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Capital Structure of a Firm

A stylized balance sheet:

1 Assets equal Liabilities:

Vt(assets) = Dt + Et (debt + equity);

2 Solvency condition: log-leverage log(Vt/Dt) > 0;

3 Time of Default t∗ = inf{t| log(Vt/Dt) ≤ 0}.
4 Limited liability: Et = Vt∧t∗ −Dt∧t∗ .
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The State of the Structural Literature

Merton 1974: Vt is GBM, debt is a single bond with maturity
T .

Black-Cox 1976: default is a first passage time

Geske 1977: generalizes the debt structure of Merton

Leland-Toft 1994, 96: equity-optimal structure in Black-Cox
setting

Hull-Nelkin-White 2005: uses equity options to get Merton
model parameters

Guo-Jarrow-Zeng 2008: Incomplete Information models
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Eberlein-Madan 2010 and the “Taxpayer put”

They propose to model a bank or hedge fund’s assets and
liabilities as follows

cash + risky assets = equity + debt + risky liabilities

Mt + At = Et +Dt + Lt

1 Lt may be highly stochastic and “unbounded”;

2 Limited liability means “equity+debt” holders hold a put
option in case Lt gets too large;

3 “cash” needs to be set high to reduce the value of this
“taxpayer put”;

4 They model A,L as the primary factors, and derive E,D via
risk neutral valuation (spread options on A,L).

5 Using equity option data, they seek to back out A,L.
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Motivation

In this talk I will propose a similar structural model with a
different emphasis.

Interpret both CDS and equity option data as measurements
on the capital structure, specifically A,L.

Model the time of default.

Keep computational complexity reasonable so that A,L can
be inferred from data.
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What to expect from this talk

Modeling assumptions

Abstract framework

Generalities on risk neutral pricing

Some specific models and their computational complexity

Some preliminary results

Unfortunately, no full scale credit-equity calibration yet.
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Market-based View of Capital Structure

Capital structure of a major firm is “measured” not just by
balance sheets but also by the large number of liquid financial
securities on it.

Prices of bonds and CDS (credit default swaps) of different
maturities reflect the value of the firm’s log-leverage ratio,
PD (probability of default), and LGD (loss given default);

Stock price St plus dozens of stock options with different
strikes and maturities measure market value of the firm’s
equity and (indirectly) firm value;

Market data is available instantaneously, while balance sheets
are updated only quarterly.

How well does market data reveal capital structure?
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Aim of this Model

A market-based “structural” approach to joint valuation of debt
and equity that respects the tenets of corporate finance.
It should

1 Be internally consistent, that is arbitrage-free;

2 Reflect the capitalization structure of a typical firm
(including banks and hedge funds);

3 Be simple enough to compute, yet flexible;

4 Give a good fit to reality for a variety of types of firms.
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Areas of Application

1 Capital Structure Arbitrage: an arbitrage-free framework for
credit and equity can spot mispricing in the market, and
suggest improved “hedge fund” strategies;

2 Hedging credit securities with equity options and vice versa;

3 Pricing convertible bonds, equity default swaps and other
“hybrid” products;

4 Unified market and credit risk management.
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Model Assumptions

1 Risk neutral probability space (Ω,F , P̃ );

2 Constant interest rate r, wlog r = 0 (not essential);

3 All non-dividend paying traded assets are P̃ -martingales;

4 Stock price process St ≥ 0 (observed directly);

5 log-leverage process Xt ≥ 0 (not observed directly);

6 Time of default

t∗ = inf{t|St = 0} = inf{t|Xt = 0};

7 For t > t∗, Xt = St = 0.
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Related Processes

Define risky assets Vt and risky liabilities/debt Dt by

Vt := evt =
St

1− e−Xt
≥ Dt := edt =

e−XtSt

1− e−Xt
> 0.

Then

1

Xt = log (Vt/Dt) , St = Vt −Dt.

2 Vt is reminiscent of “market value of the firm”, per share;

3 Dt is reminiscent of “market value of the debt”, per share;

4 Dt plays the role of a stochastic default trigger in structural
models.
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Default Simulation

Figure: Path of Vt and Dt and the time of default.Tom Hurd (McMaster) Two Factor Credit-Equity Fields 14 / 35



Modeling Considerations

1 For simplicity: restrict to two Markov factors.

2 S,X, V = ev, D = ed should be positively (?), but not
perfectly correlated;

3 Vt, Dt, St = (V −D)t∧t∗ must be P̃ -martingales;

4 Traditionally, healthy firms have X � 0 and V � D, and
hence S ∼ V . Suggests that V be modeled analogously to
usual stock models, eg as geometric BM, stochastic vol, or
Lévy process.

5 For some firms (eg banks and hedge funds), D may have high
volatility too.

6 Computability: Embedded model for Xt must lead to
solvable first passage problem.
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Lévy process.

5 For some firms (eg banks and hedge funds), D may have high
volatility too.

6 Computability: Embedded model for Xt must lead to
solvable first passage problem.

Tom Hurd (McMaster) Two Factor Credit-Equity Fields 15 / 35



Modeling Considerations

1 For simplicity: restrict to two Markov factors.

2 S,X, V = ev, D = ed should be positively (?), but not
perfectly correlated;

3 Vt, Dt, St = (V −D)t∧t∗ must be P̃ -martingales;

4 Traditionally, healthy firms have X � 0 and V � D, and
hence S ∼ V . Suggests that V be modeled analogously to
usual stock models, eg as geometric BM, stochastic vol, or
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Securities Valuation

1 Zero coupon bond price (with stochastic recovery RDt∗/D0):

P̄0(T ) = Ẽ[1{t∗>T} + 1{t∗≤T}RDt∗/D0]

