Heterogeneous Beliefs and Short-Term Credit Booms

Zhiguo He

Wei Xiong

Chicago Booth

Princeton & NBER

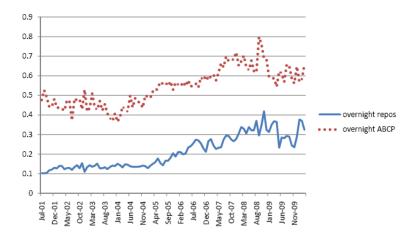
May 17, 2010

Motivation

- Standard economic theories emphasize agents' consumption and portfolio choices as the key drivers of the asset market equilibrium.
- ► The recent financial crisis painted a different picture with leverages and debt structure at the center:
 - Financial institutions used large leverages.
 - ▶ Debt maturity dramatically shortened before 2007.
 - Failure to roll over short-term debt triggered the crisis and systemic liquidity risk.
- How do market participants' financing choices interact with asset-market dynamics?

Maturity Shortening Before the Crisis

Fraction of monthly issuance of overnight repos and ABCP



Summary of the Model

- A dynamic model to analyze the interactions between investors' financing choices and asset-price dynamics.
 - Joint booms in credit and asset markets.
 - Debt maturity trades off speculative and hedging incentives.
- Our model builds on the standard framework with heterogeneous beliefs and short-sales constraints:
 - e.g., Miller (1977), Harrison and Kreps (1978), Morris (1996), Chen, Hong, and Stein (2002), and Scheinkman and Xiong (2003).
 - Two groups of agents holding heterogeneous and state-contingent beliefs about the fundamental.
- ► Follows Geanakoplos (2009), where optimists use collateralized debt to finance their asset purchases.

Key Insights

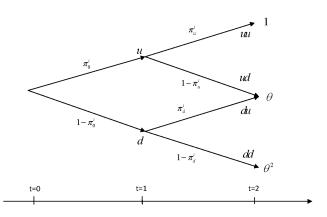
- Optimists' debt maturity choice:
 - Short-term debt permits a large leverage at a risk-free rate; but exposes the borrower to rollover risk.
 - ► Long-term debt hedges financing cost against future downturns.
- Distinctive roles of initial and future belief dispersion:
 - Initial belief dispersion stimulates speculative incentives.
 - ► Future belief dispersion after a downturn increases rollover risk.
- ▶ A short-term credit boom reflects excessive heterogeneous beliefs.
 - ▶ It fuels an asset- market boom and then exacerbates the downturn.
- Despite short-sales constraints, the price effect of heterogeneous beliefs can be ambiguous:
 - Pessimists indirectly affect prices through optimists' financing cost.
 - Higher initial belief dispersion can lead to a higher price, while higher future belief dispersion generally lowers the price.
 - Prompts attention on belief dispersion at different horizons.

Related Literature

- Our model differs from those on credit contraction during crises.
 - ▶ Increased margins in crises, e.g., Brunnermeier and Pedersen (2009);
 - Shortened debt maturity during crises, e.g., He and Xiong (2009a) and Brunnermeier and Oehmke (2009).
- Reasons for pervasive use of ST debt:
 - Agency problems inside firms: Calomiris and Kahn (1991), Diamond and Rajan (2009).
 - ► ST debt is less information sensitive: Gorton and Pennacchi (1990).
 - Our model emphasizes speculative incentives as a driving force.
- The tradeoff in our model resembles Diamond (1991).
 - ► The two sides: borrower's private information and liquidity risk.
 - Our model ties both sides of the tradeoff to heterogeneous beliefs and links them to asset market dynamics.
- Heterogeneous beliefs and security designs:
 - ► Garmaise (2001), and Landier and Thesmar (2008).

The Basic Model

- ▶ The long-term risky asset pays off at t = 2 as a binomial tree.
- ▶ Two groups of agents holding heterogeneous beliefs.
 - ▶ We denote optimists by h and pessimists by l.
 - ▶ In the basic model, we let $\pi_n^h > \pi_n^l$ for any $n \in \{0, u, d\}$.



