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AMA �Regulatory Requirements

Basel II does not stipulate a speci�c approach or distributional
assumptions.

However, an AMA model should meet the following minimum
regulatory requirements:

quantify risk at the 99.9th con�dence level over a one year horizon
minimum �ve years of data
capture potentially severe tail events
granularity of the model � commensurate with the risk pro�le of the
bank
incorporate dependence
appropriately weight each of the 4 �elements�: internal data, external
data, scenarios and BEICFs
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Nature of Operational Loss Distributions

1 Operational loss distributions are:

1 extremely heavy-tailed
2 extremely skewed
3 have special dependence characteristics

2 Operational loss data exhibits heterogeneity.

Extreme caution must be taken when modeling heavy-tailed processes.
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Nature of Operational Loss Data

Source: BCBS (2009)
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Model Risk

A model, by de�nition, is an abstraction of the real world.

All models are conditional on data.

A model may be expressed in two parts as (Draper, 1995).

M = (S , θ)

where

S : sets of structural assumptions, and
θ : parameters whose meaning is speci�c to the chosen structure(s).

Models are generally used in two forms:
1 As representaion of what�s going on
2 As description of the data
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Model Risk

Three main sources of uncertainty in the model building process
(Chat�eld, 1995):

1 model uncertainty: uncertainty about the structure of the model;
2 parameter uncertainty: uncertainty about estimates of the model
parameters, assuming that we know the structure of the model;

3 unexplained random variation in observed variables even when we
know the structure of the model and the values of the model
parameters.
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Model Risk

"It is hard for us, without being �ippant, to
even see a scenario within any kind of realm
of reason that would see us losing a dollar
in any of those transactions."

- Joseph Cassano, head of AIGFP, at a conference call to AIG investors

(Bloomberg Markets, August 2009)
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Model Risk

In the context of banking and supervision, model risk describes the
potential for losses that might be sustained due to

the use of misspeci�ed models (e.g., mis-speci�ed tail behavior)

the use of erroneously calibrated models

an overly broad interpretation or use of a model beyond the scope of
application for which it was developed.
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Validation Process

A complete validation process is more than statistical testing. It consists
of:

a timetable for validation activities

identi�cation of parties responsible for validation

tests and analyses to be performed

actions to be taken in response to �ndings

documentation and reporting of �ndings
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Validation Challenges

Model uncertainty

Challenges for both bankers and regulators

Understanding underlying assumptions and their appropriateness
Understanding the model�s theoretical soundness and mathematical
integrity
Sensitivity analysis (under stress conditions)

Challenges particularly for regulators

Flexibility inherent in the rule creates a broad range of practice:

Stochastic ordering of loss models (e.g., Which particular aspects of
the model determine the �rst-order outcome?
Understanding the root cause of the dispersion

Developing credible benchmarks for operational risk exposure
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Validation Challenges

Broad range of practice, evidently, results in over-dispersion of results
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Problem Formulation

Notation

X ik� kth loss for a unit of measure (UOM) i
N i � frequency process
Li � aggregate loss for UOM i

Given the frequency process N i and the severity process Xk , the
aggregate loss Li for the unit of measure i is a compound process
de�ned as:

Li =
N i

∑
k=1

Xi ,k (1)

where Xi ,k are assumed to be iid within a UOM, and independent of
N.
(Firmwide) aggregate loss for a bank with d units of measure is then:

LD =
d
∑
i=1
Li = L1 + ...+ LD (2)

Balta (OCC) Fields Institute, March 26, 2010 13 / 39



Problem Formulation - Aggregate Loss Distribution

Let G be the df of the random sum LD and X be iid positive random
variables. Then, the aggregate loss distribution is denoted by

GLD (x) = P (LD 6 x) (3)

GLD has complicated/unknown structure
If we had a multivariate model in the form of a joint df , then the
dependence structure would be implicitly described.

The minimum regulatory capital (MRC) is calculated as a quantile of
the GLD at the con�dence level α=0.999:

VaR0.999(LD ) = G
 
LD
(0.999) = inf fx 2 R j GLD (x) > αg (4)
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Problem Formulation - Schematic Representation

Loss distributions vary across loss types and business lines.

