Diversification Benefits: A
Second-Order Approximation

Matthias Degen
Cornell University / ETH Zurich

Industrial-Academic Forum on Operational Risk
Fields Institute, University of Toronto
March 26, 2010




Qutline

@ Introduction

@ Part I: Analysis of diversification benefits

@ Part Il: Accuracy anaylsis of the closed-form OpVaR approximation

MA Degen, Cornell Univers’imﬁ



Introduction — Research motivation

“Given the size and interconnected nature of markets, the growth
in volumes, the global nature of traders and their cross-asset
characteristics, managing operational risk will only become more

important.”

Lloyd C. Blankfein, CEO Goldman Sachs
Financial Times, February 8, 2009.
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Introduction — Research motivation

“Given the size and interconnected nature of markets, the growth
in volumes, the global nature of traders and their cross-asset
characteristics, managing operational risk will only become more

important.”
Lloyd C. Blankfein, CEO Goldman Sachs

Financial Times, February 8, 2009.

» One (!) important part of managing OR: Calculation of regulatory
capital

» No agreed standard method for doing so
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The Basel Il regulatory framework for OR

» Consider a (AMA) bank’s business with d sub-units of business

» Basel Il requires the calculation of regulatory capital for OR through

d d
RCOR — VaR,, (Z Si) =(1-19) ZVaRa (Si),
i=1 i=1

with a = 99.9%, S; denoting the total yearly OR loss of business unit i
and for some “well-reasoned” estimate diversification benefits § € R

Focus of this talk:

» Part |: Analysis of diversification benefits §

» Part II: Calculation of VaR,, (S;)

mMA Degen, Cornell Universmm




Part |

Analysis of diversification benefits

Based on:

Degen, M., Lambrigger D. D. and Segers, J. (2010). Risk concentration
and diversification: second-order properties. Insurance: Mathematics and
Economics (to appear).
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Practical relevance:

» So far not enough evidence to convince regulators to allow § # 0

» However: 0 = 0 only for comonotonic risks; recent empirical evidence
questions this; see Cope and Antonini (2008)

Aim of our paper:

» Get a grasp on § (analytically)

» Provide a tool that allows to assess the sensitivity of diversification
benefits w.r.t. changes in the underlying input variables

Mathematical tools:

» First- and second-order asymptotic properties (o« — 1) for § = 6(«)
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Framework

Ideal:
» Find stochastic model for (S1,...,54) that “accurately” reflects the
dependence structure between business units S1,...,Sg

» Analysis of diversification benefits ¢ /risk concentration C' (and
calculation of regulatory capital) based on this model:

VaR, (Zj:1 S,»)
YL VaR. (S))

Cla) =1—-0(a)
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Ideal:
» Find stochastic model for (S1,...,54) that “accurately” reflects the
dependence structure between business units S1,...,Sg

» Analysis of diversification benefits ¢ /risk concentration C' (and
calculation of regulatory capital) based on this model:

VaR, (2;11 S,»)
YL VaR. (S))

» Too ambitious (given the state of the art in dependence modeling)

Cla) =1—-0(a)

i . . . jid
Realistic: Analysis of risk concentration for Sy,...,S; ~ F

» Toy model (no depdendence), but...




Diversification under dependence: Copulas vs. margins

Kendall's tau:
— tau=0

--- tau=0.1
...... tau=0.2

15

C(a)

Copula models:
w0 Gauss

° Student-t
Gumbel
Clayton

T T T T T T T
0.970 0.975 0.980 0.985 0.990 0.995 1.000
o

Empirical risk concentration (107 simulations) under dependence with d = 2 identically
distributed Burr margins with parameters (6 = 0.1, x = 20) in case 1 and (0 = 0.3,k =

6.7) in case 2, so that both show the same heavy-tailedness (!) (i.e. same tail index)

» Fallacy: Dependence as THE main driver of diversification effects
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Kendall's tau:
— tau=0

--- tau=0.1
...... tau=0.2
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Copula models:
w0 Gauss

° Student-t
Gumbel
Clayton

T T T T T T T
0.970 0.975 0.980 0.985 0.990 0.995 1.000
o

Empirical risk concentration (107 simulations) under dependence with d = 2 identically
distributed Burr margins with parameters (6 = 0.1, x = 20) in case 1 and (0 = 0.3,k =

6.7) in case 2, so that both show the same heavy-tailedness (!) (i.e. same tail index)

» Fallacy: Dependence as THE main driver of diversification effects

» Instead: Tail behavior of margins matters - but in an delicate way
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Back to the “toy model”...

» Non-negative S, ..., S5y WEwith F e RV_y /¢ for some £ > 0
» Let G=F*, Up = (1/F)~ (€ RV)
» We show that, as o — 1,

(o) = éi:gzs —d5!

