Diversification Benefits: A Second-Order Approximation

Matthias Degen Cornell University / ETH Zurich

Industrial-Academic Forum on Operational Risk Fields Institute, University of Toronto March 26, 2010

Outline

Introduction

• Part I: Analysis of diversification benefits

• Part II: Accuracy analysis of the closed-form OpVaR approximation

introduction Part I Part II

Introduction - Research motivation

"Given the size and interconnected nature of markets, the growth in volumes, the global nature of traders and their cross-asset characteristics, managing operational risk will only become more important."

> Lloyd C. Blankfein, CEO Goldman Sachs Financial Times, February 8, 2009.

Introduction - Research motivation

"Given the size and interconnected nature of markets, the growth in volumes, the global nature of traders and their cross-asset characteristics, managing operational risk will only become more important."

> Lloyd C. Blankfein, CEO Goldman Sachs Financial Times, February 8, 2009.

- ▶ One (!) important part of managing OR: Calculation of regulatory capital
- ▶ No agreed standard method for doing so

The Basel II regulatory framework for OR

- \blacktriangleright Consider a (AMA) bank's business with d sub-units of business
- ▶ Basel II requires the calculation of regulatory capital for OR through

$$\label{eq:RCOR} \left| \mathsf{RC}^{\mathsf{OR}} = \mathsf{VaR}_{\alpha} \left(\sum_{i=1}^{d} S_i \right) = (1 - \delta) \sum_{i=1}^{d} \mathsf{VaR}_{\alpha} \left(S_i \right), \right|$$

with $\alpha = 99.9\%$, S_i denoting the total yearly OR loss of business unit i and for some "well-reasoned" estimate diversification benefits $\delta \in \mathbb{R}$

Focus of this talk:

ntroduction

- ▶ Part I: Analysis of diversification benefits δ
- ▶ Part II: Calculation of $VaR_{\alpha}(S_i)$

Introduction Part I Part II

Part I

Analysis of diversification benefits

Based on:

Degen, M., Lambrigger D. D. and Segers, J. (2010). Risk concentration and diversification: second-order properties. *Insurance: Mathematics and Economics (to appear)*.

Practical relevance:

- ▶ So far not enough evidence to convince regulators to allow $\delta \neq 0$
- ▶ However: $\delta = 0$ only for comonotonic risks; recent empirical evidence questions this; see Cope and Antonini (2008)

Aim of our paper:

- ▶ Get a grasp on δ (analytically)
- ▶ Provide a tool that allows to assess the sensitivity of diversification benefits w.r.t. changes in the underlying input variables

Mathematical tools:

▶ First- and second-order asymptotic properties ($\alpha \to 1$) for $\delta = \delta(\alpha)$

Framework

Ideal:

- ▶ Find stochastic model for (S_1, \ldots, S_d) that "accurately" reflects the dependence structure between business units S_1, \ldots, S_d
- \blacktriangleright Analysis of diversification benefits $\delta/{\rm risk}$ concentration C (and calculation of regulatory capital) based on this model:

$$C(\alpha) := 1 - \delta(\alpha) = \frac{\mathsf{VaR}_{\alpha}\left(\sum_{i=1}^{d} S_i\right)}{\sum_{i=1}^{d} \mathsf{VaR}_{\alpha}\left(S_i\right)}$$

Framework

Ideal:

- ▶ Find stochastic model for (S_1, \ldots, S_d) that "accurately" reflects the dependence structure between business units S_1, \ldots, S_d
- \blacktriangleright Analysis of diversification benefits $\delta/{\rm risk}$ concentration C (and calculation of regulatory capital) based on this model:

$$C(\alpha) := 1 - \delta(\alpha) = \frac{\mathsf{VaR}_{\alpha}\left(\sum_{i=1}^{d} S_i\right)}{\sum_{i=1}^{d} \mathsf{VaR}_{\alpha}\left(S_i\right)}$$

► Too ambitious (given the state of the art in dependence modeling)

Framework

Ideal:

- ▶ Find stochastic model for (S_1, \ldots, S_d) that "accurately" reflects the dependence structure between business units S_1, \ldots, S_d
- \blacktriangleright Analysis of diversification benefits δ/risk concentration C (and calculation of regulatory capital) based on this model:

$$C(\alpha) := 1 - \delta(\alpha) = \frac{\mathsf{VaR}_{\alpha}\left(\sum_{i=1}^{d} S_i\right)}{\sum_{i=1}^{d} \mathsf{VaR}_{\alpha}\left(S_i\right)}$$

▶ Too ambitious (given the state of the art in dependence modeling)

Realistic: Analysis of risk concentration for $S_1, \ldots, S_d \overset{iid}{\sim} F$

► Toy model (no depdendence), but...