Asset Market

- ▶ 1 unit of risky asset supply, $\mu \in (0,1)$ units of optimists.
- On date 0, each optimist is endowed with 1 unit of asset and c dollars of cash.
 - Optimism motivates them to buy the remaining $1-\mu$ units of assets from pessimists.
- The pessimists sit on the sideline, and can provide credit to the optimists.
 - We assume they always have sufficient cash to provide competitive financing to the optimists.
 - ► Their belief affects the financing cost.
- Risk neutral agents, zero interest rate.
- Short sales are not allowed.

Collateralized Debt Financing

- The optimists use their asset holdings as collateral to obtain debt financing.
- Only consider standard non-contingent debt contracts.
 - A non-contingent debt contract specifies a constant debt payment (face value) at maturity unless the borrower defaults.
 - ▶ Optimal in costly-state-verification models a la Townsend (1979).
 - By shifting control to the creditor after price declination, debt disciplines excessive risk-taking by optimists.
- ▶ In equilibrium, optimists always choose face value in $\left[\theta^2, \theta\right]$, as long as the asset price is between the optimists' and pessimists' asset valuation.
- In equilibrium, optimists do not save cash.
 - It is not desirable for any optimist to sell his asset on date 1.
 - He has to refinance his debt on date 1 if he uses short-term debt, or loses his asset to the creditor.

Long-Term Debt

- A long-term debt contract, collateralized by one unit of the asset.
 - It matures on date 2 with a face value of $F_L \in \left[\theta^2, \theta\right]$.
 - ▶ The random debt payment $\widetilde{D}_L\left(F_L\right) = \min\left(F_L,\widetilde{\theta}\right)$.
- ▶ On date 0, pessimistic creditors provide credit:

$$C_{L}\left(F_{L}\right) = E_{0}^{I}\left[\widetilde{D}_{L}\right] = \left(1 - \left(1 - \pi_{0}^{I}\right)\left(1 - \pi_{d}^{I}\right)\right)F_{L} + \left(1 - \pi_{0}^{I}\right)\left(1 - \pi_{d}^{I}\right)\theta^{2}.$$

Financing cost to the optimistic borrower:

$$E_0^h\left[\widetilde{D}_L\right] = \left(1 - \left(1 - \pi_0^h\right)\left(1 - \pi_d^h\right)\right)F_L + \left(1 - \pi_0^h\right)\left(1 - \pi_d^h\right)\theta^2.$$

- ▶ Risky debt $(F_L > \theta^2)$ is costly because the creditor undervalues the payment in the higher states.
 - ▶ The risk-free debt $(F_L = \theta^2)$ is fairly valued but limits leverage.
 - What if the borrower wants a larger leverage?

Short-Term Debt

- ▶ ST debt matures on date 1, with face value $F_S \in [\theta^2, \theta]$.
- ▶ The borrower refinances at t=1 by promising a new debt payment $F_{S,1}$ at t=2: $E_n^I\left[\min\left(F_{S,1},\widetilde{\theta}\right)\right]=F_S$.
 - ▶ In state u, the borrower just needs to promise $F_{S,1} = F_S$.
 - ▶ In state d, the maximum credit he can raise is

$$K_d \equiv \mathbb{E}_d^l \left[\min \left(\theta, \widetilde{\theta} \right) \right] = \pi_d^l \theta + \left(1 - \pi_d^l \right) \theta^2 < \theta.$$

- 1. $F_S \in \left[\theta^2, K_d\right]$. Riskless with date-0 credit $C_S\left(F_S\right) = F_S$.
 - Risk-free ST debt can raise as much as K_d , higher than θ^2 .
 - ▶ In state d, refinance requires new risky debt with $F_{S,1} \ge F_S \ge \theta^2$..
- 2. $F_S \in (K_d, \theta]$. Risky.
 - ▶ in state d, the borrower forfeits the asset to the creditor.

