level:
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Final models for the severities

We do the same analysis for business lines and event types when we have more
than 250 data.

Objective: Identify the most dangerous units.

Distribution Threshold ξ̂ c.i.

BL1 lognormal-GPD 0.85 0.87 [0.55,1.23]
BL3 lognormal-GPD 0.65 1.70 [1.13,2.25]
BL6 GPD 0 0.85 [0.77,1.01]
BL7 lognormal-GPD 0.90 1.05 [0.85,1.20]
BL9 lognormal-GPD 0.75 0.37 [0.13,0.60]

BL3 very heavy-tailed.

Several infinite-mean models: encourages to prudence: one big loss can
cause ruin.
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Coherence of the VaR

α VaRα(
∑

i=1,3,7,9 BLi )
∑

i=1,3,7,9 (VaRα BLi )

0.90 87 74
0.95 214 187
0.99 2 461 2 331
0.999 126 007 109 052

⇒ VaR super-additive : NOT a coherent risk measure!

Without BL3:

α VaRα(
∑

i=1,7,9 BLi )
∑

i=1,7,9 (VaRα BLi )

0.90 30 29
0.95 47 48
0.99 196 195
0.999 1 922 2 020

⇒ When ξi < 1, VaR subadditive for α sufficiently large but not stable
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Key points:

Classical distribution functions do not perform well when heavy-tailed
distributions. EVT is needed.

When ξ < 1, VaR is subadditive for high confidence levels, but it is not
stable when the quantile is too high: can lead to an overestimation of the
capital charges.

When ξ > 1, VaR is never coherent: can lead to underestimation of the
capital charges.
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Definition

Basel II: The BLs are comonotonic. ⇒ Decrease dependence between the BLs

Copula

If the random vector X has joint df F with continuous marginal distributions
F1, ...,Fd , then the copula of F (or X) is the df C of F1(X1), ...,Fd(Xd).

Sklar theorem

X1,...,Xd r.v. with marginal df F1,...,Fd and joint df F . There exists a copula
C : [0, 1]d → [0, 1] such that, for all X = (X1, ...Xd)′ ∈ Rd ,

F (X1, ...Xd) = C(F1(X1), ...,Fd(Xd)). (1)

If the margins are continuous, then C is unique.

Conversely, let C be a copula, F1, ...,Fd univariate df, then the function F
defined as in (1) is a joint df with margins F1, ...,Fd .
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Best-known copulas

1 Implicit elliptical copulas:

We know the joint distribution and the margins.

Example: Gaussian copula: CGa
P = ΨP(Ψ−1(u1), ...,Ψ−1(ud))

Meta-copulas allow to add flexibility in the marginal df.

Features

Easy to use
Symmetric

2 Explicit Archimedean copulas :

Close form expression: C(u1, ...ud ) = φ−1(φ(u1) + ...+ φ(ud ))

φ = generator of the copula (has to satisfy certain conditions)

Features

Not symmetric any more.
Only 1 parameter. → Hierarchical copulas.
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Calculation of the capital charges

For yearly losses:

1 Choose a copula.

2 Fit the parameters by MLE.

3 Simulate losses by Monte-Carlo.

Resulting capital charges:

0.90 0.95 0.99 0.999
VaR comonotonicity 65 163 2 076 98 669

VaRP meta-Gaussian copula 72 172 2 023 103 805
VaRId meta-Gaussian copula 72 172 2 145 97 217
VaR meta-Student copula 69 171 2 133 126 914

Frank copula 76 180 2 119 87 438
Cook-Johnson copula 68 177 2 131 92 789

Using copulas yields higher capital charges than making the sum of the
VaR. (comonotonicity)!!!

Goes against the diversification principle ⇒ counter-intuitive.
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Results

Without BL3:

0.90 0.95 0.99 0.999

VaR comonotonicity 24 35 110 868
VaR meta-Gaussian copula 24 34 103 742

⇒ When data have finite mean, copulas help decrease the capital charges.
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Key points:

When data have infinite-mean, lowering dependencies between the
business lines using copulas does not lower the capital charges.

The choice of the copula does not have a huge impact on the resulting
capital charges. The shape parameter has a much higher impact.

Elise Gourier Operational Risk Quantification 26 / 29



Introduction
Modeling loss distributions

Aggregating losses with copulas
Conclusion

1 Introduction

2 Modeling loss distributions
Description of the data
Overview of the data
Calculation of capital charges using EVT
Analysis at the business line level
The VaR as a risk measure

3 Aggregating losses with copulas
Brief overview of copulas
Best-known copulas
Capital charges

4 Conclusion

Elise Gourier Operational Risk Quantification 27 / 29



Introduction
Modeling loss distributions

Aggregating losses with copulas
Conclusion

Conclusion

When ξ < 1

VaR is sub-additive when the quantile is sufficiently high.

VaR is not robust when the quantile is too high.

Aggregating losses using copulas decreases the capital charges.

When ξ > 1

VaR is not coherent.

VaR is not robust.

Using copulas does not lead to a reduction of capital charges.

⇒ Applying the AMA yields highly uncertain capital charges when
infinite-mean models are involved. Caution is required...
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Conclusion

THANK YOU

FOR YOUR ATTENTION !
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