Diversification under dependence: Copulas vs. margins

Empirical risk concentration (10^7 simulations) under dependence with d=2 identically distributed Burr margins with parameters ($\theta=0.1,\kappa=20$) in case 1 and ($\theta=0.3,\kappa=6.7$) in case 2, so that both show the same heavy-tailedness (!) (i.e. same tail index)

▶ Fallacy: Dependence as THE main driver of diversification effects

Introduction

Diversification under dependence: Copulas vs. margins

Part II

Empirical risk concentration (10^7 simulations) under dependence with d=2 identically distributed Burr margins with parameters ($\theta=0.1,\kappa=20$) in case 1 and ($\theta=0.3,\kappa=6.7$) in case 2, so that both show the same heavy-tailedness (!) (i.e. same tail index)

- ▶ Fallacy: Dependence as THE main driver of diversification effects
- ▶ Instead: Tail behavior of margins matters but in an delicate way

Back to the "toy model"...

- ▶ Non-negative $S_1, \dots, S_d \stackrel{iid}{\sim} F$ with $\overline{F} \in \mathsf{RV}_{-1/\xi}$ for some $\xi > 0$
- ▶ Let $G = F^{*d}$, $U_F = (1/\overline{F})^{\leftarrow}$ (∈ RV_{ξ})
- \blacktriangleright We show that, as $\alpha \to 1$,

$$C(\alpha) = \frac{1}{d} \frac{G^{\leftarrow}(\alpha)}{F^{\leftarrow}(\alpha)} \to d^{\xi-1}$$

▶ First-order approximation: $C_1(\alpha) = d^{\xi-1}$ for large values of α

Back to the "toy model" ...

- ▶ Non-negative $S_1, \ldots, S_d \stackrel{iid}{\sim} F$ with $\overline{F} \in \mathsf{RV}_{-1/\xi}$ for some $\xi > 0$
- ▶ Let $G = F^{*d}$, $U_F = (1/\overline{F})^{\leftarrow}$ (∈ RV_{ξ})
- \blacktriangleright We show that, as $\alpha \to 1$,

$$C(\alpha) = \frac{1}{d} \frac{G^{\leftarrow}(\alpha)}{F^{\leftarrow}(\alpha)} \to d^{\xi-1}$$

lacktriangle First-order approximation: $C_1(\alpha)=d^{\xi-1}$ for large values of α

Empirical risk concentration (based on 10^7 simulations) together with first-order approximation $C_1 \equiv \sqrt{2}/2 \approx 0.71$ for two iid rvs from a Burr ($\tau = 0.25, \kappa = 8$), a Pareto ($\xi = 0.5$) and a g-and-h (g = 2, h = 0.5) distribution - same tail index!

Part II

Empirical risk concentration (based on 10^7 simulations) together with first-order approximation $C_1 \equiv \sqrt{2}/2 \approx 0.71$ for two iid rvs from a Burr ($\tau = 0.25, \kappa = 8$), a Pareto ($\xi = 0.5$) and a g-and-h (g = 2, h = 0.5) distribution - same tail index!

- ▶ In relevant regions $C(\alpha)$ very sensitive to small changes of α
- ▶ Driving factors? (→ second-order properties)

Towards a second-order result

- $\blacktriangleright \text{ Find non-degenerate } K \text{ and } A \text{, with } \lim_{\alpha \to 1} \frac{C(\alpha) d^{\xi 1}}{A(\alpha)} = K(d, \xi)$
- ▶ Hard part is finding convergence rate $A(\cdot)$ & it turns out that two different asymptotic regimes matter:

$$\frac{\overline{G}(x)}{\overline{F}(x)} \to d$$

VS.

$$\frac{U_F(td)}{U_F(t)} \to d^{\xi}$$

second-order regular variation

second-order subexponentiality

$$\sim$$
 rate $b(\cdot)$

 \sim rate $a(\cdot)$

- ► Which one dominates in the limit?
- ► Then, "putting together all the epsilons"...

Part I

Part II

Main result

Second-order risk concentration

For $S_1,\ldots,S_d\stackrel{iid}{\sim} F$ positive random variables and under some mild conditions on $U=(1/\overline{F})^{\leftarrow}$ (see D., Lambrigger, Segers (2010) for details), one has for fixed d>2 and as $\alpha\to 1$,

$$C(\alpha) = d^{\xi - 1} + K_{\xi, \rho}(d)A(\alpha) + o(A(\alpha)),$$

for some constant $K_{\xi,\rho}(d) \in \mathbb{R}$ and with

$$A(\alpha) = \begin{cases} b(F^{\leftarrow}(\alpha)), & \rho < -(1 \wedge \xi), \\ a(1/(1-\alpha)), & \rho > -(1 \wedge \xi). \end{cases}$$

Implications

ightharpoonup Two different regimes of diversification effects (depending on first- and second-order tail behavior of F)

▶ Second-order approximation $C_2(\alpha) = d^{\xi-1} + K_{\xi,\rho}(d)A(\alpha)$

▶ (Recall: first-order approximation $C_1(\alpha) \equiv d^{\xi-1}$)

First-order approximation for *C*:

Empirical risk concentration (based on 10^7 simulations) together with first-order approximation $C_1 \equiv \sqrt{2}/2 \approx 0.71$ for two iid rvs from a Burr ($\tau=0.25, \kappa=8$), a Pareto ($\xi=0.5$) and a g-and-h (g=2, h=0.5) distribution - same tail index!

