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AMA — Regulatory Requirements

@ Basel Il does not stipulate a specific approach or distributional
assumptions.

@ However, an AMA model should meet the following minimum
regulatory requirements:

quantify risk at the 99.9th confidence level over a one year horizon
minimum five years of data

capture potentially severe tail events

granularity of the model — commensurate with the risk profile of the
bank

incorporate dependence

o appropriately weight each of the 4 “elements”: internal data, external
data, scenarios and BEICFs
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Nature of Operational Loss Distributions

@ Operational loss distributions are:

@ extremely heavy-tailed
@ extremely skewed
@ have special dependence characteristics

@ Operational loss data exhibits heterogeneity.

Extreme caution must be taken when modeling heavy-tailed processes.
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Nature of Operational Loss Data

Table ILD&
Distribution of Loss Amount by Severity of Loss
Cross-Bank Median of Total
Distribution Across Severity Brackets
Severity of Loss Gross Loss
Number of Losses Gross Loss Amount Net of Non Number of Losses Gross LOS,S
Amount Insurance Amount (EMillions)
€0 = X < €20000 91.29 % 26.26'%) 18.86 %) 9,897,083 12,164
€20,000 = X < €100,000 6.52 %)| 12.63 % 15.66 %| 121,533 5178
€100,000 = X < €1 Milion 1.83 %) 19.37 %) 2135 %) 30,598 8,085
€1 Milion = X < €2 Million 0.15 %| 5.48 %| 6.12 %)| 1,688 2,40
€2 Milion = X « €5 Million 0.12 %)| 9.05 %| 9.10 %| 1,116 3,570
€5 Milion = X « €10 Million 0.04 % 6.87 %| 7.90 %)| 404 2821
€10 Million = X < €100 Million 0.04 %| 15.55 %| 17.39 %)| 333 8,243
€100 Million = X 0.02 %| 41.79% 43.51 % 4 21,752
All 10,052,796 64221

Note 1. X = severity of loss, based on gross 105s net of non-nsurance recoveries.
Note 2. All losses in the stable dataset
Note 3. Results for losses less than €20,000 are not complete as loss data collection thresholds differ across participants,

Note 4. Median calculations include only banks with losses in each particular severity category. If a bank reports no losses in a category, itis not included in
the calculation.

Source: BCBS (2009)
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Model Risk

@ A model, by definition, is an abstraction of the real world.
@ All models are conditional on data.

@ A model may be expressed in two parts as (Draper, 1995).
M= (S,0)

where

e S : sets of structural assumptions, and
o 0 : parameters whose meaning is specific to the chosen structure(s).

@ Models are generally used in two forms:

© As representaion of what's going on
@ As description of the data
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Model Risk

Three main sources of uncertainty in the model building process
(Chatfield, 1995):

@ model uncertainty: uncertainty about the structure of the model;

@ parameter uncertainty: uncertainty about estimates of the model
parameters, assuming that we know the structure of the model;

© unexplained random variation in observed variables even when we
know the structure of the model and the values of the model
parameters.
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Model Risk

Bloomber

The Man ™~
Taking Apart
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"It is hard for us, without being flippant, to
even see a scenario within any kind of realm
of reason that would see us losing a dollar
in any of those transactions.”

- Joseph Cassano, head of AIGFP, at a conference call to AIG investors

(Bloomberg Markets, August 2009)
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Model Risk

In the context of banking and supervision, model risk describes the
potential for losses that might be sustained due to
@ the use of misspecified models (e.g., mis-specified tail behavior)
@ the use of erroneously calibrated models

@ an overly broad interpretation or use of a model beyond the scope of
application for which it was developed.
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Validation Process

A complete validation process is more than statistical testing. It consists
of:

a timetable for validation activities

identification of parties responsible for validation

tests and analyses to be performed

actions to be taken in response to findings

documentation and reporting of findings
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Validation Challenges

Model uncertainty

@ Challenges for both bankers and regulators

e Understanding underlying assumptions and their appropriateness
e Understanding the model's theoretical soundness and mathematical

integrity
o Sensitivity analysis (under stress conditions)
@ Challenges particularly for regulators
o Flexibility inherent in the rule creates a broad range of practice:

o Stochastic ordering of loss models (e.g., Which particular aspects of
the model determine the first-order outcome?
@ Understanding the root cause of the dispersion

o Developing credible benchmarks for operational risk exposure
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Validation Challenges

Broad range of practice, evidently, results in over-dispersion of results

Table C1
Reported Regulatory Operational Risk Capital as a Percentage of:
Assets, Tier 1 Capital and Gross Income