Position of Optimists

- Suppose that an optimist uses a contract \widetilde{D} and obtains an initial credit of $C\left(\widetilde{D}\right) \equiv \mathbb{E}_0'\left[\widetilde{D}\right]$.
- Besides 1 unit of asset endowment, he buys additional x units from the market.
 - lacktriangle Collateralized borrowing. He can borrow (1+x) $C\left(\widetilde{D}
 ight)$ in total.
- ▶ Budget constraint: $c + (1 + x) C(\widetilde{D}) = xp_0 \Rightarrow x = \frac{c + C(D)}{p_0 C(\widetilde{D})}$.
 - Assuming he does not hold any cash, which is verified in equilibrium.
- ► His date-0 utility is

$$V\left(\widetilde{D}\right) = \underbrace{\frac{c + p_0}{p_0 - C\left(\widetilde{D}\right)}}_{\text{leverage effect}} \underbrace{\left[\mathbb{E}_0^h\left(\widetilde{\theta}\right) - \mathbb{E}_0^h\left(\widetilde{D}\right)\right]}_{\text{debt-cost effect}}$$

Maturity Choice

- Consider two ST and LT contracts giving the same date-0 credit (i.e., fixing the leverage effect).
- ▶ Debt-cost effect: ST debt has lower cost if and only if

$$\frac{\pi_0^h}{\pi_0^l} > \frac{\left(1 - \pi_0^h\right) \pi_d^h}{\left(1 - \pi_0^l\right) \pi_d^l}.$$

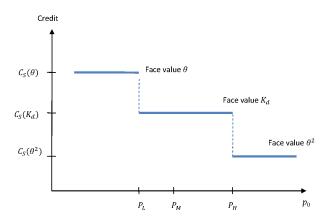
- ST debt needs refinancing: better or same term after good news, but worse term after bad news.
 - ▶ Pay less in high states, more in low states. preferred by optimists!
 - Initial belief dispersion at t=0 stimulates speculative incentives.
- After bad news (state d), belief dispersion leads to rollover risk.
 - ▶ The refinancing $F_{S,1}$ payment is undervalued by the creditor.
 - Rollover risk is endogenously determined by heterogeneous beliefs.

Maturity Choice: The Static Intuition

- Geanakoplos (2009): optimists always prefer the maximum risk-free short-term leverage.
- **Examine** the short-term K_d contract: initially risk-free.
 - ▶ In state *u*, refinance by another risk-free contract;
 - ▶ In state d, refinance by turning the asset to creditor.
- ▶ This intuition ignores the rollover risk and does not hold if the future belief dispersion in state *d* is sufficiently large.
- ▶ Our model shows that short-term debt is desirable only if initial belief dispersion is high and future dispersion in state *d* is low.
 - Long-term debt could be optimal because it hedges the financing cost against future downturns.

Optimal Short-term Debt Face Value: Leverage Choice

- Suppose that short-term debt is desirable.
 - ▶ The default risk is different for F_S inside θ^2 , K_d and $[K_d, \theta]$.
- ▶ Two thresholds P_H and P_L for price p_0 . The higher the asset price p_0 , the lower the leverage that the optimists will take.



Equilibrium of Asset and Credit Markets on Date 0

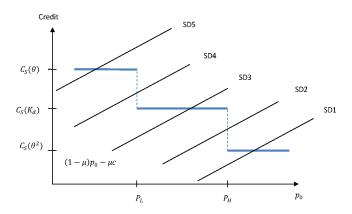
- ▶ Recall the optimists (with measure μ) buy $x = \frac{c + C(D)}{p_0 C(\bar{D})}$ units from the market, and pessimists sell 1μ to the market.
- ▶ Market clearing: the optimists' asset purchases $\mu x = 1 \mu$.
- ▶ If all the buyers use the same debt contract $\widetilde{D}(p_0)$, then

$$\mu \frac{c + C\left(\widetilde{D}\left(p_{0}\right)\right)}{p_{0} - C\left(\widetilde{D}\left(p_{0}\right)\right)} = 1 - \mu$$

which is equivalent to

$$\underbrace{C\left(\widetilde{D}\left(p_{0}\right)\right)}_{\text{credit demand}} = \underbrace{\left(1-\mu\right)p_{0}-\mu c}_{\text{cash shortfall}}.$$

