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Convertible bond with underlying stock S

@ Coupons from time 0 onwards

@ Terminal payoffat { =7 A0
Yoera7l(7,S7) + Lo<r h(9, Sy) + 1c=78(ST)

e [0, T]-valued bond holder put time 7 and bond issuer call time 6
o Cancelable American claim, or game option

o Call protections preventing the issuer from calling the bond on
certain random time intervals

o Typically monitored at discrete monitoring times
o In a possibly very path-dependent way
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Agenda

@ Doubly reflected backward stochastic differential equations with an
intermittent upper barrier, only active on random time intervals
(RIBSDE)

@ Related variational inequality approach (VI)

o Highly-dimensional pricing problems (path dependence)
o Deterministic pricing schemes ruled out by the curse of dimensionality

—  Simulation methods

Contributions

@ A convergence rate for a discrete time approximation scheme by
simulation to an RIBSDE

@ VI approach

@ Practical value of this approach on the benchmark problem of
pricing by simulation highly path-dependent convertible bonds

o A demonstratlon of the real abllltles of smulahon/regressnon
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Markovian RIBSDE

Diffusion Set-Up with Marker Process

o Diffusion with Lipschitz coefficients in RY
dXt = b(t, Xt) dt + U(t, Xt) th
e Call protection monitoring times T ={0=To < ... < Ty =T}
@ Marker process H keeping track of the path-dependence, in view of

‘markovianizing’ the model
e R9 x K-valued factor process X = (X, H) (finite set K)
o u=u(t,x, k) = uk(t,x)

K-valued pure jump marker process H supposed to be constant
except for deterministic jumps at the Tys

Ht

1

= ki(X7,, Hr,-)

o Jump functions k¥ continuous in x outside O (constant on @ and
on €Q) for an open, ‘regular’ domain O C RY
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Diffusion Set-Up with Marker Process
Markovian RIBSDE
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Solution of the RIBSDE

Markovian RIBSDE

Call Protection

@ Subset K of K

o Call forbidden/possible whenever H; € K / ¢ K

o T-valued stopping times given as successive times of exit from and
entrance to K, so g = 0 and then
192/+1 = inf{t > oy Hy ¢ K} ANT, 192/+2 = inf{t > 192/+1; H; € K} AT

o Call forbidden/possible on the ‘even’/‘odd’ intervals [¢/, ¥/11)
o Hee K/ ¢K
Starting from Ho = k ¢ K (‘Call at the beginning’)

0:190:191<192§...§19N+1: T
Call possible on the first non-void time interval [}, = 0 = g, ¥, > 0)

Starting from Ho = k € K (‘No Call at the beginning’)

0:?90<’191§...§19N+1: T
Call forbidden on the first non-void time interval [¢o = 0,%; > 0)
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Markovian RIBSDE
Reflected BSDE (S) with data
f(t,Xt,y,Z) ) 5 = g(XT) 9 g(tvxt) ) h(taxt) ) 19

e ‘Standard Lipschitz and L2-integrability assumptions’ (if not for 1)
@ Mokobodski condition
o Existence of a square-integrable quasimartingale Q between L and U

@ Doubly reflected BSDE with lower barrier L, = ¢(t, X;) and
intermittent (the ‘I in RIBSDE) upper barrier given by, for t € [0, T]

[N/2] [((N+1)/2]
Ut = Z lwzlvﬁzlﬂ)oo + Z 1[192I71ﬂ92/)h(t’xt)
1=0 1=1

e ‘Nominal" upper obstacle h(t, X:) only active on the ‘odd’ random

time intervals [¥2/_1,2/)
o Call protection on the ‘even’ random time intervals [¥2/, ¥2/41)
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Risk-neutral pricing problems in finance

Driver coefficient function f typically given as
f=f(t,x,y) = c(t,x) — p(t,x)y

@ Dividend and interest-rate related functions ¢ and p
e Single-name credit risk (counterparty risk)
o Recovery-adjusted dividend-yields ¢
o Credit-spread adjusted interest-rates u
o Pre-default factor process X

@ Affine in y, does not depend on z
e Historical rather than RN modeling — ‘z-dependent’ f
o Market imperfections — nonlinear f

Terminal cost functions typically given by
Ut,x)=PVS, h(t,x)=CVS, g(x)=NVS
P < N < C Constants
S = x; first component of x