All Australia Europe Japan North America Brazil / India
Consolidated [All Median 0.33% 0.30% 0.34% 0.25% 0.38% 0.46%
Assets (25th-75th) | (0.24%-0.47%) | (0.27%-0.37%) | (0.18%-0.46%) | (0.22%-0.28%) | (0.33%-0.58%) | (0.44%-0.54%)
AMA Median 0.27% 0.29% 0.23% 0.20% 0.49% na
(25th-75th)| (0.20%-0.40%) (0.27%-0.30%) 0.17%-0.37%) (0.2095-0.23%) (0.33%-0.80%) na
MNon-AMA | Median 0.38% 0.35%, 0.38% 0.26% 0.35% 0.46%,
(25th-75th)| (0.20%-0.49%) | (0.26%-0.41%) | (0.27%-0.47%) | (0.24%-0.29%) | (0.33%-0.38%) | (0.44%-0.54%)
Consolidated [All Median 751% 7% 7.97% 4.88% 9.18% 8.02%
Tier 1 Capital (25th-75th)| (5.21%-10.25%) (6.39%-7.77%) (5.48%-10.21%) | (4.19%-5.96%) | (5.07%-11.51%) (4.42%-9.64%)
AMA Median 7.38% F.25% 8.91% 4.46% 10.90% na
(25th-75th)| (5.30%0.63%) | (7.11%-7.708:) | (B.53% 8.78%) | (3.51% 5.44%) | (5.45%-12.40%) na
MNon-AMA | Median 7.682% 68.72% 7.66% 5.13% 8.53% 8.02%
(25th-75th) | (5.2196-10.58%) | (5.03%-9.84%) | (5.23%-10.46%) | (4.73%-6.06%) | (7.62%-9.82%) | (4.42%-9.64%)
Consolidated [All Median 12.27% 10.06% 12.09% 14.05% 12 B5% 7.53%
Grass (25th-75th) | (10.58%-14.96%) | (4.46%-14.49%) | (10.72%-13.63%) | (13.08%-14.86%) | (8.59%-17.37%) | (5.19%-12.50%)
Income
AMA Median 10.83% T.82% 10.70% 12.44% 11.63% na
(25th-75th) | (8.38%-13.83%) | (3.83%-10.06%) | (9.47%-13.36%) | (11.53%-13.39%) | (6.67%6-21.76%) na
MNon-AMA | Median 12.79% 13.88% 12.10% 14.58% 13.08% 7.53%

(25th-75th) | (11.33%-15.03%) | (8.96%-18.10%) | (11.42%6-14.08%) | (14.009%-14.92%) | (10.68%-13.87%) | (5.19%-12.50%)

Mote 1. 25th-75th represents the interquartile range, which is the range of values {between the 25th percentile and 75th percentile) that contains half the banks in the
sample.

Mate 2: All participants in Brazil / India ara non-AMA.
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Problem Formulation

@ Notation

o X/ — kM loss for a unit of measure (UOM) i
e N' — frequency process
o L; — aggregate loss for UOM

o Given the frequency process N’ and the severity process Xj, the
aggregate loss L; for the unit of measure i is a compound process
defined as:

Ni
Li= ) Xk (1)
k=1

where X  are assumed to be iid within a UOM, and independent of
N.

e (Firmwide) aggregate loss for a bank with d units of measure is then:

d
lp=Y L=L+..+Lp (2)
i=1
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Problem Formulation - Aggregate Loss Distribution

@ Let G be the df of the random sum Lp and X be iid positive random
variables. Then, the aggregate loss distribution is denoted by

Grp(x) = P(Lp < x) (3)

o Gy, has complicated/unknown structure
o If we had a multivariate model in the form of a joint df, then the
dependence structure would be implicitly described.

@ The minimum regulatory capital (MRC) is calculated as a quantile of
the G;, at the confidence level ¥=0.999:

VaRosoo(1,) = G~ (0.999) = inf {x € R | G, (x) >0}  (4)
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Problem Formulation - Schematic Representation

@ Loss distributions vary across loss types and business lines.

@ Assuming that a bank uses Basel Il Level 1 event type and business
line classification in its UOM scheme, it will have, at most, a
56-dimensional problem.
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Modeling Alternatives

Op risk models could broadly be classified as different variants of the

@ Loss Distribution Approach (LDA). LDA-based models are very well
known from the (non-life) actuarial literature; see Klugman et al.
(2004), Frachot et al. (2001, 2004)

@ Extreme Value Theory (EVT). Embrechts et al. (1997), McNeil et al.
(2005).