Market Equilibrium



Equilibrium on Date 1

- We look for shadow price on date 1, which has two states u and d.
- ▶ In state *u*, the optimistic asset holders are in a good financial situation, and the asset price is determined by their valuation:

$$\rho_u = \mathbb{E}_u^h \left[\widetilde{\theta} \right] = \pi_u^h + \left(1 - \pi_u^h \right) \theta.$$

- ▶ In state *d*, the equilibrium depends on the date-0 debt contracts:
 - If all asset holders use riskless debt contracts, then optimists who hold the asset determines the price:

$$p_d = \mathbb{E}_d^h \left[\widetilde{\theta} \right] = \pi_d^h \theta + \left(1 - \pi_d^h \right) \theta^2.$$

 Otherwise, some asset holders are forced to transfer assets to pessimistic creditors:

$$p_d = \mathbb{E}_d^l \left[\widetilde{\theta} \right] = \pi_d^l \theta + \left(1 - \pi_d^l \right) \theta^2.$$

Heterogeneous Beliefs and Asset Price Cycles

- Standard Miller result: in the absence of short-sales, heterogeneous beliefs cause asset overvaluation.
- We evaluate this result after accounting for optimists' financing cost.
- We use the following baseline parameters:

$$\mu = 0.3, c = 0.5, \theta = 0.4, \pi_0^h = 0.7, \pi_0^l = 0.3,$$

$$\pi_u^h = 0.6, \pi_u^l = 0.4, \pi_d^h = 0.6, \pi_d^l = 0.4.$$

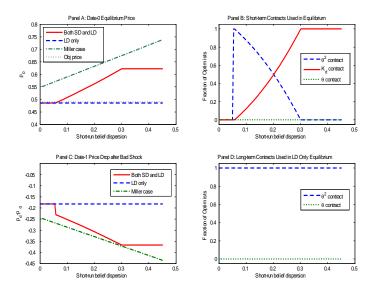
 To evaluate the effect of initial belief dispersion on date 0 (speculative incentives), we let

$$\pi_0^h = 0.5 + \delta_0$$
 and $\pi_0^I = 0.5 - \delta_0$.

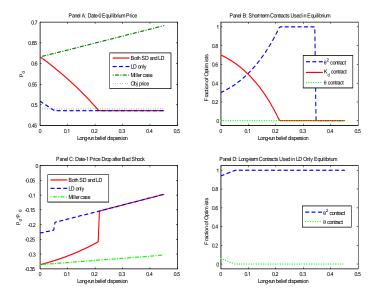
➤ To evaluate the effect of belief dispersion in state d of date 1 (rollover risk), we let

$$\pi_d^h = 0.5 + \delta_d$$
, and $\pi_d^I = 0.5 - \delta_d$.

The Initial Belief Dispersion on Date 0



The Future Belief Dispersion in State d of Date 1



An Extended Model with Learning

- Now we endogenize state-contingent belief dispersions.
 - Learning can lead to flips of beliefs, amd thus resale options to asset holders, a la Harrison and Kreps (1978).
 - Learning can also lead to more divergent beliefs after a negative shock, thus more severe rollover risk.
- Each agent updates his belief on date 1 based on the realized fundamental shock.
 - Learning can lead to flips of beliefs, introducing resale option value.
- ▶ Three groups A, B, and C. The prior of group $i \in \{A, B, C\}$ has beta distribution with (α^i, β^i) .
 - ▶ The mean of this distribution is $\pi_0^i \equiv \frac{\alpha^i}{\gamma^i}$ where $\gamma^i \equiv \alpha^i + \beta^i$.
 - π_0^i is mean, γ^i captures confidence.
- ▶ In state u, the posterior mean is $\pi_u^i = \frac{\gamma^i}{\gamma^i+1}\pi_0^i + \frac{1}{\gamma^i+1}$.
- ▶ In state d, the posterior mean is $\pi_d^i = \frac{\gamma^i}{\gamma^i + 1} \pi_0^i$.

