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Agenda

Compare Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR)

definitions of VaR and CVaR

basic properties of VaR and CVaR

axiomatic definition of Risk and Deviation Measures

reasons affecting the choice between VaR and CVaR

risk management/optimization case studies conducted with 
Portfolio Safeguard package by AORDA.com
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Risk Management

Risk Management is a procedure for shaping a loss distribution
Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are 
popular function for measuring risk 
The choice between VaR and CVaR is affected by:
differences in mathematical properties, 
stability of statistical estimation, 
simplicity of optimization procedures, 
acceptance by regulators

Conclusions from these properties are contradictive
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Risk Management

Key observations:

CVaR has superior mathematical properties versus VaR

Risk management with CVaR functions can be done very efficiently

VaR does not control scenarios exceeding VaR

CVaR accounts for losses exceeding VaR

Deviation and Risk are different risk management concepts

CVaR Deviation is a strong competitor to the Standard Deviation
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VaR and CVaR Representation

5



x

Risk

VaR

CVaR

CVaR+

CVaR-

VaR, CVaR, CVaR+  and CVaR-

6



Value-at-Risk

is non convex and discontinuous function of the 
confidence level α for discrete distributions

is non-sub-additive 

difficult to control/optimize for non-normal distributions: 
VaR has many extremums for discrete distributions

7

[1,0]∈α})(|min{)( αα ≥= zFzXVaR X for

)(XVaRα

X a loss random variable

)(XVaRα



Conditional Value-at-Risk

Rockafellar and Uryasev,  “Optimization of Conditional Value-at-Risk”, 
Journal of Risk, 2000 introduced the term Conditional Value-at-
Risk

For

where
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Conditional Value-at-Risk
CVaR+ (Upper CVaR): expected value of X strictly exceeding  VaR

(also called Mean  Excess Loss and Expected Shortfall)

CVaR- (Lower CVaR): expected value of X weakly exceeding  VaR
(also called Tail VaR)

Property:                       is weighted average of                        and

zero for continuous distributions!!! 9
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Conditional Value-at-Risk

Definition on previous page is a major innovation

and                for general loss distributions are 
discontinuous functions

CVaR is continuous with respect to α

CVaR is convex in X

VaR, CVaR- ,CVaR+ may be non-convex  

VaR ≤ CVaR- ≤ CVaR ≤ CVaR+
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CVaR: Discrete Distributions

α does not “split” atoms: VaR < CVaR- < CVaR = CVaR+,   
λ = (Ψ- α)/(1- α) = 0

12

1 2 4
1 2 6 6 3 6

1 1
5 62 2

Six scenarios, ,

CVaR CVaR  =

p p p

f f

α= = = = = =

= +

L
+

 Probability                                                                                         CVaR

  

1
6                                    

1
6                                       

1
6                                                

1
6                                           

1
6                                    

1
6

  1f                2f                    3f                        4f                    5f                 6f

                                                          VaR             
--CVaR             

+CVaR
Loss



CVaR: Discrete Distributions

• α “splits” the atom: VaR < CVaR- < CVaR < CVaR+, 
λ = (Ψ- α)/(1- α) > 0 
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CVaR: Discrete Distributions

• α “splits” the last atom: VaR = CVaR- = CVaR , 
CVaR+ is not defined,  λ = (Ψ - α)/(1- α) > 0
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CVaR: Equivalent Definitions

Pflug defines CVaR via an optimization problem,  as in Rockafellar 
and Uryasev (2000)

Acerbi showed that CVaR is equivalent to Expected Shortfall 
defined by
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Pflug, G.C., “Some Remarks on the Value-at-Risk and on the Conditional Value-at-Risk”, Probabilistic 
Constrained Optimization: Methodology and Applications, (Uryasev ed), Kluwer, 2000
Acerbi, C., “Spectral Measures of Risk: a coherent representation of subjective risk aversion”, JBF, 2002



RISK MANAGEMENT: INSURANCE
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TWO  CONCEPTS  OF  RISK

Risk as a possible loss

Minimum amount of cash to be added to make a portfolio (or 
project)  sufficiently safe