@ Mokobodski condition satisfied with @ = S provided S is a
square-integrable It'|'j_% process
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Markovian RIBSDE

Highly path dependent call protection

Example (‘/ out of d")

Given a constant trigger level S and constants | < d < N, call possible iff
S has been > S on at least / of the last d monitoring times

o K=1{0,1}9, ri(x) = (Ls>5, kiye ooy kd—1)
@ H; vector of the indicator functions of the events S7, > S at the last
d monitoring dates preceding time t

Call possible iff [H,| > | < H, ¢ K with |k| =32, kp and
K=1{kek; |kl <I} -
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Markovian RIBSDE

Solution of the RIBSDE

A solution Y to (S) is a triple Y = (Y, Z, A) such that:

() YeS*ZecH2 Ac A?
T T
(i) Vi = ¢ +/ F(5, Xe, Yo, Z2)ds + A7 — Ar —/ Z.dW, t € [0, T]
(iii) Le < Y; on [0, T], Y: < U; on [0, T] ‘
T T

and / (Yt — Lt)dA?_ = / (Utf — th)dAt_ =0
0 0
(iv) AT is continuous, and

{(w,t); AY #0} = {(w, 1); DA~ # 0} € U2 [921]
AY = AA= on N [92]

° Sz,Hf, and A? ‘usual L? spaces’

e A* Jordan component of A
@ Convention that 0 X +00 = 0 in (iii)

@ Obvious extension to a random terminal time 6
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Diffusion Set-Up with Marker Process
Markovian RIBSDE

Connection with Finance

Solution of the RIBSDE

e For / decreasing from N to 0, let us define V' = (Y, Z', A’) on
[997,9/11] as the solution, with A’ continuous, to the stopped RBSDE
(for I even) or R2BSDE (for / odd) with data (with Y'*! = g(X7))

Markovian RIBSDE

In1
f(t,Xe,y,2), Yé:ll , Ut X) (! even)
F(t, Xeyy,2), min(YgHL h(D141, Xo,.,)) 5 €08, Xat), h(£, X:) (] odd)

@ Let us define Y = (Y, Z,A) on [0, T] by, for every [ =0,...,N:
o (Y,2)=(Y'",Z") on [9),941), and also at Ini1 = T in case
/= N. So in particular

Vo — YY), keK
T Y, kéK

where k is the initial condition of the marker process H.
o dA =dA on (9,9111),

DAy = DA; = (V) — h(01,X5,)) " =AYy, (=0 for | odd )
and AAT = AYT =0.

Proposition
Y =(Y,Z,A) is the unique solution to (S)
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Diffusion Set-Up with Marker Process

Markovian RIBSDE Markovian RIBSDE

Connection with Finance
Solution of the RIBSDE

Verification principle

Risk-neutral pricing problems in finance

Financial interpretation of a solution ) to (S)

Yo ‘NFLVR' Arbitrage price at time 0 for the game option
with payoff functions ¢, /, h, g and call protection ¥
Bilateral super-hedging price and infimal issuer
super-hedging price

up to a local martingale cost process

Z Hedging strategy
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© Approximation Results
@ BSDE Approach
@ Variational Inequality Approach
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BSDE Approach

Approximation Results Variational Inequality Approach

Approximation of the Forward Process

@ Timegridt={0=to<t1 <...<t, =T} 2%
@ Euler scheme approximation of X
Xt.

i+1

= Xy + b(ti, X ) (i1 — 1) + 0 (85, Xes)(Wey., — Wey)

@ Approximation of the marker process H

i—\ITI = K/()?TI’ i_\ITI_)
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BSDE Approach
Variational Inequality Approach

Approximation Results

Approximation of the Call Protection Switching Times

Approximation 9 of ¥ obtained by using X = ()A(, ltl) instead of X in the
definition of ¢

Proposition (Assuming o non-degenerate and ‘some regularity of o and b

around 90)

For every | < N+1

E[W/ - 5/@ < Gt e

It] = maxj<p_1(tiv1 — ;)
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BSDE Approach

Approximation Results Variational Inequality Approach

Approximation of the RIBSDE

@ Projection operator P defined by

[(N+1)/2]