@ Approximate analytical formulas. Bécker and Kliippelberg (2005),
Bocker (2006) and Bocker & Spritulla (2006).
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AMA in Practice - Building Blocks

© Pool the data by business line or event type or a combination of both
@ Fit frequency and severity distributions
O Get aggregate distribution through convolution

@ Estimate ﬁ@,

— n _—
@ Add (comonotonicity): VaRg, = Y. VaR;
i=1

O Take diversification benefit: VaReported = (1 — 6) VaRgim
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Example: Severity fit - Mixture lognormal vs. Burr

distribution

Severity Distribution
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Example: Severity fit - Mixture lognormal vs. Burr

distribution (tail)
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Example: Severity fit - Mixture lognormal vs. Burr

distribution

Censored CDF
1.11

1.08
1.08
1.02

0.4ag

=
o
=

=}
w
=1

=
@
=

Cumulative prabability
=
=
2

=
@
=

0.1
078
075

072
0.00 a00000.00  1600000.00 2400000.00 3200000.00 4000000.00 4200000.00 5600000.00 640000000 ¥200000.00
Loss amount

H Lognormal Mist. B Burr

Balta (OCC) Fields Institute, March 26, 2010



Example: Impact of data truncation on the severity fit

Severity Distribution
0.40
0.38
0.32
0.28
0.24
0.zo
018

Frobability density

01z
8.00E-02
4.00E-02

n.oo
1.00E-03 1.00 1000.00  1000000.00000000000.00

Loss Amount

Balta (OCC) Fields Institute, March 26, 2010



Example: Impact of severity choice on capital

@ Both the mixture lognormal and the Burr distributions fit body of the
data well

@ However, each result in quite different tail estimates:

Mixture
lognormal

VaR(0.999) [122,963,094| 426,208,494

Burr
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Volatility of Capital Estimates

@ Extreme losses dominate: An extreme loss can cause drastic changes
in the estimate of capital.

@ Rare event prediction: Statistical estimation of this uncertainty (95%
confidence levels) are typically very wide for the estimation of rare
events.

o Need significantly more data to reduce standard errors
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Volatility of Capital Estimates

Example: (Cope et al., 2009) Lognormal fits to ORX Corporate Finance /
Clients, Products, and Business Practices loss data, using all data vs.
excluding the three largest losses
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Dominance of Sums

@ Value of the most extreme losses determine the aggregate annual loss
distribution.

@ For heavy-tailed dist, the following theoretical result holds for the
high quantiles of the aggregate loss distributions: tail of the
maximum determines the tail of the sum.

lim P+ 4+ Xn>x) 1 and lim =
X—00 P(max (Xl, ...,Xn) > X) - P F X)

@ The operational risk capital is driven by a few low-probability,
high-severity events, rather than the accumulation of many Jid
high-probability, low-severity events (ie, F is a subexponential
distribution function)
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Dominance of Sums - Analytical Approximation

For subexponential distributions, Bocker and Kluppelberg (2005) derive a
closed-form approximation for the operational VaR, valid at very high
confidence levels

Theorem

Aggregate loss distribution of iid subexponential rvs: Let F"* be the
df of the of the random sum Y, x; and X; be iid positive random
variables with df F such that F(x) < 1 for all x > 0. Then

Fr*(x) ~ nF(x), X — 00

where F(.) = 1— F(.) and F"*(.) = 1 — F™ are the tail distributions of
severity and aggregate loss, respectively.
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Analytical Approximation

Closed-form approximation for operational VaR: Given the aggregate
loss distribution G, the VaR for the time interval t at the confidence level
K is defined as the x-quantile of the aggregate loss distribution:

VaRi(x) = G (x) = F— (1 _ M) e (0,1)

Pros

@ VaR at high level of « is independent of the body of the distribution
@ It is independent of all characteristics of the frequency distribution
other than its expectation
Cons
@ Practical value of approximation depends on the magnitude of the
approximation error.

@ It underestimates the quantile by an amount which grows with the
mean frequency EN(t) (Mignola & Ugoccioni, 2006)
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d
@ Note from Eq. (4) that MRC = VaRo.ggg(LD> = VaRo.ggg( ) L,')
i=1

@ However, as we noted before, G;, has, often, an intractable structure.

@ To get around this issue, in practice, banks aggregate quantiles
(VaRs) across units of measure and allow for a diversification benefit
5(>0):

d d
MRC = VaR().ggg (Z L,') = (1 — 5) Z VaRo_ggg (L,)

i=1 i=1

o However, unless the dependence assumptions underlying (> 0) are
sound, and are robust to a variety of scenarios, implemented with
integrity, and allow for the uncertainty surrounding the estimates,
Basel Il requires the diversification benefit § to be zero.