Example 1.  MaxLoss  

-Three equally probable outcomes, { -4, 2, 5 }; 
MaxLoss = -4;  Risk = 4
-Three equally probable outcomes, {  0, 6, 9 };  
MaxLoss =   0;  Risk = 0

Risk as an uncertainty in outcomes

Some measure of deviation in outcomes

Example 2.  Standard Deviation  

-Three equally probable outcomes, { 0, 6, 9 }; Standard 
Deviation > 0



Risk Measures: axiomatic definition
A functional                         is a coherent risk measure in the 

extended sense if: 

R1:                  for all constant C
R2:     for             (convexity)
R3:                           when             (monotonicity)
R4:                   when                         with                    (closedness)

A functional                          is a coherent risk measure in the basic
sense if it satisfies axioms R1, R2, R3, R4 and R5:
R5:                         for          (positive homogeneity)
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A functional                         is an averse risk measure in the 
extended sense if it satisfies axioms R1, R2, R4 and R6:
R6:                   for all nonconstant X (aversity)

A functional                           is an averse risk measure in the basic 
sense if it satisfies axioms R1, R2, R4, R6 and R5

Aversity has the interpretation that the risk of loss in a 
nonconstant random variable X cannot be acceptable unless EX<0

R2 + R5                                                      (subadditivity)
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Risk Measures: axiomatic definition



Examples of coherent risk measures:
A
Z 

Examples of risk measures not coherent:
,  λ>0, violates  R3 (monotonicity)

violates subadditivity

is a coherent measure of risk  
in the basic sense and it is an averse measure of risk !!!

Averse measure of risk might not be coherent,  a coherent 
measure  might not be averse
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Risk Measures: axiomatic definition



A functional                       is called a deviation measure in the extended 
sense if it satisfies:
D1:                    for constant C, but                   for nonconstant X
D2:                                                             for            (convexity)
D3:                 when                          with                  (closedness)

A functional                         is called a deviation measure in the basic 
sense if it satisfies axioms D1,D2, D3 and D4:

D4:                                (positive homogeneity)
A deviation measure in extended or basic sense is also coherent if it 
additionally satisfies D5:

D5:                                        (upper range boundedness)
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Deviation Measures: axiomatic definition
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Examples of deviation measures in the basic sense:
Standard Deviation
Standard Semideviations
Mean Absolute Deviation

α-Value-at-Risk Deviation measure:

α-VaR Dev does not satisfy convexity axiom  D2         it is not a 
deviation measure
α-Conditional Value-at-Risk Deviation measure:
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Deviation Measures: axiomatic definition

Coherent deviation measure in basic sense !!!
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Deviation Measures: axiomatic definition

CVaR Deviation Measure is a coherent deviation measure in the 
basic sense



Rockafellar et al. (2006) showed the existence of a one-to-one 
correspondence between deviation measures in the extended sense 
and averse risk measures in the extended sense:
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Risk vs Deviation Measures

Rockafellar, R.T., Uryasev, S., Zabarankin, M., “Optimality conditions in portfolio analysis 
with general deviation measures”, Mathematical Programming, 2006
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Risk vs Deviation Measures

Deviation 
Measure

Counterpart Risk 
Measure

where
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Chance and VaR Constraints
Let                           be some random loss function. 

By definition: 

Then the following holds:

In general                is nonconvex w.r.t.  x, (e.g., discrete 
distributions)

may be nonconvex constraints
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VaR vs CVaR in optimization

VaR is difficult to optimize numerically when losses are not 
normally distributed
PSG package allows VaR optimization
In optimization modeling,  CVaR is superior to VaR:

For elliptical distribution minimizing VaR, CVaR or Variance is 
equivalent
CVaR can be expressed as a minimization formula (Rockafellar 
and Uryasev, 2000)
CVaR preserve convexity
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CVaR optimization

Theorem 1:
1. is convex w.r.t. α

2. α -VaR is a minimizer of F with respect to ζ :

