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Introduction – Research motivation

“Given the size and interconnected nature of markets, the growth
in volumes, the global nature of traders and their cross-asset
characteristics, managing operational risk will only become more
important.”

Lloyd C. Blankfein, CEO Goldman Sachs
Financial Times, February 8, 2009.

I One (!) important part of managing OR: Calculation of regulatory
capital

I No agreed standard method for doing so
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The Basel II regulatory framework for OR

I Consider a (AMA) bank’s business with d sub-units of business

I Basel II requires the calculation of regulatory capital for OR through

RCOR = VaRα

(
d∑
i=1

Si

)
= (1− δ)

d∑
i=1

VaRα (Si) ,

with α = 99.9%, Si denoting the total yearly OR loss of business unit i
and for some “well-reasoned” estimate diversification benefits δ ∈ R

Focus of this talk:

I Part I: Analysis of diversification benefits δ

I Part II: Calculation of VaRα (Si)
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Part I

Analysis of diversification benefits

Based on:

Degen, M., Lambrigger D. D. and Segers, J. (2010). Risk concentration
and diversification: second-order properties. Insurance: Mathematics and
Economics (to appear).
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Practical relevance:

I So far not enough evidence to convince regulators to allow δ 6= 0

I However: δ = 0 only for comonotonic risks; recent empirical evidence
questions this; see Cope and Antonini (2008)

Aim of our paper:

I Get a grasp on δ (analytically)

I Provide a tool that allows to assess the sensitivity of diversification
benefits w.r.t. changes in the underlying input variables

Mathematical tools:

I First- and second-order asymptotic properties (α→ 1) for δ = δ(α)
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Framework

Ideal:

I Find stochastic model for (S1, . . . , Sd) that “accurately” reflects the
dependence structure between business units S1, . . . , Sd

I Analysis of diversification benefits δ/risk concentration C (and
calculation of regulatory capital) based on this model:

C(α) := 1− δ(α) =
VaRα

(∑d
i=1 Si

)
∑d
i=1 VaRα (Si)

I Too ambitious (given the state of the art in dependence modeling)

Realistic: Analysis of risk concentration for S1, . . . , Sd
iid∼ F

I Toy model (no depdendence), but...

M. Degen, Cornell University / ETH Zurich 7 / 31



Introduction Part I Part II

Framework

Ideal:

I Find stochastic model for (S1, . . . , Sd) that “accurately” reflects the
dependence structure between business units S1, . . . , Sd

I Analysis of diversification benefits δ/risk concentration C (and
calculation of regulatory capital) based on this model:

C(α) := 1− δ(α) =
VaRα

(∑d
i=1 Si

)
∑d
i=1 VaRα (Si)

I Too ambitious (given the state of the art in dependence modeling)

Realistic: Analysis of risk concentration for S1, . . . , Sd
iid∼ F

I Toy model (no depdendence), but...

M. Degen, Cornell University / ETH Zurich 7 / 31



Introduction Part I Part II

Framework

Ideal:

I Find stochastic model for (S1, . . . , Sd) that “accurately” reflects the
dependence structure between business units S1, . . . , Sd

I Analysis of diversification benefits δ/risk concentration C (and
calculation of regulatory capital) based on this model:

C(α) := 1− δ(α) =
VaRα

(∑d
i=1 Si

)
∑d
i=1 VaRα (Si)

I Too ambitious (given the state of the art in dependence modeling)

Realistic: Analysis of risk concentration for S1, . . . , Sd
iid∼ F

I Toy model (no depdendence), but...

M. Degen, Cornell University / ETH Zurich 7 / 31



Introduction Part I Part II

Diversification under dependence: Copulas vs. margins
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Empirical risk concentration (107 simulations) under dependence with d = 2 identically

distributed Burr margins with parameters (θ = 0.1, κ = 20) in case 1 and (θ = 0.3, κ =

6.7) in case 2, so that both show the same heavy-tailedness (!) (i.e. same tail index)

I Fallacy: Dependence as THE main driver of diversification effects

I Instead: Tail behavior of margins matters - but in an delicate way
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Back to the “toy model”...

I Non-negative S1, . . . , Sd
iid∼ F with F ∈ RV−1/ξ for some ξ > 0

I Let G = F ∗d, UF = (1/F )← (∈ RVξ)

I We show that, as α→ 1,

C(α) =
1
d

G←(α)
F←(α)

→ dξ−1

I First-order approximation: C1(α) = dξ−1 for large values of α

known unknown

M. Degen, Cornell University / ETH Zurich 9 / 31



Introduction Part I Part II

Back to the “toy model”...

