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Options

Notation

@ European option:

defined by random payoff H at time T
@ American option:

defined by exercise process X = (Xi)sc(o,7]-

This includes the European option for X; = H1;_,.
@ Game option (Kifer 2000):

defined by exercise process L = (Lt)ic[o, 7]

and cancellation process U = (Ut)c[o, 1-

This includes the American option for L = X, U = oc.

What are fair prices for such products?



Option pricing

Folklore

Reasonable prices 7 are of the following form (for some EMM Q):

@ European option: expectation = = Eg(H)
@ American option: Snell envelope

= sup  Eqp(X;)

T stopping time

@ Game option: Dynkin game

m = inf sup Eq(R(o,7)) = sup inf Eq(R(c,T))

0 StL - gt T st.t. O Stt

with R(o,7) = Lolo<r + Ur 152
But why?



Option pricing

General concepts

Distinguish between
@ static (OTC) prices vs. dynamic (liquidly traded) price processes,
@ arbitrage vs. utility-based approaches.
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Static prices in complete markets

European option

H can be replicated for
m = Eq(H)

~- only this price is compatible with absence of arbitrage
(up to technical issues due to admissibility)
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Static prices in complete markets

American option

@ Absence of arbitrage ~~ price must be at least

sup  Eq(X;).

T stopping time

@ Moreover,
m= sup  Eq(X;)

T stopping time
allows to buy portfolio with value > X.
@ Together: 7 is the only reasonable price.
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Static prices in complete markets

Game option

m = inf sup Eg(R(0,7)) = sup inf Eq(R(c, 7))

o Stz gt T st.t. @ StL

allows to superhedge R(o, t) for optimal stopping time o and any ¢
~ 7 is upper limit for no-arbitrage price

@ Symmetry: ~ 7 is also lower limit for no-arbitrage price
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Price processes in complete markets

European option

Accordingly, the only possible intermediate prices are:
@ European option: conditional expectation m; = Eq(H|F})
@ American option: Snell envelope

7t = esssup,c7, — Eq(X:|Ft)
[t.7]

where 7|; 77 contains the [, T]-valued stopping times.
@ Game option: Dynkin game

mt = essinfoeq nesssup g, Eq(R(o, 7)|Ft)

= esssup, g essinfoer, [ Eq(R(0, 7)| )

with R(o.7) = Lolger + Ud oo
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Static no-arbitrage prices

European option

@ Fundamental theorem of asset pricing
~ 7y = Eq(H|F}) leads to no-arbitrage price process for EMM’s Q
~ m = Eq(H) does not lead to arbitrage.

@ Superhedging theorem
~ SUPq pvm Ea(H) allows to superreplicate H

@ Together + symmetry + convexity ~~ Prices of the form = = Eq(H)
with EMM Q constitute no-arbitrage interval.
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Static no-arbitrage prices

Game option (including the American case)

@ Prices above

7= inf sup sup Eg(R(c,7)) = sup sup inf Eq(R(c,7))
o st.t. + st Q EMM T st.t. Q EMM © st.t.
lead to seller-arbitrage.
@ Prices below

= inf _inf Eo(R = inf inf Eq(R
. Ulrgt't'olEnMMTSE[E. o(Ale. 7)) ngte_ffl?t-t-QllgMM a(Al.7))

lead to buyer-arbitrage.

@ Prices within these bounds do not lead to either buyer- or
seller-arbitrage.
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No-arbitrage price processes

European option

@ Fundamental theorem of asset pricing ~ (7¢):c[0, 7] NO-arbitrage
price process iff 7; = Eq(H|F;) for some EMM Q

@ Initial prices coincide essentially with the static approach.
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No-arbitrage price processes

Game option (including the American case)

@ Key ideas:
» L <m < U
» Trading American or game options = trading under constraints:
Negative option positions only possible as long as L;— < 7;_,
positive option positions only possible as long as 7; < U;_.

@ Need version of no arbitrage (NFLVR) and the FTAP under trading
constraints.