Second-order approximation for *C*:

Empirical risk concentration (full, based on 10^7 simulations) together with first-order approximation $C_1 \equiv \sqrt{2}/2 \approx 0.71$ (full) and second-order approximation C_2 (dashed) for d=2 iid rvs from a Burr ($\tau=0.25, \kappa=8$), a Pareto ($\xi=0.5$) and a g-and-h (g=2,h=0.5) distribution - same tail index!

Part II

Second-order approximation for *C*:

Empirical risk concentration (full, based on 10^7 simulations) together with first-order approximation $C_1 \equiv \sqrt{2}/2 \approx 0.71$ (full) and second-order approximation C_2 (dashed) for d=2 iid rvs from a Burr $(\tau=0.25,\kappa=8)$, a Pareto $(\xi=0.5)$ and a g-and-h (g=2, h=0.5) distribution - same tail index!

Sensitivity analysis of diversification benefits

Behavior of diversification benefits for d iid Pareto(ξ) rvs together with respective second-order approximations (red lines). In the right panel d=2 is fixed with varying ξ (theoretical $C(\cdot)$, G^{\leftarrow} numerically inverted). In the left panel $\xi=0.5$ is fixed and d=2,4,6,8,10 (simulated $C(\cdot)$, based on $n=10^7$ simulations).

- lacktriangle Theoretical/empirical ($n=10^7$, took >30 minutes) vs. approximation
- ▶ Error negligible in area where we need it ($\alpha = 99.9\%$)
- ▶ Hence, no need to simulate tons of (very) heavy-tailed data

Conclusion (1/3) – Implications for practice

► Fallacy: Diversification effects occur mainly/only due to dependence in the data

 \blacktriangleright At least as important driver is the tail behavior (second-order properties !) of underlying loss model F

lacktriangle Diversification benefits are highly sensitive to VaR-level lpha

▶ Negative diversification (at 99.9%) occurs more often than is commonly believed – in finite mean models (!)

- 1) Second-order approximation C_2 as tool to assess the sensitivity of diversification benefits w.r.t. changes in the
 - i) underlying loss model F,
 - ii) number of risks d,
 - iii) level α

Introduction

- 2) The iid case is the Fréchet-lower bound case and hence the "best case" scenario with regards to diversification
- 3) Validation/consistency check of models (e.g. for given model, is diversification benefit of, say, 20% justified—at 99.9% level)

Conclusion (3/3) - Future Work

- 4) Impose dependence structure (ambitious), start with
 - $S_1, \ldots, S_d \stackrel{iid}{\sim} F \qquad \leadsto \qquad S_i$'s independent, df F_i
 - $oldsymbol{\circ} oldsymbol{S} = (S_1, \dots, S_d)$ with (Archimedean) Copula
- 5) Estimation of δ (idea: penultimate approximations)

Part II

Accuracy analysis of the closed-form OpVaR approximation

(Application of Part I; work in progress)

Recall regulatory capital charge for operational risk:

$$\label{eq:RCOR} \boxed{ \mathsf{RC}^\mathsf{OR} = \mathsf{VaR}_\alpha \left(\sum_{i=1}^d S_i \right) = \left(1 - \delta \right) \sum_{i=1}^d \mathsf{VaR}_\alpha \left(S_i \right), }$$

with S_i denoting the total yearly OR loss of business unit i

- \blacktriangleright Part I: Analysis of diversification benefit δ
- ightharpoonup Part II: Calculation of $\operatorname{VaR}_{lpha}\left(S_{i}\right)$

Framework:

Classical actuarial model for non-life insurance, with total OR-loss process for business unit S given by

$$S(t) = \sum_{k=1}^{N(t)} X_k,$$

with $(X_i)_{i\geq 1} \stackrel{iid}{\sim} F$ as the single OR-losses, independent of the claim arrival process $(N(t))_{t\geq 0}$.