Ptxy) =y +[0(t )=y =y =h(t. 0] > 15 5y
1=1

o Reflection operating only on a subset t of t in the approximation
scheme for Y

t={0=rn<n<--<rn=T}withTCrCt
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BSDE Approach

Approximation Results Variational Inequality Approach

Components Y and Z of a solution ) = (Y, Z, A) to (S) approximated
by a triplet of processes (Y, Y, Z) defined on t

Terminal condition

~

Yr = Yr = g(X7)
and then for /i decreasing from n — 1 to 0
v Wei o =Wy
Zt- = [E Yfi+1 (ﬁ) | ft'.i|
Yfi = E Yti+1 ‘ ftil+ (tl'+1 - ti)f(thXt;ﬂ Yti7zti)
Ve lingey + P(ti, Xey Yo ) Lty

I
|

Continuous-time extension of the scheme still denoted by (Y, Y, 2)

Z Integrand in a stochastic integral representation of 1%
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BSDE Approach

Approximation Results Variational Inequality Approach

Theorem (No call or no call protection, Chassagneux 08)

In case of Lipschitz barriers and for |t| ~ |t|3 (resp. semi-convex barriers
and for |t| ~ [t|Z), one has

max_ sup E[|Yt73~/t,.

<=1 ieft; t;14)

2| + max sup E[|Ye - V2] < Cly°

<=1 teft; t;1q)

with o = § (resp. 1).

Theorem (Call protection, this work, assuming f does not depend on z)

In case of Lipschitz barriers and for |t| ~ |t|Z (resp. semi-convex barriers
and for |t| ~ |t|) , one has

max  sup ]E[|Yt — \N/t,.ﬂ + max  sup E[\Yt, — \A/t,.|2] < Ct*®

i<n=1telt;,tiq) i<n—1¢e[t;,ti14)

with o« = % (resp. %).
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BSDE Approach

Approximation Results Variational Inequality Approach

@ Proof of the theorem based on a suitable concept of time-continuous
discretely reflected BSDEs

o Bermudan options
@ Possible extension to the case where f depends on z

@ Representations of Y and Z using approximated optimal policies

o Cf. 'MC Backward versus Forward’ in the numerical part
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BSDE Approach

Approximation Results Variational Inequality Approach

Variational Inequality Approach

@ Comparing the simulation results them with those of an alternative,
deterministic numerical scheme

@ Deterministic scheme for (S) based on an analytic characterization
of (S)
o Llet £E=[0,T[xRIx Kandfor/=1,...,N

g/ = [Tlfl, T[] x R x ’C, 5,* = [Tlfl, T/) x R x IC

o The &sand {T} x R? x K partition £

Continuity of ¢ with respect to(t, x, /)

@ Continuous outside T x RY x K
e Cadlag on (T xR x K)\ (¥ x 00 x K)
@ Cad but not'lag’ on ¥ x 90 x K
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BSDE Approach

Approximation Results Variational Inequality Approach

Cauchy cascade

(i) Cauchy cascade (g,v) on &

@ Terminal condition g at T
@ Sequence v = (uy)1</<n of functions us on the &s
@ Jump condition for x ¢ 9O (with unt1 = g):

k(T )= min(u1( Ty, X, /f;‘(x)), h(T;,x)) if k¢ K and /-c;‘(x cK
U inx) = U/+1(T/,X,I€;((X) else

(ii) Continuous Cauchy cascade

@ Cauchy cascade with continuous ingredients g at T and us on the
&ss, except maybe for discontinuities of the ufs on T x 0O

(iii) Function on & defined by a Cauchy cascade

e Concatenation on the &'s of the u;s + terminal condition g at T
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kevia BSDE Approach
Approximation Results Variational Inequality Approach

Cascade Characterization of

Proposition
Y: = u(t, X:), t € [0, T], for a deterministic pricing function u, defined
by a continuous Cauchy cascade (g,v = (u;)1<i<n) on &

Analytic characterization of u?