@ Deduce: No-arbitrage option price processes are those of the
form

T = eSSiIlfo—e’]'[t’T]CSSSUpTez][t’T]EQ(R(O’,T)|ft)

= esssup e, pessinfoer, o Eq(R(o, 7)|Ft)

for some EMM Q.
@ Initial prices essentially as in the static case.
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Neutral price processes

European option

@ Key assumptions:
» Options are liquidly traded.
» “Representative” agent is expected utility maximizer
with given utility function v.
» Options are in zero net supply,
i.e. the optimal portfolio contains no options.

@ There exists a unique neutral option price process, hamely
Tt = EQ*(H|.7:t),

where the EMM Q* is the dual minimizer corresponding to the
utility maximization problem without options, e.g. the minimal
entropy martingale measure for exponential utility

u(x) =1 —exp(—x).
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Neutral price processes

Game option (including American)

@ Key assumptions:

» as for European options
» Trading American or game options means trading under positivity
resp. negativity constraints (as above).

@ There exists a unique neutral option price process, hamely

T = eSSiIlfo—e’]'[t’T]CSSSUPTGIZILT]EQ*(R(O’,7')|ft)

= esssupTGT[messinfgeT[t’T]EQ*(R(U, 7)|Ft)

where the EMM Q* is the dual minimizer corresponding to the
utility maximization problem without options (as before).
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Utility-indifference prices for exponential utility
European option
@ Key idea:
» Asymmetric OTC situation.
» Potential buyer wants to buy ~ options.
» Seller maximizes (here:) exponential utility of terminal wealth.
» Here threshold is the utility-indifference price r:

sup E(u(vo + ¢ * St +7(r — H))) = sup E(u(vo + ¢ * Sr1)).

» The normalized difference of the optimizers (¢° — ")/~ is called
utility-based hedging strategy.

@ Ultility-indifference price for u(x) = 1 — exp(—x):
1
m = Eq (H) + 5 (H(Qo, P) — H(Q,, P)),

dP o e’)’H . .
where 5 = E(eF) and Q, minimal entropy martingale measure

relative to P,.
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Utility-indifference prices for exponential utility

American option (tentative)

@ Key idea:
» Situation as in the European case.
» Problem: seller does not know exercise time 7 of the buyer ~~
consider worst case approach
» For exponential utility (and only then) this leads to the
utility-indifference price :

infsup E(u(vo+¢% * St+¢ * S, +7(1m— X)) = E(u(vo+¢° * S7)).
T

@ Ultility-indifference price for u(x) = 1 — exp(—x):

T = sup <EOH,,(X7-) + l (H(Qo, P) — H(Q,, P))) ,

T

dpP, . eXr .. .
where 5 = E@%) and Q, minimal entropy martingale measure

relative to P,.
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Utility-indifference prices for exponential utility

Game option (tentative)

@ Key idea:

» Situation as in the American case.
» For exponential utility (and only then) this leads to the
utility-indifference price =:

infsup E(u(vo+¢° * S+ * Syar+y(m—R(0,7))) = E(u(vo+¢° * St))

T o0
@ Utility-indifference price for u(x) =1 — exp(—x):

= supint (Ea, () + 1 (H(Qy. P) - H(@,.P)) )

dP»Y L e’)’xd/\f
where G5 = giex iy

measure relative to P,.

and Q, minimal entropy martingale

26/31



Outline

0 Introduction

e Arbitrage-based prices

e Utility-based prices

@ Asymptotic utility-indifference prices

e References

27/31



Asymptotics for small numbers of claims

European options

@ Key idea:

» Problem: utility-indifference price size-dependent and hard to
compute
» Consider first-order approximation for small ~:

m(M) =48, @7 =%+,
@ For exponential utility u(x) = 1 — exp(—x) this leads to:

1.
7 = Eq(H), &= 5infEq,((mo+n*Sr—H)?),

and 7 as minimizer of the quadratic hedging problem leading to ¢.
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Asymptotics for small numbers of claims

Game options (tentative)

@ Key idea: Consider as before first-order approximation for small ~:

m(V) ~ 7’ +78, 7~ .

@ For exponential utility u(x) = 1 — exp(—x) this leads to:

m® = supinf Eq (R(c. 7)),

1,
5 = SinfEq,((mo+n+Sr—R(".7))P).

and n as minimizer of the quadratic hedging problem leading to 6.
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