3. α - CVaR equals minimal value (w.r.t. ζ ) of function  F :
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CVaR optimization
Preservation of convexity:  if f(x,ξ) is convex in x then                
is convex in x
If f(x,ξ) is convex in x then                is convex in x and ζ

If f(x*,ζ*) minimizes        over            then 

is equivalent to         
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CVaR optimization

In the case of discrete distributions:

The constraint                      can be replaced by a system of 
inequalities  introducing additional variables ηk :
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Generalized Regression Problem

Approximate random variable     by random variables

Error measure � satisfies axioms

Y 1 2, ,..., .nX X X

Rockafellar, R. T., Uryasev, S. and M. Zabarankin:
“Risk Tuning with Generalized Linear Regression”,  accepted for publication in Mathematics of 

Operations Research, 2008



Error, Deviation, Statistic
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For an error measure �:

the corresponding deviation measure � is

the corresponding statistic � is



Theorem: Separation Principle

General regression problem

is equivalent to
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Percentile Regression and CVaR Deviation
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Koenker, R., Bassett, G. 
Regression quantiles. 
Econometrica 46, 33–50 
(1978)
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Stability of Estimation
VaR and CVaR with same confidence level measure “different 
parts” of the distribution
For a specific distribution the confidence levels α1 and α2 for 
comparison of VaR and CVaR should be found from the equation

Yamai and Yoshiba (2002), for the same confidence level:
VaR estimators are more stable than CVaR estimators
The difference is more prominent for fat-tailed distributions
Larger sample sizes increase accuracy of CVaR estimation

More research needed to compare stability of estimators for the 
same part of the distribution.
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For continuous distributions the following decompositions of 
VaR and CVaR hold:

When a distribution is modeled by scenarios it is easier to 
estimate                           than 

Estimators of                 are more stable than estimators           

of 
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Generalized Master Fund Theorem and CAPM
Assumptions:

• Several groups of investors each with                         utility function 

• Utility functions are concave w.r.t. mean and deviation
increasing w.r.t. mean 
decreasing w.r.t. deviation   

• Investors maximize utility functions s.t. budget constraint.     
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Rockafellar, R.T., Uryasev, S., Zabarankin, M. “Master Funds in Portfolio Analysis with 
General Deviation Measures”, JBF, 2005
Rockafellar, R.T., Uryasev, S., Zabarankin, M. “Equilibrium with Investors using a Diversity of  
Deviation Measures”, JBF, 2007







Generalized Master Fund Theorem and CAPM
Equilibrium exists w.r.t. 
Each investor has its own master fund and invests in its own master 
fund and in the risk-free asset
Generalized CAPM holds:

is expected return of asset i in group j
is risk-free rate
is expected return of market fund for investor group j
is the risk identifier for the market fund j
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Generalized Master Fund Theorem and CAPM



Classical CAPM => Discounting Formula
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Generalized CAPM 

There are different groups of investors k=1,…,K

Risk attitude of each group of investors can be expressed 
through its deviation measure Dk

Consequently:

Each group of investors invests its own Master Fund M



Generalized CAPM
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Investors Buying Out-of-the-money
S&P500 Put Options 

Group of investors buys S&P500 options

Risk preferences are described by mixed CVaR deviation

Assume that S&P500 is their Master Fund

Out-of-the-money put option is an investments in low tail of 
price  distribution. CVaR deviations can capture the tail.
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Mixed CVaR Deviation Risk Envelope
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Data

Put options prices on Oct,20 2009 maturing on Nov, 20 2009

S&P500 daily prices for 2000-2009

2490 monthly returns (overlapping daily):

every trading day t:      rt=lnSt-lnSt-21

Mean return adjusted to 6.4% annually.