Generator of X
Go(t, x) = 0e(t, x) + 0¢(t, x)b(t, x) + 2Tr[a(t, x)He(t, x)]
a(t,x) o(t,x)o(t,x)T
0¢, H¢ Row-gradient and Hessian of ¢ with respect to x
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BSDE Approach

Approximation Results Variational Inequality Approach

Cauchy cascade (VI)

For | decreasing from N to 1,
o At t = T, for every k € K and x € R

min(up1(Tr, x, 6K(x)), h(T1,x)), k ¢ K and rf(x) € K
u1(Tr, x, kK (x)), else

(1) = {

with uyy1 =g
@ On the time interval [T;_1, T;) for every k € K,

min(fgu;‘ff”f,u,"ff) =0, kekK
max(min(—Quf—f”f,uf—f),uf—h):0, k¢ K

with for any function ¢ = ¢(t, x)

f¢ = f¢(t,X) = f-(t,X,d)(t,X))
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BSDE Approach

Approximation Results Variational Inequality Approach

@ Technical difficulty due to the potential discontinuity in x of the
functions ufs on 0O

o Characterizing v in terms of a suitable notion of discontinuous
viscosity solution of (VI)?

@ Convergence results? for deterministic approximation schemes to u
o Curse of dimensionality
o (VI) = Card(K) equations in the u*s
o ~ (g + d) — dimensional pricing problem with d = log(Card(K))
o Simulation schemes the only viable alternative for d greater than few
units
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© Application:Pricing convertible Bonds with call protection
@ Simulation/Regression Approaches
@ Benchmark Model
@ No Call Protection

@ Call Protection
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Application:Pricing convertible Bonds with call protection Call Protection

Regressions

regression approaches for computing by regression functions (conditional
expectations)

x = p(x) = E(¢]X = x)

&, X Real- and R9-valued square integrable random variables

Pairs (X/,&)1SI=™ simulated independently according to the law of

(X,&) — Estimate the conditional expectation E(£|X)

Parametric regression of the &s against the (¢ (XJ))KJ,Z)", where (') is
a well chosen ‘basis’ of functions from R9 to R

Regression basis

@ parametric vs non-parametric

Chassagneux, Crepey, Rahal RIBSDEs



Simulation/Regression Approaches
Benchmark Model

No Call Protection

Call Protection

Application:Pricing convertible Bonds with call protection

Parametric versus Non parametric estimation

parametric regression

m(xt, ..., x9) = ap + Z?Zl a;x) and the coefficients ag...., a4 are
estimated by LSM

Y = m(X,-) I &
Estimation of m(x) by the average of those Y; where X; is close to x
mn(x) = 37 Wai(x).Yi

i (x) = S cni
n\X) = S e

Conclusion

For multivariate X,it is not clear how to choose a proper form of a
parametric estimate,and a wrong form will lead to a bad estimate .This
inflexibility concerning the structure of the regression function is avoided
by so called non parametric regression estimate
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Simulation/Regression Approaches
Benchmark Model
No Call Protection

Application:Pricing convertible Bonds with call protection Call Protection

Convertible bond with underlying stock S

@ Coupons from time 0 onwards

@ Terminal payoff at { =7 A9
Loer <77, Sr) + 1y<rh(D, Sy) + 1c=78(ST)

o Ut,S:) =PV S:;h(t,S:)=CV S:;g(St) =NV St
e [0, T]-valued bond holder put time 7 and bond issuer call time ¥
o Cancelable American claim, or game option
o Call protections preventing the issuer from calling the bond on
certain random time intervals

e Typically monitored at discrete monitoring times
o In a possibly very path-dependent way
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Simulation/Regression Approaches
Benchmark Model
Application:Pricing convertible Bonds with call protection Atz (elll Pz
PP : 2 P! Call Protection

Benchmark Model

Local drift and volatility pre-default model for a stock X = S

Le = b(t, S)dt + o(t, Se)dW,
b(t,S) = I’(t) - q(t) +777(t75)7 ’Y(tvs) = 70(50/5)(1’ U(tv S) =0

r(t) Riskless short interest rate
q(t) Dividend yield
v(t,S) Local default intensity (vo, @ > 0)
0 <17 <100% Loss Given Default of the firm issuing the bond

Coupon rate function

c(t,S) = &(t) + 1(t,S) (L —m)S V R)
¢ Nominal coupon rate function

R Nominal recovery on the bond upon default

wu(t,S) = r(t) +(t,S) Credit-risk adjusted interest rate
/ < u(s,Ss)ds R S . .
Chassagne
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Simulation/Regression Approaches
Benchmark Model
Application:Pricing convertible Bonds with call protection Atz (elll Pz
PP : 2 P! Call Protection