An Extended Model with Learning

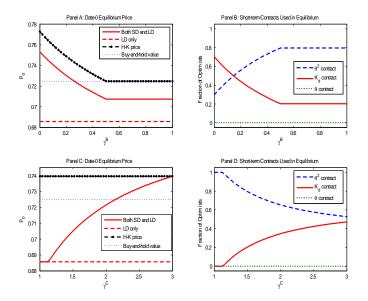
- On date 0, we assume $\pi^h \equiv \pi_0^A > \pi^I \equiv \pi_0^B = \pi_0^C$, $\gamma^C > \gamma^A > \gamma^B$.
 - ► Group-B (future buyers) has strongest reaction to positive shock in state u, and group-C (creditors) has weakest reaction to negative shock in state d.
- ▶ The asset holders' resale option on date 1, e.g., Harrison and Kreps (1978), Morris (1996), and Scheinkman and Xiong (2003).

 - \blacktriangleright B-agents become buyers of A-agents' asset in state u if

$$\pi_u^B = \frac{\gamma^B}{\gamma^B + 1} \pi^I + \frac{1}{\gamma^B + 1} > \pi_u^A = \frac{\gamma^A}{\gamma^A + 1} \pi^h + \frac{1}{\gamma^A + 1}.$$

▶ Agent-C are natural creditors to agent-A at t = 0.

Financing Bubbles



Discussion on Short-term Credit Booms

- Several episodes of short-term credit booms:
 - ▶ before the credit crisis of 2007-2008;
 - before the debt crises of emerging economies in 1990s;
 - before the great crash of 1929.
- A short-term credit boom can fuel an asset-market boom and then exacerbate the downturn after the asset fundamental deteriorates.
 - The importance of financing choices for understanding asset-market dynamics and financial crises.
- Our model characterizes a set of conditions for short-term credit booms to emerge:
 - large short-term belief dispersion;
 - and future belief convergence.

Discussion on Heterogeneous Beliefs and Asset Bubbles

- ► There is a large literature on asset bubbles generated by heterogeneous beliefs and short-sales constraints.
 - Miller (1977) and Chen, Hong and Stein (2002): a larger belief dispersion leads to a higher asset price and a lower expected return.
 - Harrison and Kreps (1978), Morris (1996) and Scheinkman and Xiong (2003): more volatile belief dispersion leads to more valuable resale option and more frequent asset trading.
- These studies ignore financing cost and heterogeneous beliefs in different horizons.
- Our model highlights the differences between initial and future belief dispersion when optimists need financing.
 - A higher initial belief disperion can lead to a higher asset price;
 - while a higher future belief dispersion after fundamental deterioration reduces asset price.

Conclusion

- Our model shows that financing choices can exacerbate asset-market boom-and-bust cycles.
- Optimists' debt maturity choice: a tradeoff between speculative incentive and rollover risk.
 - Initial belief dispersion stimulates speculative incentives, while future belief dispersion after a downturn increases rollover risk.
 - A short-term credit boom requires not only large short-term belief dispersion but also expected belief convergence.
- ▶ Despite short-sales constraints, the price effect of heterogeneous beliefs can be ambiguous:
 - ▶ Pessimists indirectly affect price through optimists' financing cost.
 - Higher initial belief dispersion can lead to a higher price, while higher future belief dispersion generally lowers the price.
 - Prompts attention on belief dispersion at different horizons.