

# Assessing the Systemic Risk of a Portfolio of Heterogeneous Banks During the Recent Financial Crisis

Xin Huang, Hao Zhou and Haibin Zhu

Industrial-Academic Forum on Systemic Stability and Liquidity May 17-18, 2010, Fields Institute, Toronto

\*The views presented here are solely those of the authors and do not necessarily represent those of the Federal Reserve Board or the Bank for International Settlements.



# **Background**

- "Macroprudential" (re-)regulation after recent financial crisis
  - Cross-section dimension: systemically important banks
  - Time dimension: procyclicality and capital
- Key ingredients of systemic risk
  - Size or Too-big-to-fail
  - Correlation or concentration or interconnectedness
  - Default probability or vulnerability or leverage ratio
- (An economically meaningful way to aggregate nonlinearly)



- Challenges on the operational side: systemic risk
  - How to measure systemic risk?
  - How to allocate systemic risk to individual banks?
  - How to connect systemic importance to bank regulation?
    - Systemic capital charge (cross-section)
    - Counter-cyclical reserve (time-series)
  - Endogeneity problem: Will the new regulatory framework change bank behavior and prevent the future systemic failure of financial sector? (not addressed here)



# **Objectives of this paper**

- Extension of Huang, Zhou and Zhu (2009)
- Measuring systemic risk: distress insurance premium
  - A market-based indicator
- Identifying sources of systemic risk
  - What explains the movements in the systemic risk? –
    actual default risk, credit risk or liquidity risk premium
  - How to allocate systemic risk to individual banks? or how to identify systemically important LCFIs?



#### Literature

- Market-based systemic risk indicator
  - Probability of joint defaults: IMF GFSR, Lehar (2005)
  - Huang, Zhou and Zhu (2009 JBF)
- Systemic importance of individual banks
  - Adrian and Brunnermeier (2008): CoVaR approach
  - Acharya, Pedersen, Phlippon and Richardson (2010):
    CoES approach
  - (Implicitly relating to PD, correlation, and size)



# The rest of the presentation

- Construction of the systemic risk indicator
- Decomposition of systemic risk
- Allocating systemic risk to individual banks
- "Additional factors" behind systemic importance



# I. Construct the systemic risk indicator

- Distress insurance premium (DIP)
- Suppose that a hypothetic insurance contract is issued to protect distressed losses in a banking system (at least a significant portion of total liabilities in default), what is the fair insurance premium?
- Similar to the real option concept



#### Methodology: an overview





# Methodology

- Step 1: estimating PDs from CDS spreads
  - A standard exercise in the literature: PD ≈ CDS / LGD
  - PDs are risk-neutral and forward-looking





- Step 2: estimating asset return correlations
  - Use equity return correlations as a proxy
  - Use Dynamic Conditional Correlation (DCC) approach by Engle (2002)
  - (or latent factor model as in Vasicek 1991)
- Step 3: simulate (risk-neutral) portfolio loss distribution
  - $L = \Sigma L_i$
  - $DIP = E(L \mid L \ge L_{min})$



# Example 1: Major banks in Asia-Pacific Example 2, US 19 banks in SCAP

- 22 major banks in Asia-Pacific
  - Australia (6), Hong Kong (2), India (2), Indonesia (1),
    Korea (4), Malaysia (2), Singapore (3) and Thailand (2)
  - Selection criteria
    - Tier-1 capital > 2.5 billion USD in 2007 or the largest bank in its own jurisdiction
    - Data availability: CDS, equity prices, EDF
- The 22 banks combined held 3.95 trillion USD in 2007, compared to the aggregate GDP of 4.2 trillion USD
- "Distress": total losses ≥ 10% of total liabilities



#### Example 1: 22 major banks in Asia-Pacific region





#### Example 2: 19 US BHCs included in the SCAP exercise







#### Example 1: 22 major banks in Asia-Pacific region





#### Example 2: 19 US BHCs included in the SCAP exercise







# II. Driving factors of systemic risk

- Approach 1:
  - Substitute risk-neutral PDs with actual PDs (EDF) → DIP on an (expected) incurred cost basis
  - That is, the risk premium is set to be zero always





#### Example 1: 22 major banks in Asia-Pacific region





# II. Driving factors of systemic risk

- Approach 2: regression-based analysis
  - Actual default
  - Default risk premium
  - Liquidity risk premium

| Dependent variables      | Regression 1 | Regression 2 | Regression 3 | Regression 4 |
|--------------------------|--------------|--------------|--------------|--------------|
| Constant                 | -0.061       | -0.49        | 0.013        | -0.31        |
|                          | (1.9)        | (12.5)       | (0.2)        | (7.8)        |
| Average EDF (%)          | 3.44         | , ,          | , ,          | 1.50         |
|                          | (17.6)       |              |              | (5.6)        |
| Baa-Aaa spread (%)       | , ,          | 0.64         |              | 0.33         |
|                          |              | (23.6)       |              | (5.5)        |
| LIBOR-OIS spread $(\%)$  |              |              | 0.68         | 0.13         |
|                          |              |              | (8.6)        | (2.8)        |
| Adjusted- $\mathbb{R}^2$ | 0.86         | 0.92         | 0.60         | 0.95         |