General Conditions for the Numerical Experiments

General Data

r 19| w0 | a| m
0200500021210

Bl

=

O
=3
Q

100 | 103

m number of Monte Carlo trajectories

Time-step tiy1 —ti =h
six hours (four time steps per day) in the case of simulation methods
one day in the case of deterministic schemes

Space-steps in the S variable

S$it1 — S/ = 0.5 in the case of the (fully implicit) deterministic schemes
Cells of diameter one (segments of length one) in the case of
simulation /regression methods involving a method of cells
in S
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Simulation/Regression Approaches
Benchmark Model
Application:Pricing convertible Bonds with call protection e @l Proeden
PP : g P! Call Protection

Monte Carlo different methods(American Option)

Monte Carlo Backward Method

{ Qn = (p(StN)
Qj—l o= [uEBx (L‘O (Stj—1) 7E (B(tj—17 tJ) le}—fjﬂ)) Y 1 SJ S N.

Monte Carlo Forward Method

{ Qo =E(B(0,7*) ¢ (S-+)) with
™ :=min {t;; 0 (S) = @Q;}
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Simulation/Regression Approaches
Benchmark Model

No Call Protection

Call Protection

Application:Pricing convertible Bonds with call protection

No Call Protection

Standard Game Option
1 =0,0=T
call possible on [91, T],forbidden before

Simulated mesh (51)0<1<n — Estimate (1)

u, =g, thenfori=n—-1...0,forj=1...m,

u{ = min (h;(S{), max (E,-(S’J.')7 e—uthEJ,:(ui-H -+ hc,-+1)>)

IEj(u,+1 + hc,+1) Conditional expectation given t = t;, S; = Sj
e Computed by parametric regression of (ui+1 + hcit1)i1<j<m against
(Si)1<j<m, using a global parametric regression basis 1, S,S in S
Regression estimate of the delta

5 — Eifuia(Sin = Si)}
' (0;5{)2/7
Alternative MC forward estimates of price and delta at time 0




Simulation/Regression Approaches
Benchmark Model

No Call Protection

Call Protection

Application:Pricing convertible Bonds with call protection

Backward vs Forward MC

Maturity T = 125 days, Nominal coupon rate ¢ =0

MC Fd less volatile than MC Bd (Deviations over 50 trials, So = 100.55)

Value VI || Dev MC Bd | Dev MC Fd
Price | 102.049 0.821 0.010
Delta 0.416 0.071 0.019

MC Fd more accurate than MC Bd (%Err=1 < relative difference of 1%
between MC and VI)

So VI Price | %Err Bd | %Err Fd || VI delta | %Err Bd | %Err
98.55 101.246 1.90 0.04 0.376 1.07 0.07
99.55 101.637 1.92 0.01 0.396 0.95 0.50
100.55 || 102.049 1.99 0.01 0.416 2.77 0.67
101.55 || 102.479 1.65 0.07 0.435 3.97 3.47
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Simulation/Regression Approaches
Benchmark Model
No Call Protection

Application:Pricing convertible Bonds with call protection Call Protection

Call Protection

Non-decreasing sequence of [0, T]-valued stopping times
Effective call payoff process

Ut = ngo + ch(t, Xt) = U(t, St, Ht)

Qe = Lingky

Simulated mesh (S/, H/);IS™— Estimate (

i 1<;<
1) = u(ti, S}, H o<tz

u,=g,thenfori=n—1...0,forj=1...m

u,’: = min (U,- (S{, H,J) , max (E,- (S,J) , e_rh]EJ,:(Uiﬂ 4 hC;+1)))

min plays no role outside the support of U;, where U; (S, H) is equal to
+00
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Simulation/Regression Approaches
Benchmark Model

No Call Protection

Call Protection

Highly path dependent call protection

Application:Pricing convertible Bonds with call protection

Example (‘/ out of d")

Given a constant trigger level S and constants | < d < N, call possible iff
S has been > S on at least / of the last d monitoring times

o K=1{0,1}9, ri(x) = (Ls>5, kiye ooy kd—1)
@ H; vector of the indicator functions of the events S7, > S at the last
d monitoring dates preceding time t

Call possible iff [H,| > | < H, ¢ K with |k| =32, kp and
K=1{kek; |kl <I} -
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Simulation/Regression Approaches
|