2 Credit derivatives such as CDS, coupon bonds etc, follow
from P̄t(T ): these depend strongly only on factor X.

3 Equity derivatives depend strongly on S, less so on X.

4 Call option price:

CallKT (v0, d0) = Ẽv0,d0[(e
vT − edT −K)+1{t∗>T}]

A barrier spread option.
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Assume V = ev, D = ed are correlated GBMs. Then

1 Four essential parameters: σv, σd, ρ, R (recall r = 0).

2 Default time t∗ is first passage time for the drifting BM
X = v − d.

3 Stop all processes: vt = vt∧t∗ etc.
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GBM Model: Equity

1 Equity values: St = evt − edt .

2 Equity derivatives depend strongly on S, but also on X if X
is small.

3 Call option price:

CallKT (v0, d0) = Ẽv0,d0[(e
vT − edT −K)+1{t∗>T}]

A barrier spread option.
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New Result for Spread Options

We can efficiently compute these spread options using a new
result:

Proposition (Hurd-Z. Zhou, 2009)

The payoff function has the Fourier representation

(ex1 − ex2 − 1)+ = (2π)−2

∫∫
R2+iε

ei(u1x1+u2x2)P̂ (u1, u2)du1du2

for any ε = [ε1, ε2] with ε2 > 0 and ε1 + ε2 < 0. Here

P̂ (u1, u2) =
Γ(iu1 + iu2 − 1)Γ(−iu2)

Γ(iu1 + 1)
,

where Γ(z) =
∫ ∞

0
e−ttz−1dt is the complex gamma function defined

for <z > 0.
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Call Option Formula: GBM

Barrier spread option formula can be derived from a “reflection
principle” for two-D Brownian motion. Define the reflection
matrix

R =

(
1 1
−1 a

) (
−1 0
0 1

) (
1 1
−1 a

)−1

where a = ρσvσd−σ2
v

ρσvσd−σ2
d
. Then...
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Call Option Formula: GBM

Corollary

Let Yt = [vt, dt]
′, u = [u1, u2], β = −1

2
[σ2

v , σ
2
d]. Then

CallT (v0, d0) =
e−rT

(2π)2

∫∫
R2

d2u e−i(u+iε)Y0

[
P (u+ iε)ΦT (u+ iε)− e−(β+ε)(I−R)Y0P (Ru+ iε)ΦT (Ru+ iε)

]

where
ΦT (u) = Ẽ[e−iu(YT−Y0)].
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GBM Call Option Pricing (X � σX small)
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Error of the 2D FFT
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TCBM Ingredients

1 (Ω,F ,F, P ), a filtered probability space;

2 x+ σWt + βσ2t, Brownian motion starting at x having
constant drift βσ2 and volatility σ > 0;

3 Time-change, an independent strictly increasing cádlág
process Gt with G0 = 0;

4 Laplace exponent process for G:

ψs(u, t) = − logE[e−uGt|Fs], s < t.
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TCBM Credit/Equity Assumptions

Assumption
1 log V, logD and X = log(V/D) are (stopped) TCBMs, with

identical stochastic time change process Gt.

2 Thus Xt = x+ σWGt + βσ2Gt where BM W and TC G are
independent.

3 The firm’s default time t∗ is the first passage time of the
second kind for Xt to hit zero, i.e. the stopping time

t∗ = inf{t|Gt ≥ t̃}, t̃ = inf{t|x+ σWt + βσ2t ≤ 0}.

4 The properties of t∗ has been studied in earlier work.

5 In important examples, ΦT , the characteristic function of
Y = [v, d] is in closed form.
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Examples of Time Changes

1 Same as in Albanese-Kuzetsov 03, Hurd-Kuznetsov 04,
Carr-Linetsky-Mendoza 10

2 Variance Gamma model: Gt is the drifting gamma process
with

ψV G(u, t) = t[(1− a)u+ ab log(1 + u/b)], a ∈ [0, 1], b > 0

Here, small jumps occur with infinite activity.

3 Heston stochastic volatility model (subclass): Gt =
∫ t

0
λsds

where λ is the CIR process:

dλt = b(1− λ)dt+
√

2aλtdWt, a, b > 0

4 Composite time changes
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Sample Time Change Path
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Ford 06-08: VG Credit Model Results

Jan 06- July 07-
June 07 Dec 08

no. of weeks 78 78

σ̂ 0.3 0.3
â 0.8023 (0.0339) 0.8308(0.0211)

b̂ 0.7341(0.1107) 1.4289(0.1716)

VG Model β̂ -1.2117(0.0984) -0.8513(0.0632)
R 0.5547(0.0305) 0.4407(0.0311)
x̂av 0.7015 0.4662
x̂std 0.1786 0.2313

RMSE 1.4338 0.8282
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Typical Ford CDS curves: 06/09/2006 and

3/12/08
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Ford: X vs S 2006-08
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Ford Model Implied Vol Surface: 12/07/06
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Ford Model Implied Vol Surface: 12/07/06
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VG FFT2 Errorplot
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Conclusions

1 New results in first passage expand the range of feasible
structural credit models;

2 Two factor models for (St, Xt, Vt, Dt) are a simple, natural
generalization of traditional “structural credit models” whose
detailed features are difficult to study;

3 New implementations of FFT methods lead to fast
computations.

4 Work has just begun!
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Some Papers

Available (or will be soon) at www.math.mcmaster.ca/tom

1 T. R. Hurd, “Credit Risk Modelling using time-changed
Brownian motion”

2 T. R. Hurd, A. Kuznetsov, “On the first passage time for
Brownian motion subordinated by a Levy process”

3 T. R. Hurd and Z. Zhou. “Modeling credit derivatives via
time changed Brownian motions”

4 T. R. Hurd and Z. Zhou. “A Fourier transform method for
spread option pricing”
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