Balta (OCC) Fields Institute, March 26, 2010



Dependence - Multivariate Extremal Behavior

o Qutside the realm of the “normal” world, multivariate behavior,
especially in the tail region, needs to be better understood.

@ For the class of elliptical models (eg, normal distribution), questions
concerning diversification & capital allocation are well understood:
o In the elliptical world, VaR is sub-additive, meaning that the VaR of a
sum of risks is bounded above by the sum of the individual VaRs
o In the non-elliptical world, VaR is no longer a coherent risk measure
(Artzner et al., 1999); the sum of individual VaRs does not constitute
an upper bound.

@ The diversification benefit J is not constant but depends on the
quantile level.
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Dependence - Shortcomings of Linear Correlation

@ The correlation p(X1,X>) is a measure of linear dependence;

p€[-11].
e If X; and X, are independent, p(X1,Xz2) = 0, but the converse is not
true.

@ Correlation is only defined when the variances of X; and X, are finite.

@ McNeil et al. (2005, Theorem 5.25) show that "attainable"
correlations can form a strict subset of the interval [—1,1], [p,.. ,

pmax] with pmin <0< pmax :

e The min correlation p = p, .., is attained iff X7 and X, are
countermonotonic. The max correlation p = p_ . is attained iff X}
and Xy are comonotonic.

® Omin = —1iff X1 and —X5 are of the same type, and p . = 1 iff X1
and Xy are of the same type.
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Dependence - Max and Min Corr with Marginal Lognormals

Max and min attainable correlations for lognormal rvs X; and X, where
log(X1) is standard normal and log(X>) has mean zero and variance ¢ :

- P — min. correlation
" — max. correlation
w
o
c
o
s o
E o
8
w
o
(=1
-
! T
] 1 2 3 4 5

Balta (OCC) Fields Institute, March 26, 2010



Dependence - Max and Min Corr with Marginal Lognormals

The following conclusions can be drawn from the previous graph (where
0x, = 1 and oy, varies across 0):

@ Both positive and negative linear correlation measures vary with o of
the second distribution; this emphasizes the fact that linear
correlation depends on the parameter ¢ of the marginal distribution.

e It is possible to attain perfect positive correlation (p = 1) iff o, = 1.

@ For higher 0,,, the p_ .. moves progressively lower than 1 as the oy,
rises.

@ A positive linear correlation is impossible once ¢, exceeds
approximately 4. This does NOT imply, however, that the two
distributions are independent despite a linear correlation of 0.
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Copulas and Tail Dependence

o Tail dependence measures do not depend on the underlying marginals
and hence can be written in terms of the joint distribution’s
underlying distributional copula.

o Positive Tail Dependency AT is the probability that within the loss year
both variables will exhibit similar behavior in the tails. There are two
types of positive tail dependency:

@ Positive upper-tail dependence /\j‘: the probability that both rvs will
produce similar large losses in the upper tail;

o Positive lower-tail dependence )\,Jr : the probability that both rvs will
produce similar small losses in the lower tail

o Negative Tail Dependency A~ is the probability that within the loss
year both variables will exhibit opposite behavior in the tails. This
concept is a major driver of diversification in market risk since it implies
that very large losses in one tail can be offset by very large gains in the
opposite tail:
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Copulas and Tail Dependence

@ A copula may have

e both upper and lower tail dependence (t-copula, Generalized Clayton
copula)

o upper tail dependence only (Gumbel copula)

o lower tail dependence only (Clayton copula)

e no tail dependence (Gaussian copula, Frank copula)

o Effective negative tail dependency is reliant upon two-sided data
support. Operational-risk losses have only one-sided support
(X € (0,00)) since “negative” operational-risk losses are undefined.

@ Major diversification benefits are provided by copulas exhibiting
negative tail dependencies when the pair of X variables has two-sided
support: large positive values from one variable can offset large
negative values from the other variable.
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Copulas and Tail Dependence

Example: (Ulman & Inanoglu, 2010) Two bivariate t-copulas with
identical underlying t-marginals
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Copulas and Tail Dependence

Example: (Ulman & Inanoglu, 2010) Two-sided support is not always
sufficient for negative tail dependence
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Copulas and Tail Dependence

Example: (Ulman & Inanoglu, 2010) Absence of two-sided support implies

significantly lower "diversification" benefits

Meta-t with lognormal marginals
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Copulas and Tail Dependence

Example: (Ulman & Inanoglu, 2010) Simulated losses from our different
copulas each with identical lognormal marginals

Meta-t with lognormal marginals
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Thank You!
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