Benchmark Mode!

e o s . . . No Call Protection
Application:Pricing convertible Bonds with call protection Call Protection

E{(u,url + hciy1) Conditional expectation given t = t;, §; = 5{7 H; = Hf'
@ computed by non-linear regression of (ujy1 + hciy1)1<j<m against
(Si, Hi)i<j<m, using for example a method of cells in (S, H)

Numerical Data

‘I out of d" with S =103
Maturity T = 180 days, Nominal coupon rate ¢ = 1.2/month
Other data unchanged
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Simulation/Regression Approaches
Benchmark Model
No Call Protection

Application:Pricing convertible Bonds with call protection Call Protection

Reducible Case

In case | = d one can reduce the problem to two space dimensions
instead of d + 1

@ S and the number N of consecutive monitoring dates T;s with
St, > S from time t backwards (capped at /)

Two simulation schemes
MCy a method of cells in (S, H)
MC! a method of cells in (S, N)

MC, more accurate then MC! (Sp = 100),Intermittent Path

/ 1 5 10 20 30
VI! price | 103.91 | 105.10 | 106.03 | 107.22 | 108.01
MC! %Err | 0.04 0.16 0.47 0.88 1.34
MCy %Err | 0.04 0.15 0.03 0.04 0.24
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Simulation/Regression Approaches
Benchmark Model
e o . : . No Call Protection
Application:Pricing convertible Bonds with call protection Call Protection

General Case

Computation Times

| 4 1 1t ] 5 J107] 2 [ 30 |
Vg 332s | 5332s | 44h | — —
MCy 154s | 212s | 313s | 474s | 628s
Rel Err range 1 bp—1% — —

Will use two methods for the computation of the conditional expectations
in MCy:

MCy a method of cells in (S, H),
MC% a method of cells in (S, |H|)
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Simulation/Regression Approaches
Benchmark Model
No Call Protection

Application:Pricing convertible Bonds with call protection Call Protection

Approximate I\/ICE] Algorithm

|H|* number of ones in H starting from the (/ — |H|)*" zero
o |[Hf =Nincase/=d

Example (d =10, / = 8)

o H=(1,1,1,1,0,1,1,1,0,0)
| —|H| =8—7=1, |H|* =3 (number of ones on the right of the
first zero, in bold in H),

e H=(1,1,1,0,1,1,1,0,0,0) / — |[H| =8 — 6 =2, |H|* = 0 (number
of ones on the right of the second zero, in bold in H)

Rationale Entries of H preceding its (/ — |H|)" zero irrelevant to the price
@ Necessarily superseded by new ones before the bond may become
callable

@ Approximate algorithm ~ reducible case based on the ‘good
regressor’ |H|* for estimating highly path-dependent conditional
expectations

Chassagneux, Crepey, Rahal RIBSDEs



Simulation/Regression Approaches
Benchmark Model
Application:Pricing convertible Bonds with call protection No Call Protection

Call Protection

MCy good , MCﬁd ‘rather good' (d = 5,Sp = 100),HP Intermittent

/ 2 3 5
Vl4 price | 104.07 | 104.43 | 105.10
MCy %Err | 0.21 0.15 0.15

MC% %Err | 019 | 023 | 0.8

/ 2 5 10
Vlg price | 104.27 | 104.87 | 106.03
MCy %Err | 0.01 0.15 0.03

MC, %Err | 0.04 | 026 | 038

Chassagneux, Crepey, Rahal RIBSDEs



Simulation/Regression Approaches
Benchmark Model
e o s . . . No Call Protection
Application:Pricing convertible Bonds with call protection Call Protection

Deviations over 50 trials and relative difference
(d =30,Sp = 102.55),HP Intermittent

I 5 10 20 30
Dev MCq | 0.056 | 0.061 | 0.086 | 0.152
Dev MCﬁd 0.060 | 0.069 | 0.092 | 0.175

% Err 0.09 | 024 | 0.72 | 1.06

‘Good regressor’ algorithm MC&, rather accurate in practice

Ability to work with a ‘good’ (as opposed to exact), low-dimensional
regressor

@ An interesting feature of simulation as opposed to deterministic
numerical schemes

Chassagneux, Crepey, Rahal RIBSDEs
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