#### Example 1: 22 major banks in Asia-Pacific region





#### Example 2: 19 US BHCs included in the SCAP exercise





# III. Allocating systemic risk to each bank

Marginal contribution of bank i to the systemic risk

• Definition: 
$$MC_i = \frac{\partial DIP}{\partial L_i} = E[L_i \mid L \geq L_{\min}]$$

•  $DIP = \Sigma MC_i \Rightarrow additive property$ 



- Comparison to two other approaches
  - DIP:  $E[L_i \mid L \geq L_{\min}]$
  - CoVaR: Prob (VaR=q | VaR<sub>i</sub>=q)
  - CoES:  $E(L | L_i \ge VaR_i)$ 
    - Implicitly relating to PD, size, and correlation (explicit)
    - Objective distribution (risk-neutral insurance price)
    - Reverse directions and CoVaR is not additive
    - Implementation on equity/bond returns (liability size)



#### Systemic importance: Asia-Pacific example





#### Systemic importance: US example







| Bank Name                    | Country Marginal contribution by bank Memo: Bank |            |            |            |            |            | Memo: Bank     |
|------------------------------|--------------------------------------------------|------------|------------|------------|------------|------------|----------------|
|                              | v                                                | 06.30.2007 | 03.15.2008 | 10.25.2008 | 03.07.2009 | 05.02.2009 | equity in 2007 |
| ANZ National Bank            | Australia                                        | 0.0771     | 4.3900     | 5.7229     | 7.7300     | 4.2279     | 19.53          |
| Commonwealth Bank Group      | Australia                                        | 0.2156     | 6.5001     | 8.2839     | 10.6668    | 5.8130     | 25.01          |
| Macquarie Bank               | Australia                                        | 0.0254     | 1.5436     | 3.1761     | 3.6251     | 1.9618     | 9.19           |
| National Australia Bank      | Australia                                        | 0.1678     | 7.6246     | 9.4217     | 12.8181    | 7.7941     | 26.47          |
| St George Bank               | Australia                                        | 0.0153     | 1.2026     | 1.2868     | n.a.       | n.a.       | 5.21           |
| Westspac Banking Corp        | Australia                                        | 0.0829     | 4.1081     | 5.0966     | 7.1203     | 3.8562     | 15.79          |
| Bank Negara Indonesia        | Indonesia                                        | 0.0010     | 0.0355     | 0.1880     | 0.1634     | 0.0736     | 1.84           |
| ICICI Bank                   | India                                            | 0.0076     | 0.4466     | 2.2754     | 1.6353     | 0.8748     | 11.42          |
| State Bank of India          | India                                            | 0.0203     | 0.8543     | 4.2207     | 2.8282     | 1.6166     | 15.77          |
| Bank of East Asia            | Hong Kong                                        | 0.0006     | 0.0766     | 0.4563     | 0.4446     | 0.2293     | 3.90           |
| Standard Chartered Bank      | Hong Kong                                        | 0.0427     | 2.1363     | 8.7825     | 13.9914    | 9.8628     | 21.45          |
| Industrial Bank of Korea     | Korea                                            | 0.0082     | 0.3868     | 1.8831     | 1.4536     | 0.7631     | 7.14           |
| Kookmin Bank                 | Korea                                            | 0.0227     | 1.0698     | n.a.       | n.a.       | n.a.       | 17.13          |
| Korea Exchange Bank          | Korea                                            | 0.0031     | 0.2298     | 1.0202     | 0.8903     | 0.5462     | 7.11           |
| Woori Bank                   | Korea                                            | 0.0000     | 0.0079     | 0.0298     | 0.0337     | 0.0176     | 14.05          |
| Malayan Banking Berhad       | Malaysia                                         | 0.0017     | 0.1153     | 0.6716     | 0.5053     | 0.2547     | 6.15           |
| Public Bank Berhad           | Malaysia                                         | 0.0009     | 0.0478     | 0.4375     | 0.3564     | 0.1675     | 3.02           |
| DBS Bank                     | Singapore                                        | 0.0083     | 0.4285     | 1.7736     | 1.6141     | 0.9914     | 16.10          |
| Oversea Chinese Banking Corp | Singapore                                        | 0.0040     | 0.2743     | 1.1038     | 0.9588     | 0.5424     | 11.71          |
| United Overseas Bank Ltd     | Singapore                                        | 0.0040     | 0.2372     | 1.0737     | 0.9895     | 0.5696     | 12.32          |
| Bangkok Bank                 | Thailand                                         | 0.0013     | 0.0672     | 0.3921     | 0.3688     | 0.2682     | 5.62           |
| Kasikombank                  | Thailand                                         | 0.0008     | 0.0396     | 0.3130     | n.a.       | n.a.       | 3.37           |
| Total                        |                                                  | 0.7113     | 31.8225    | 57.6092    | 68.1939    | 40.4308    | 259.32         |