Assuming that a bank uses Basel II Level 1 event type and business
line classi�cation in its UOM scheme, it will have, at most, a
56-dimensional problem.
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Modeling Alternatives

Op risk models could broadly be classi�ed as di¤erent variants of the

Loss Distribution Approach (LDA). LDA-based models are very well
known from the (non�life) actuarial literature; see Klugman et al.
(2004), Frachot et al. (2001, 2004)

Extreme Value Theory (EVT). Embrechts et al. (1997), McNeil et al.
(2005).

Approximate analytical formulas. Böcker and Klüppelberg (2005),
Böcker (2006) and Böcker & Spritulla (2006).

Balta (OCC) Fields Institute, March 26, 2010 16 / 39



AMA in Practice - Building Blocks

1 Pool the data by business line or event type or a combination of both
2 Fit frequency and severity distributions
3 Get aggregate distribution through convolution

4 Estimate [VaR1,...,[VaRn
5 Add (comonotonicity): \VaR�rm =

n
∑
i=1

[VaRi

6 Take diversi�cation bene�t: VaRreported = (1� δ)\VaR�rm
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Example: Severity �t - Mixture lognormal vs. Burr
distribution
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Example: Severity �t - Mixture lognormal vs. Burr
distribution (tail)
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Example: Severity �t - Mixture lognormal vs. Burr
distribution
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Example: Impact of data truncation on the severity �t
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Example: Impact of severity choice on capital

Both the mixture lognormal and the Burr distributions �t body of the
data well

However, each result in quite di¤erent tail estimates:

Mixture
lognormal Burr

VaR(0.999) 122,963,094 426,208,494
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Volatility of Capital Estimates

Extreme losses dominate: An extreme loss can cause drastic changes
in the estimate of capital.

Rare event prediction: Statistical estimation of this uncertainty (95%
con�dence levels) are typically very wide for the estimation of rare
events.

Need signi�cantly more data to reduce standard errors
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Volatility of Capital Estimates

Example: (Cope et al., 2009) Lognormal �ts to ORX Corporate Finance /
Clients, Products, and Business Practices loss data, using all data vs.
excluding the three largest losses
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Dominance of Sums

Value of the most extreme losses determine the aggregate annual loss
distribution.

For heavy-tailed dist, the following theoretical result holds for the
high quantiles of the aggregate loss distributions: tail of the
maximum determines the tail of the sum.

lim
x!∞

P(X1 + ...+ Xn > x)
P (max (X1, ...,Xn) > x)

= 1 and lim
x!∞

=
F n�(x)

F (x)
= n

The operational risk capital is driven by a few low-probability,
high-severity events, rather than the accumulation of many iid
high-probability, low-severity events (ie, F is a subexponential
distribution function)
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Dominance of Sums - Analytical Approximation

For subexponential distributions, Bocker and Kluppelberg (2005) derive a
closed-form approximation for the operational VaR, valid at very high
con�dence levels

Theorem
Aggregate loss distribution of iid subexponential rvs: Let F n� be the
df of the of the random sum ∑n

i=1 xi and Xi be iid positive random
variables with df F such that F (x) < 1 for all x > 0. Then

F n�(x) � nF (x), x ! ∞

where F (.) = 1� F (.) and F n�(.) = 1� F n� are the tail distributions of
severity and aggregate loss, respectively.
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Analytical Approximation

Closed-form approximation for operational VaR: Given the aggregate
loss distribution Gt , the VaR for the time interval t at the con�dence level
κ is de�ned as the κ-quantile of the aggregate loss distribution:

VaRt (κ) = G t (κ) = F
 
�
1� 1� κ

EN(t)

�
, κ 2 (0, 1)

Pros

VaR at high level of α is independent of the body of the distribution
It is independent of all characteristics of the frequency distribution
other than its expectation

Cons

Practical value of approximation depends on the magnitude of the
approximation error.
It underestimates the quantile by an amount which grows with the
mean frequency EN(t) (Mignola & Ugoccioni, 2006)
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Dependence

Note from Eq. (4) that MRC = VaR0.999(LD ) = VaR0.999(
d
∑
i=1
Li )

However, as we noted before, GLD has, often, an intractable structure.

To get around this issue, in practice, banks aggregate quantiles
(VaRs) across units of measure and allow for a diversi�cation bene�t
δ (� 0) :

MRC = VaR0.999

 
d

∑
i=1
Li

!
= (1� δ)

d

∑
i=1
VaR0.999 (Li )

However, unless the dependence assumptions underlying δ(> 0) are
sound, and are robust to a variety of scenarios, implemented with
integrity, and allow for the uncertainty surrounding the estimates,
Basel II requires the diversi�cation bene�t δ to be zero.
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Dependence - Multivariate Extremal Behavior

Outside the realm of the "normal" world, multivariate behavior,
especially in the tail region, needs to be better understood.