2490 scenarios of S&P500 option payoffs on Nov, 20 2009



CVaR Deviation 

Risk preferences of Put Option buyers: 

We want to estimate values for coefficients
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Prices <=> Implied Volatilities

Option prices with different strike prices vary very significantly

Black-Scholes formula:  prices implied volatilities 
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Graphs: ( )XCVaRXD Δ= %75)(

0%

5%

10%

15%

20%

25%

30%

35%

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

Market IV CAPM price IV No Risk IV Generalized CAPM IV alpha=75%



Graphs: ( )XCVaRXD Δ= %85)(
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Graphs: ( )XCVaRXD Δ= %95)(
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VaR: Pros

1. VaR is a relatively simple risk management concept and has a clear
interpretation

2. Specifying VaR for all confidence levels completely defines the 
distribution (superior to σ)

3. VaR focuses on the part of the distribution specified by the 
confidence level

4. Estimation procedures are stable

5. VaR can be estimated with parametric models

55



VaR: Cons

1. VaR does not account for properties of the distribution beyond
the confidence level

2. Risk control using VaR may lead to undesirable results for skewed 
distributions

3. VaR is a non-convex and discontinuous function for discrete 
distributions
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CVaR: Pros

1. VaR has a clear engineering interpretation
2. Specifying CVaR for all confidence levels completely defines the 

distribution (superior to σ)
3. CVaR is a coherent risk measure
4. CVaR is continuous w.r.t. α
5. is a convex function w.r.t. 
6. CVaR optimization can be reduced to convex programming and in 

some cases to linear programming
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CVaR: Cons

1. CVaR is more sensitive than VaR to estimation errors

2. CVaR accuracy is heavily affected by accuracy of tail modeling
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VaR or CVaR in financial applications?
VaR is not restrictive as CVaR with the same confidence level 

a trader may prefer VaR
A company owner may prefer CVaR; a board of director may 
prefer reporting VaR to shareholders
VaR may be better for portfolio optimization when good models 
for the tails are not available 
CVaR should be used when good models for the tails are available 

CVaR has superior mathematical properties

CVaR can be easily handled in optimization and statistics

Avoid comparison of VaR and CVaR for the same level α
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Adequate accounting for risks, classical and downside risk measures:

-Value-at-Risk (VaR) 
- Conditional Value-at-Risk (CVaR)
- Drawdown 
- Maximum Loss
- Lower Partial Moment
- Probability (e.g. default probability) 
- Variance 
- St.Dev. 
- and many others

Various data inputs for risk functions: scenarios and covariances 

- Historical observations of returns/prices
- Monte-Carlo based simulations, e.g. from RiskMetrics or S&P CDO 

evaluator
- Covariance matrices, e.g. from Barra factor models

PSG:  Portfolio Safeguard
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Powerful and robust optimization tools:

four environments:  
Shell (Windows-dialog)

MATLAB 

C++

Run-file

simultaneous constraints on many functions at various times
(e.g., multiple constraints on standard deviations obtained by 
resampling in combination with drawdown constraints)

PSG:  Portfolio Safeguard
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PSG:  Risk Functions

or
Risk function 

(e.g., St.Dev, VaR, CVaR,   Mean,…)
covariance 
matrix

matrix of        
scenarios  

matrix with                                       
one row Linear function
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PSG:  Example
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PSG:  Operations with Functions

Risk functions

Optimization Sensitivities Graphics
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Case Study:  Risk Control using VaR
Risk control using VaR may lead to paradoxical results for skewed 
distributions
Undesirable feature of VaR optimization:  VaR minimization may 
increase the extreme losses

Case Study main result: minimization of 99%-VaR Deviation leads 
to 13% increase in 99%-CVaR compared to 99%-CVaR of optimal 
99%-CVaR Deviation portfolio

Consistency with theoretical results: CVaR is coherent, VaR is not 
coherent

65

Larsen, N., Mausser, H., Uryasev, S., “Algorithms for Optimization of Value-at-Risk”,  
Financial Engineering, E-commerce, Supply Chain, P. Pardalos , T.K. Tsitsiringos Ed., 
Kluwer, 2000



Case Study:  Risk Control using VaR

66

Columns 2, 3 report value of risk functions at optimal point of Problem 1 and 2; 
Column “Ratio” reports ratio of Column 3 to Column 2