- \blacktriangleright In OR context: t is fixed to be 1 year (and henceforth suppressed)
- ▶ Then: $G(x) := \mathbb{P}[S \le x] = \sum_{n=0}^{\infty} \mathbb{P}[N=n]F^{n*}(x)$

▶ Under some mild conditions on N (Embrechts et al. 1979):

$$\overline{G}(x) \sim E(N)\overline{F}(x), \quad x \to \infty$$

ightharpoonup Relates single-loss model F to total-loss model G

▶ Böcker and Klüppelberg (2005) show

$$VaR_{\alpha}(S) := G^{-1}(\alpha) = F^{-1}\left(1 - \frac{1-\alpha}{E(N)}(1+o(1))\right), \quad \alpha \to 1$$

The closed-form OpVaR approximation

1) For $\overline{F} \in RV$ and with $\tilde{\alpha} := 1 - (1 - \alpha)/\mathbb{E}[N]$, one has for large α -values:

$$VaR_{\alpha}(S) \approx VaR_{\tilde{\alpha}}(X)$$

2) Approximation 1) is used by at least one "systemically important" bank to calculate regulatory capital

- 3) Goodness of approximation: not considered in detail so far (!)
- 4) Does it matter? Yes!

Motivating example

 \blacktriangleright Relative approximation error: $e(\alpha) = \frac{F^{-1}(\tilde{\alpha})}{G^{-1}(\alpha)} - 1$

Example: For simplicity consider the case

- ightharpoonup Pareto distribution as single loss model F
- ▶ Non-random number of losses N = n a.s.

Relative approximation error (in %) of the closed-form OpVaR approximation (based on 10^6 simulations) for sums of n=2,10,50 and 100 iid Pareto ($\xi=0.5$) losses

urich

Relative approximation error (in %) of the closed-form OpVaR approximation (based on 10^6 simulations) for sums of n=2,10,50 and 100 iid Pareto ($\xi=0.5$) losses

- ▶ OpVaR approximation vastly underestimates (!) regulatory capital
- ▶ Driving factors?

▶ Using Part I with "deterministic" replaced by "stochastic" sums:

Accuracy of the closed-form OpVaR approximation

Under some mild conditions on N and $U=(1/\overline{F})^{-1}$ one has,

$$e(\alpha) = \frac{F^{-1}\left(1 - \frac{1-\alpha}{E[N]}\right)}{G^{-1}(\alpha)} - 1 = KA(\alpha) + o(A(\alpha)), \quad \alpha \to 1,$$

for some $K=K_{\xi,\rho}(N)\in\mathbb{R}$ and with $A(\alpha)$ as in Theorem 1.

▶ The relative error $e(\alpha)$ grows like $K_{\xi,\rho}(N)A(\alpha)$

Implications

Example: $N \sim pois(\lambda)$, $F \sim Pareto(\xi)$, $\xi < 1$, then:

$$K_{\xi,\rho}(N) = -\lambda^{1-\xi}$$
 and $A(\alpha) = \frac{(1-\alpha)^{\xi}}{1-\xi}$

So, for given level $\alpha=99.9\%$ and

- \blacktriangleright for fixed ξ , error increases with increasing λ
- \blacktriangleright for fixed λ , error decreases with increasing ξ

- ▶ Second-order approximation: $G^{-1}(\alpha) \approx F^{-1}(\tilde{\alpha}) (1 KA(\alpha))$
- ▶ As opposed to first-order: $G^{-1}(\alpha) \approx F^{-1}(\tilde{\alpha})$

Simulation result

Relative approximation error (in %) of the closed-form OpVaR approximation (based on 10^6 simulations) for sums of n=2,10,50 and 100 iid Pareto ($\xi=0.5$) losses

...together with a second-order refinement

Relative approximation error (in %) of the closed-form OpVaR approximation (dashed) compared with second-order refinement (full) (based on 10^6 simulations) for sums of n=2,10,50 and 100 iid Pareto ($\xi=0.5$) losses

▶ Second-order term seems to be able to explain the discrepancy between true $G^{-1}(\alpha)$ and closed-forem approximation $F^{-1}(\tilde{\alpha})$

Summary of Part II: It seems as...

▶ for some loss models the closed-form OpVaR approximation highly underestimates regulatory capital

▶ a second-order refinement might be helpful in understanding why this is the case (and to act correspondingly)

 \blacktriangleright the practical usefulness of the closed-form OpVaR approximation needs to be rejudged carefully

Thank you!

Introduction

Böcker, K., and Klüppelberg, C. (2005) Operational VaR: a closed-form approximation. RISK Magazine, December, 90-93.

Cope, E., and Antonini, G. (2008). Observed correlations and dependencies among operational losses in the ORX consortium database. Journal of Operational Risk 3(4), 47-74.

Degen, M., Lambrigger, D. D. and Segers, J. (2010) Risk concentration and diversification - second-order properties. Insurance: Mathematics and Economics (to appear).

Omey, E. and Willekens, E. (1986) Second order behaviour of the tail of a subordinated probability distribution. Stoch. Proc. Appl. 21, 339-353.