For the class of elliptical models (eg, normal distribution), questions
concerning diversi�cation & capital allocation are well understood:

In the elliptical world, VaR is sub-additive, meaning that the VaR of a
sum of risks is bounded above by the sum of the individual VaRs
In the non-elliptical world, VaR is no longer a coherent risk measure
(Artzner et al., 1999); the sum of individual VaRs does not constitute
an upper bound.

The diversi�cation bene�t δ is not constant but depends on the
quantile level.
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Dependence - Shortcomings of Linear Correlation

The correlation ρ(X1,X2) is a measure of linear dependence;
ρ 2 [�1, 1].
If X1 and X2 are independent, ρ(X1,X2) = 0, but the converse is not
true.

Correlation is only de�ned when the variances of X1 and X2 are �nite.

McNeil et al. (2005, Theorem 5.25) show that "attainable"
correlations can form a strict subset of the interval [�1, 1], [ρmin,
ρmax] with ρmin < 0 < ρmax :

The min correlation ρ = ρmin is attained i¤ X1 and X2 are
countermonotonic. The max correlation ρ = ρmax is attained i¤ X1
and X2 are comonotonic.
ρmin = �1 i¤ X1 and �X2 are of the same type, and ρmax = 1 i¤ X1
and X2 are of the same type.
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Dependence - Max and Min Corr with Marginal Lognormals

Max and min attainable correlations for lognormal rvs X1 and X2, where
log(X1) is standard normal and log(X2) has mean zero and variance σ2 :
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Dependence - Max and Min Corr with Marginal Lognormals

The following conclusions can be drawn from the previous graph (where
σx1 = 1 and σx2 varies across σ):

Both positive and negative linear correlation measures vary with σ of
the second distribution; this emphasizes the fact that linear
correlation depends on the parameter σ of the marginal distribution.

It is possible to attain perfect positive correlation (ρ = 1) i¤ σx2 = 1.

For higher σx2 , the ρmax moves progressively lower than 1 as the σx2
rises.

A positive linear correlation is impossible once σx2 exceeds
approximately 4. This does NOT imply, however, that the two
distributions are independent despite a linear correlation of 0.
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Copulas and Tail Dependence

Tail dependence measures do not depend on the underlying marginals
and hence can be written in terms of the joint distribution�s
underlying distributional copula.

Positive Tail Dependency λ+ is the probability that within the loss year
both variables will exhibit similar behavior in the tails. There are two
types of positive tail dependency:

Positive upper-tail dependence λ+u : the probability that both rvs will
produce similar large losses in the upper tail;
Positive lower-tail dependence λ+l : the probability that both rvs will
produce similar small losses in the lower tail

Negative Tail Dependency λ� is the probability that within the loss
year both variables will exhibit opposite behavior in the tails. This
concept is a major driver of diversi�cation in market risk since it implies
that very large losses in one tail can be o¤set by very large gains in the
opposite tail:
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Copulas and Tail Dependence

A copula may have

both upper and lower tail dependence (t-copula, Generalized Clayton
copula)
upper tail dependence only (Gumbel copula)
lower tail dependence only (Clayton copula)
no tail dependence (Gaussian copula, Frank copula)

E¤ective negative tail dependency is reliant upon two-sided data
support. Operational-risk losses have only one-sided support
(X 2 (o,∞)) since �negative�operational-risk losses are unde�ned.
Major diversi�cation bene�ts are provided by copulas exhibiting
negative tail dependencies when the pair of X variables has two-sided
support: large positive values from one variable can o¤set large
negative values from the other variable.
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Copulas and Tail Dependence

Example: (Ulman & Inanoglu, 2010) Two bivariate t-copulas with
identical underlying t-marginals
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Copulas and Tail Dependence

Example: (Ulman & Inanoglu, 2010) Two-sided support is not always
su¢ cient for negative tail dependence
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Copulas and Tail Dependence

Example: (Ulman & Inanoglu, 2010) Absence of two-sided support implies
signi�cantly lower "diversi�cation" bene�ts
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Copulas and Tail Dependence

Example: (Ulman & Inanoglu, 2010) Simulated losses from our di¤erent
copulas each with identical lognormal marginals
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Thank You!
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