» First-order approximation: Cy(a) = d¢~! for large values of «
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Back to the “toy model”...

» Non-negative S, ..., S5y WEwith F e RV_y /¢ for some £ > 0
» Let G=F*, Up = (1/F)~ (€ RV)
» We show that, as o — 1,

1G () 9
(o) = dF—(a) -

» First-order approximation: C;(« ! for large values of a

NN

known unknown
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Cla)
0

g-and-h

Burr

Pareto

T
0.90

Empirical risk concentration (based on 107 simulations) together with first-order approx-

imation C1 = v/2/2 =~ 0.71 for two iid rvs from a Burr (7 = 0.25,x = 8), a Pareto

T
0.92

T
0.94

T
0.96

T
0.98

T
1.00

(¢ = 0.5) and a g-and-h (g = 2, h = 0.5) distribution - same tail index!
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h g-and-h Burr

Cla)

1.0

Pareto

21 \

T T T T T T
0.90 0.92 0.94 0.96 0.98 1.00
a

Empirical risk concentration (based on 107 simulations) together with first-order approx-
imation C1 = v/2/2 =~ 0.71 for two iid rvs from a Burr (7 = 0.25,x = 8), a Pareto
(¢ = 0.5) and a g-and-h (g = 2, h = 0.5) distribution - same tail index!

» In relevant regions C'(a) very sensitive to small changes of «

» Driving factors? (— second-order properties)
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Towards a second-order result

— &1
» Find non-degenerate K and A, with lim C(a)—d

a1 A(O[) = K(dvf)

» Hard part is finding convergence rate A(-) & it turns out that two
different asymptotic regimes matter:

o) d Vs. @ d
second-order subexponentiality second-order regular variation
~> rate b(") ~> rate a(-)

» Which one dominates in the limit?

» Then, “putting together all the epsilons”...
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Main result

Second-order risk concentration

For S1,...,Sy e positive random variables and under some mild
conditions on U = (1/F) (see D., Lambrigger, Segers (2010) for
details), one has for fixed d > 2 and as o — 1,

Cla) =d*™! + K¢ ,(d)A(@) + o(A(w)),

for some constant K¢ ,(d) € R and with

@) p<-ane,
Al {a<1/(1_a>>, p>—(1A8).
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Implications

» Two different regimes of diversification effects (depending on first- and
second-order tail behavior of F’)

» Second-order approximation Cs(a) = d*~1 + K¢ ,(d) A(w)

> (Recall: first-order approximation C; () = d*~1)
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First-order approximation for ("

b g-and-h Burr

C(a)

1.0

Pareto

08
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0.90 0.92 0.94 0.96 0.98 1.00
a

Empirical risk concentration (based on 107 simulations) together with first-order approx-
imation C; = v/2/2 =~ 0.71 for two iid rvs from a Burr (7 = 0.25,x = 8), a Pareto
(¢ = 0.5) and a g-and-h (g = 2, h = 0.5) distribution - same tail index!
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Burr

0.90

Empirical risk concentration (full, based on 107 simulations) together with first-order
approximation C; = v/2/2 = 0.71 (full) and second-order approximation Cs (dashed)
for d = 2 iid rvs from a Burr (7 = 0.25,k = 8), a Pareto ({ = 0.5) and a g-and-h

(g = 2, h = 0.5) distribution - same tail index!
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Burr

0.90 0.92 0.94

Empirical risk concentration (full, based on 107 simulations) together with first-order
approximation C; = v/2/2 = 0.71 (full) and second-order approximation Cs (dashed)
for d = 2 iid rvs from a Burr (7 = 0.25,k = 8), a Pareto ({ = 0.5) and a g-and-h
(g = 2, h = 0.5) distribution - same tail index!
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Part |

<
=2 &\
«© |
° N
= £=125
ZBo | 2 =1.00
oo Oe
d=10 ” £=0.75
3 ©
s " K‘m\
~ £=0.2
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Behavior of diversification benefits for d iid Pareto(&) rvs together with respective second-
order approximations (red lines). In the right panel d = 2 is fixed with varying &
(theoretical C'(-), G numerically inverted). In the left panel £ = 0.5 is fixed and
d =2,4,6,8,10 (simulated C(-), based on n = 107 simulations).