I Non-negative S1, . . . , Sd
iid∼ F with F ∈ RV−1/ξ for some ξ > 0

I Let G = F ∗d, UF = (1/F )← (∈ RVξ)

I We show that, as α→ 1,

C(α) =
1
d

G←(α)
F←(α)

→ dξ−1

I First-order approximation: C1(α) = dξ−1 for large values of α

known unknown

M. Degen, Cornell University / ETH Zurich 9 / 31



Introduction Part I Part II
Risk Concentration Second-order asymptotics Main result Examples Conclusion
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Empirical risk concentration (based on 107 simulations) together with first-order

approximation C1 ≡
√

2/2 ≈ 0.71 for two iid rvs from a Burr (τ = 0.25, κ = 8), a

Pareto (ξ = 0.5) and a g-and-h (g = 2, h = 0.5) distribution - same tail-index!
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Empirical risk concentration (based on 107 simulations) together with first-order approx-

imation C1 ≡
√

2/2 ≈ 0.71 for two iid rvs from a Burr (τ = 0.25, κ = 8), a Pareto

(ξ = 0.5) and a g-and-h (g = 2, h = 0.5) distribution - same tail index!

I In relevant regions C(α) very sensitive to small changes of α

I Driving factors? (→ second-order properties)

M. Degen, Cornell University / ETH Zurich 10 / 31



Introduction Part I Part II
Risk Concentration Second-order asymptotics Main result Examples Conclusion

0.90 0.92 0.94 0.96 0.98 1.00

0
.6

0
.8

1
.0

1
.2

1
.4

!

Pareto

Burr
g!and!h

C
( !
)

Empirical risk concentration (based on 107 simulations) together with first-order

approximation C1 ≡
√

2/2 ≈ 0.71 for two iid rvs from a Burr (τ = 0.25, κ = 8), a

Pareto (ξ = 0.5) and a g-and-h (g = 2, h = 0.5) distribution - same tail-index!

Matthias Degen, Dominik D. Lambrigger ETH Zurich

Risk Concentration and Diversification 7 / 24

Empirical risk concentration (based on 107 simulations) together with first-order approx-

imation C1 ≡
√

2/2 ≈ 0.71 for two iid rvs from a Burr (τ = 0.25, κ = 8), a Pareto

(ξ = 0.5) and a g-and-h (g = 2, h = 0.5) distribution - same tail index!

I In relevant regions C(α) very sensitive to small changes of α

I Driving factors? (→ second-order properties)

M. Degen, Cornell University / ETH Zurich 10 / 31



Introduction Part I Part II

Towards a second-order result

I Find non-degenerate K and A, with lim
α→1

C(α)− dξ−1

A(α)
= K(d, ξ)

I Hard part is finding convergence rate A(·) & it turns out that two
different asymptotic regimes matter:

G(x)

F (x)
→ d vs. UF (td)

UF (t) → dξ

second-order subexponentiality second-order regular variation

; rate b(·) ; rate a(·)

I Which one dominates in the limit?

I Then, “putting together all the epsilons”...
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Main result

Second-order risk concentration

For S1, . . . , Sd
iid∼ F positive random variables and under some mild

conditions on U = (1/F )← (see D., Lambrigger, Segers (2010) for
details), one has for fixed d ≥ 2 and as α→ 1,

C(α) = dξ−1 +Kξ,ρ(d)A(α) + o
(
A(α)

)
,

for some constant Kξ,ρ(d) ∈ R and with

A(α) =

{
b(F←(α)), ρ < −(1 ∧ ξ),
a(1/(1− α)), ρ > −(1 ∧ ξ).
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Implications

I Two different regimes of diversification effects (depending on first- and
second-order tail behavior of F )

I Second-order approximation C2(α) = dξ−1 +Kξ,ρ(d)A(α)

I
(
Recall: first-order approximation C1(α) ≡ dξ−1

)
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First-order approximation for C:
Risk Concentration Second-order asymptotics Main result Examples Conclusion
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Second-order approximation for C:

Risk Concentration Second-order asymptotics Main result Examples Conclusion

Slow convergence case (B2/B1 → ±∞):
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Empirical risk concentration (full, based on n = 107 simulations) together with

first-order approximation C1(α) ≡ √2/2 and second-order approximation C2 (dashed)

for two iid Burr (τ = 0.25, κ = 8), Pareto (ξ = 0.5) and g-and-h (g = 2, h = 0.5) rvs.
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Empirical risk concentration (full, based on 107 simulations) together with first-order

approximation C1 ≡
√

2/2 ≈ 0.71 (full) and second-order approximation C2 (dashed)

for d = 2 iid rvs from a Burr (τ = 0.25, κ = 8), a Pareto (ξ = 0.5) and a g-and-h

(g = 2, h = 0.5) distribution - same tail index!
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Sensitivity analysis of diversification benefits
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Behavior of diversification benefits for d iid Pareto(ξ) rvs together with respective second-

order approximations (red lines). In the right panel d = 2 is fixed with varying ξ

(theoretical C(·), G← numerically inverted). In the left panel ξ = 0.5 is fixed and

d = 2, 4, 6, 8, 10 (simulated C(·), based on n = 107 simulations).