Table 1: Marginal contribution to systemic risk on specific dates, by bank

| D 1 M                       |            |                       |            |            | 1          |            |            | 201 B    |
|-----------------------------|------------|-----------------------|------------|------------|------------|------------|------------|----------|
| Bank Name                   | Sector     | Marginal contribution |            |            |            |            | SCAP       |          |
|                             |            | 06.29.2007            | 03.14.2008 | 10.10.2008 | 11.21.2008 | 03.06.2009 | 03.26.2010 | Losses   |
| American Express Co.        | Consumer   | 0.1103                | 4.3564     | 11.2648    | 8.9336     | 11.8824    | 1.3141     | 11.2000  |
| Bank of America Corp.       | LCFI       | 6.5783                | 89.0372    | 115.3855   | 113.7524   | 197.3568   | 80.4678    | 136.6000 |
| BB&T                        | Regional   | 0.2626                | 3.5706     | 8.4486     | 6.7101     | NaN        | 3.1629     | 8.7000   |
| Bank of NY Mellon Corp.     | Processing | 0.2220                | 4.0386     | 7.9192     | 7.9336     | 9.5486     | 3.1165     | 5.4000   |
| Capital One Financial Corp. | Regional   | 0.0801                | 9.7471     | 13.2452    | 10.5724    | 10.7946    | 1.7511     | 13.4000  |
| Citigroup, Inc.             | LCFI       | 9.9896                | 167.9319   | 232.1214   | 293.6022   | 314.9927   | 72.2338    | 104.7000 |
| Fifth Third Bancorp         | Regional   | 0.1377                | 1.7985     | NaN        | NaN        | 1.7415     | 3.8289     | 9.1000   |
| GMAC LLC                    | Consumer   | 0.1000                | 6.1894     | 14.1160    | 14.7534    | 10.3699    | 1.6615     | 9.2000   |
| Goldman Sachs Group, Inc.   | Investment | 2.5131                | 41.2036    | 93.1600    | 69.1573    | 84.9471    | 18.7823    | 17.8000  |
| JP Morgan Chase & Co.       | LCFI       | 8.3843                | 89.9052    | 125.6070   | 129.0701   | 160.3044   | 41.5042    | 97.4000  |
| KeyCorp                     | Regional   | 0.0978                | 2.6285     | 10.7468    | 8.8907     | 9.6527     | 3.4519     | 6.7000   |
| MetLife, Inc.               | Consumer   | 0.6553                | 19.7449    | 41.5619    | 43.9580    | 67.7141    | 15.4632    | 9.6000   |
| Morgan Stanley              | Investment | 1.6914                | 31.4958    | 76.5376    | 44.9418    | 64.2955    | 11.8782    | 19.7000  |
| PNC Fin. Svcs. Gp, Inc.     | Regional   | 0.2823                | 2.4525     | NaN        | NaN        | NaN        | 2.6487     | 18.8000  |
| Regions Fin. Corp.          | Regional   | 0.2833                | 0.9125     | 0.9971     | 0.9166     | 0.9700     | 4.5508     | 9.2000   |
| State St. Corp.             | Processing | 0.2784                | 3.8897     | 9.3803     | 11.7877    | 9.2705     | 2.7552     | 8.2000   |
| SunTrust Banks, Inc.        | Regional   | 0.3106                | 6.5160     | 13.1509    | 10.5460    | 9.5568     | 3.6545     | 11.8000  |
| U.S. Bancorp                | Regional   | 0.3748                | 7.4078     | 11.4230    | 9.0631     | 10.7429    | 4.2704     | 15.7000  |
| Wells Fargo & Co.           | LCFI       | 1.0954                | 24.9586    | 32.6814    | 28.1531    | 117.3237   | 31.2821    | 86.1000  |
| Total                       |            | 33.4475               | 517.7848   | 817.7467   | 812.7420   | 1091.4642  | 307.7780   | 599.3000 |

Note: All numbers are in billions of US dollars



Systemic importance: US end-2008, DIP versus SCAP results





- Factors behind systemic importance
  - Size matters most → "too big to fail"
  - Correlation → common exposures, interconnection
  - PD → leverage





#### **Conclusions**

- Our approach provides a tool for macro-prudential regulation
  - To identify systemically important financial institutions
  - To understand sources of systemic risk
  - To impose capital surcharge for systemic banks
- Challenges remain
  - Time-dimension (counter-cyclical capital buffer)?
  - Is there a unified framework (all DIP, CoVaR, CoES)?
  - As public policy, should systemic capital charge be based on risk-neutral price or actuarial expected loss? (James Wilcox discussion at Chicago Bank Structure Conference)