P.1 Pb.2



Case Study:  Linear Regression-Hedging

67

Investigate performance of optimal hedging strategies based on 
different deviation measures
Determining optimal hedging strategy is a linear regression problem

Benchmark portfolio value is the response variable, replicating 
financial instruments values are predictors, portfolio weights are 
coefficients of the predictors to be determined

Coefficients               chosen  to minimize a replication error 
function depending upon the residual

IIxx θθθ ++= ...ˆ
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Case Study:  Linear Regression-Hedging

68

Out-of-sample performance of hedging strategies significantly depends 
on the skewness of the distribution
Two-Tailed 90%-VaR has the best out-of-sample performance
Standard deviation has the worst out-of-sample performance

(1)

(2)

(3)

(4)

(5)



Case Study:  Linear Regression-Hedging

69

Each row reports value o different risk functions evaluated at optimal points of the 5 
different hedging strategies (e.g., the first raw is for                     hedging strategy)
the best performance has TwoTailVar

Out-of-sample performance of different deviation measures evaluated at optimal points 
of the 5 different hedging strategies (e.g., the first raw is for                    hedging strategy)0.9CVaRΔ

0.9CVaRΔ

0.9
Δ



Example:
Chance and VaR constraints equivalence
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We illustrate numerically the equivalence:

At optimality the two 
problems selected 
the same portfolio 
with the same 
objective function 
value



Case Study:  Portfolio Rebalancing Strategies, 
Risks and Deviations

71

We consider a portfolio rebalancing problem:

We used as risk functions VaR,  CVaR,  VaR Deviation,  CVaR 
Deviation,  Standard Deviation

We evaluated Sharpe ratio and mean value of each sequence of 
portfolios
We found a good performance of VaR and VaR Deviation 
minimization
Standard Deviation minimization leads to inferior results



Case Study:  Portfolio Rebalancing Strategies, 
Risks and Deviations (Cont'd)

72

Results depend on the scenario dataset and on k
In the presence of mean reversion the tails of historical distribution 
are not good predictors of the tail in the future
VaR disregards the unstable part of the distribution thus may lead 
to good out-of-sample performance

Sharpe ratio for the rebalancing strategy when different risk functions are 
used in the objective for different values of the parameter k



Conclusions: key observations
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CVaR has superior mathematical properties:  CVaR is coherent, 
CVaR of a portfolio is a continuous and convex function with 
respect to optimization variables

CVaR can be optimized and constrained with convex and linear 
programming methods; VaR is relatively difficult to optimize

VaR does not control scenarios exceeding VaR

VaR estimates are statistically more stable than CVaR estimates

VaR may lead to bearing high uncontrollable risk

CVaR is more sensitive than VaR to estimation errors

CVaR accuracy is heavily affected by accuracy of tail modeling



Conclusions: key observations
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There is a one-to-one correspondence between Risk Measures 
and Deviation Measures

CVaR Deviation is a strong competitor of Standard Deviation

Mixed CVaR Deviation should be used when tails are not 
modeled correctly. Mixed CVaR Deviation gives different weight 
to different parts of the distribution

Master Fund Theorem and CAPM can be generalized with the for 
different deviation measure.



Conclusions: Case Studies
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Case Study 1: risk control using VaR may lead to paradoxical 
results for skewed distribution. Minimization of VaR may lead to a 
stretch of the tail of the distribution exceeding VaR
Case Study 2: determining optimal hedging strategy is a linear 
regression problem. Out-of-sample performance based on 
different Deviation Measures depends on the skewness of the 
distribution, we found standard deviation have the worst 
performance
Case Study 3: chance constraints and percentiles of a distribution 
are closely related, VaR and Chance constraints are equivalent
Case Study 4:  the choice of the risk function to minimize in a 
portfolio rebalancing strategy depends on the scenario dataset. In 
the presence of mean reversion VaR neglecting tails may lead to 
good out-of-sample performance
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