I Theoretical/empirical (n = 107, took > 30 minutes) vs. approximation

I Error negligible in area where we need it (α = 99.9%)

I Hence, no need to simulate tons of (very) heavy-tailed data
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Conclusion (1/3) – Implications for practice

I Fallacy: Diversification effects occur mainly/only due to dependence in
the data

I At least as important driver is the tail behavior (second-order
properties !) of underlying loss model F

I Diversification benefits are highly sensitive to VaR-level α

I Negative diversification (at 99.9%) occurs more often than is
commonly believed – in finite mean models (!)
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Conclusion (2/3) – Summary of Part I

1) Second-order approximation C2 as tool to assess the sensitivity of
diversification benefits w.r.t. changes in the

i) underlying loss model F ,

ii) number of risks d,

iii) level α

2) The iid case is the Fréchet-lower bound case and hence the “best
case” scenario with regards to diversification

3) Validation/consistency check of models (e.g. for given model, is
diversification benefit of, say, 20% justified—at 99.9% level)
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Conclusion (3/3) – Future Work

4) Impose dependence structure (ambitious), start with

S1, . . . , Sd
iid∼ F ; Si’s independent, df Fi

S = (S1, . . . , Sd) with (Archimedean) Copula

5) Estimation of δ (idea: penultimate approximations)
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Part II

Accuracy anaylsis of the closed-form
OpVaR approximation

(Application of Part I; work in progress)
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Recall regulatory capital charge for operational risk:

RCOR = VaRα

(
d∑
i=1

Si

)
= (1− δ)

d∑
i=1

VaRα (Si) ,

with Si denoting the total yearly OR loss of business unit i

I Part I: Analysis of diversification benefit δ �

I Part II: Calculation of VaRα (Si)
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Framework:

Classical actuarial model for non-life insurance, with total OR-loss
process for business unit S given by

S(t) =
N(t)∑
k=1

Xk,

with (Xi)i≥1
iid∼ F as the single OR-losses, independent of the claim

arrival process (N(t))t≥0.

I In OR context: t is fixed to be 1 year (and henceforth suppressed)

I Then: G(x) := P[S ≤ x] =
∞∑
n=0

P[N = n]Fn∗(x)

M. Degen, Cornell University / ETH Zurich 22 / 31
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I Under some mild conditions on N (Embrechts et al. 1979):

G(x) ∼ E(N)F (x), x→∞

I Relates single-loss model F to total-loss model G

I Böcker and Klüppelberg (2005) show

V aRα(S) := G−1(α) = F−1

(
1− 1− α

E(N)
(1 + o(1))

)
, α→ 1

M. Degen, Cornell University / ETH Zurich 23 / 31
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The closed-form OpVaR approximation

1) For F ∈ RV and with α̃ := 1− (1− α)/E[N ], one has for large
α-values:

V aRα(S) ≈ V aRα̃(X)

2) Approximation 1) is used by at least one “systemically important”
bank to calculate regulatory capital

3) Goodness of approximation: not considered in detail so far (!)

4) Does it matter? - Yes!
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Motivating example

I Relative approximation error: e(α) =
F−1(α̃)
G−1(α)

− 1

Example: For simplicity consider the case

I Pareto distribution as single loss model F

I Non-random number of losses N = n a.s.
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Relative approximation error (in %) of the closed-form OpVaR approximation (based on

106 simulations) for sums of n = 2, 10, 50 and 100 iid Pareto (ξ = 0.5) losses

I OpVaR approximation vastly underestimates (!) regulatory capital

I Driving factors?
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I Using Part I with “deterministic” replaced by “stochastic” sums:

Accuracy of the closed-form OpVaR approximation

Under some mild conditions on N and U = (1/F )−1 one has,

e(α) =
F−1

(
1− 1−α

E[N ]

)
G−1(α)

− 1 = KA(α) + o
(
A(α)

)
, α→ 1,

for some K = Kξ,ρ(N) ∈ R and with A(α) as in Theorem 1.

I The relative error e(α) grows like Kξ,ρ(N)A(α)
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Implications

Example: N ∼ pois(λ), F ∼ Pareto(ξ), ξ < 1, then:

Kξ,ρ(N) = −λ1−ξ and A(α) =
(1− α)ξ

1− ξ
So, for given level α = 99.9% and

I for fixed ξ, error increases with increasing λ

I for fixed λ, error decreases with increasing ξ

I Second-order approximation: G−1(α) ≈ F−1(α̃) (1−KA(α))

I As opposed to first-order: G−1(α) ≈ F−1(α̃)
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Simulation result
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...together with a second-order refinement
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Relative approximation error (in %) of the closed-form OpVaR approximation (dashed)

compared with second-order refinement (full) (based on 106 simulations) for sums of

n = 2, 10, 50 and 100 iid Pareto (ξ = 0.5) losses

I Second-order term seems to be able to explain the discrepancy
between true G−1(α) and closed-forem approximation F−1(α̃)
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Summary of Part II: It seems as...

I for some loss models the closed-form OpVaR approximation highly
underestimates regulatory capital

I a second-order refinement might be helpful in understanding why this
is the case (and to act correspondingly)

I the practical usefulness of the closed-form OpVaR approximation needs
to be rejudged carefully
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Thank you!
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