» Theoretical /empirical (n = 107, took > 30 minutes) vs. approximation
» Error negligible in area where we need it (o = 99.9%)

» Hence, no need to simulate tons of (very) heavy-tailed data
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Conclusion (1/3) — Implications for practice

» Fallacy: Diversification effects occur mainly/only due to dependence in
the data

» At least as important driver is the tail behavior (second-order
properties !) of underlying loss model F’

» Diversification benefits are highly sensitive to VaR-level «

» Negative diversification (at 99.9%) occurs more often than is
commonly believed — in finite mean models (!)
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Conclusion (2/3) — Summary of Part |

1) Second-order approximation Cs as tool to assess the sensitivity of
diversification benefits w.r.t. changes in the

i) underlying loss model F',
ii) number of risks d,

i) level o

2) The iid case is the Fréchet-lower bound case and hence the "best
case” scenario with regards to diversification

3) Validation/consistency check of models (e.g. for given model, is
diversification benefit of, say, 20% justified—at 99.9% level)
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Conclusion (3/3) — Future Work

4) Impose dependence structure (ambitious), start with
o S1,...,5 e ~> S;’s independent, df F;

o S =(51,...,54) with (Archimedean) Copula

5) Estimation of § (idea: penultimate approximations)
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Part 11l

Accuracy anaylsis of the closed-form
OpVaR approximation

(Application of Part I; work in progress)
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Recall regulatory capital charge for operational risk:

d d
RCOR — VaR,, (Z Si) =(1-9) ZVaRa (Si),
=1 =1

with S; denoting the total yearly OR loss of business unit i

» Part |: Analysis of diversification benefit § \/

» Part II: Calculation of VaR,, (5;)
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Framework:

Classical actuarial model for non-life insurance, with total OR-loss
process for business unit S given by

N(#)

ZXIW

with (X;)i>1 "9 F as the single OR-losses, independent of the claim
arrival process (N (t)):>o.

» In OR context: t is fixed to be 1 year (and henceforth suppressed)

» Then: G(z) :=P[S < 7] Z P[N = n]F™(x)
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» Under some mild conditions on N (Embrechts et al. 1979):

G(r) ~ E(N)F(z), z— o0

» Relates single-loss model F' to total-loss model G

» Bocker and Kliippelberg (2005) show

11—«

VG,RQ(S) = G_l(a) = F_l (1 — W

(1+0(1))) L a—1
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The closed-form OpVaR approximation

1) For F € RV and with & := 1 — (1 — a)/E[N], one has for large
a-values:
VaR,(S) ~ VaRs(X)

2) Approximation 1) is used by at least one “systemically important”
bank to calculate regulatory capital

3) Goodness of approximation: not considered in detail so far (l)

4) Does it matter? - Yes!
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Motivating example

F-l(a)
» Relative approximation error: e(a) = ——= — 1
PP (@) = &= @)

Example: For simplicity consider the case

» Pareto distribution as single loss model F'

» Non-random number of losses N = n a.s.
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Relative approximation error (in %) of the closed-form OpVaR approximation (based on

10° simulations) for sums of n = 2,10, 50 and 100 iid Pareto (¢ = 0.5) losses
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0.990 0.992 0.994 a 0.996 0.998 1.000

Relative approximation error (in %) of the closed-form OpVaR approximation (based on

10° simulations) for sums of n = 2,10, 50 and 100 iid Pareto (¢ = 0.5) losses

» OpVaR approximation vastly underestimates (!) regulatory capital

» Driving factors?
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» Using Part | with “deterministic” replaced by “stochastic” sums:

Accuracy of the closed-form OpVaR approximation

Under some mild conditions on N and U = (1/F)~! one has,

for some K = K¢ ,(N) € R and with A(a) as in Theorem 1.

» The relative error e(«) grows like K¢ ,(N)A(«)
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Implications

Example: N ~ pois(A), F ~ Pareto(§), £ < 1, then:

(1—a)¢

Kep(N)=-X"% and A(a)= ¢

So, for given level o = 99.9% and
» for fixed &, error increases with increasing A

» for fixed A, error decreases with increasing &

» Second-order approximation: G (o)~ F~'(a) (1 — KA(«a))

» As opposed to first-order: G o)~ F1(a)
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Relative approximation error (in %) of the closed-form OpVaR approximation (based on

10% simulations) for sums of n = 2,10, 50 and 100 iid Pareto (¢ = 0.5) losses
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Relative approximation error (in %) of the closed-form OpVaR approximation (dashed)
compared with second-order refinement (full) (based on 10° simulations) for sums of

n = 2,10, 50 and 100 iid Pareto (§ = 0.5) losses

» Second-order term seems to be able to explain the discrepancy
between true G~ () and closed-forem approximation F'~1(a&)
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Summary of Part Il: It seems as...

» for some loss models the closed-form OpVaR approximation highly
underestimates regulatory capital

» a second-order refinement might be helpful in understanding why this
is the case (and to act correspondingly)

» the practical usefulness of the closed-form OpVaR approximation needs
to be rejudged carefully
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Thank youl!
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