Credit Risk via First Passage for Time Changed Brownian Motions

Tom Hurd

Mathematics and Statistics, McMaster University

Quantitative Finance Seminar, Fields Institute 2009 Joint work with Zhuowei Zhou

Tom Hurd (McMaster)

TCBM Credit Modelling

- Time Changed Brownian Motions
- 3 Calibration to Ford Motor Co: Results
 - Joint Credit-Equity Modeling
- Equity Options
- Conclusions

- A stylized balance sheet:
 - Assets equal Liabilities:

$$V_t(\text{assets}) = D_t + E_t \text{ (debt + equity)};$$

- Solvency condition: log-leverage $\log(V_t/D_t) > 0$;
- 3 Time of Default $t^* = \inf\{t | \log(V_t/D_t) \le 0\}$.

Desirable Features of Credit Models

We want models of V_t, D_t, E_t, t^* that are

- Realistic and flexible;
- APT consistent (no arbitrage): physical and risk neutral measures;
- Time consistent (no ad hoc time assumptions);
- computationally efficient;
- realistic default dependence (in multifirm setting).

	Realism	APT	Time	Efficient	Dependence
	Flexibility		Consistent		
М	*	***	-	***	***
BC	*	***	***	**	*
RFM	*	***	***	***	*
CWL	*	***	***	**	-
TCBM	**	***	***	**	*

Table:

Desirable features of Credit Models: - (bad) to * * * (excellent). M=Merton 74; BC=Black-Cox 76; RFM=Reduced Form Model 95; CWL=Carr-Wu-Linetsky 07; TCBM=Time-Changed Brownian Motion 08

• $(\Omega, \mathcal{F}, \mathbb{F}, P)$, a filtered probability space;

- **2** $x + \sigma W_t + \beta \sigma^2 t$, Brownian motion starting at x having constant drift $\beta \sigma^2$ and volatility $\sigma > 0$;
- Time-change, an independent strictly increasing cádlág process G_t with $G_0 = 0$;
- (a) Laplace exponent process for G:

$$\psi_s(u,t) = -\log E[e^{-uG_t}|\mathcal{F}_s], \quad s < t.$$

TCBM Credit Modeling Assumptions

Assumption

• Firm log-leverage process $X_t = \log(V_t/D_t)$ is the (stopped) time-changed Brownian motion (TCBM) $X_t = x + \sigma W_{G_t} + \beta \sigma^2 G_t$ generated by W and the normalized G:

$$\lim_{T \to \infty} T^{-1} E[G_T] = 1.$$

The firm's default time t* is the first passage time of the second kind for X_t to hit zero, i.e. the stopping time

 $t^* = \inf\{t | G_t \ge \tilde{t}\}, \quad \tilde{t} = \inf\{t | x + \sigma W_t + \beta \sigma^2 t \le \mathbf{0}\}.$

Examples of Time Changes

) Exponential jump model: G_t is the Lévy subordinator with

$$\psi^{exp}(u,t) = t[(1-a)u + au/(u+b)], a \in [0,1], b > 0$$

Time increases uniformly at the rate 1 - a in between jumps that occur at rate a/b and are exp(b) distributed.

2 Variance Gamma model: G_t is the drifting gamma process with

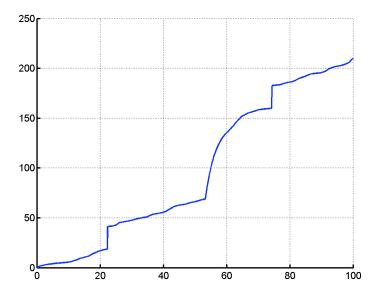
$$\psi^{VG}(u,t) = t[(1-a)u + ab\log(1+u/b)], a \in [0,1], b > 0$$

Here, small jumps occur with infinite activity.

• Heston stochastic volatility model (subclass): $G_t = \int_0^t \lambda_s ds$ where λ is the CIR process:

$$d\lambda_t = b(1-\lambda)dt + \sqrt{2a\lambda_t}dW_t, a, b > 0$$

Sample Time Change Path



Tom Hurd (McMaster)

Fields 2009

Formulas for Brownian Motion

Joint distribution function

$$\begin{split} P^{BM}(x,y,t) &= P_x[\tilde{t} > t, x + \sigma W_t + \beta \sigma^2 t \ge y] \\ &= N\left(\frac{x - y + \beta \sigma^2 t}{\sigma \sqrt{t}}\right) - e^{-2\beta x} N\left(\frac{-x - y + \beta \sigma^2 t}{\sigma \sqrt{t}}\right) \\ &= \frac{e^{\beta(y-x)}}{\pi} \int_{-\infty}^{\infty} \frac{[z\cos(zy) - \beta\sin(zy)]\sin(zx)}{z^2 + \beta^2} e^{-\sigma^2(z^2 + \beta^2)t/2} dz, \end{split}$$

for $x, y \ge 0$. While the first of these is well known, the second is more useful for TCBMs.

Formula for TCBMs

Joint distribution function

$$P^{TCBM}(x, y, t) = E_x[\mathbf{1}_{\{\tilde{t} > G_t\}} \mathbf{1}_{\{x + \sigma W_{G_t} + \beta \sigma^2 G_t \ge y\}}]$$

= $E[P^{BM}(x, y, G_t)]$
= $\frac{e^{\beta(y-x)}}{\pi} \int_{-\infty}^{\infty} \frac{[z\cos(zy) - \beta\sin(zy)]\sin(zx)}{z^2 + \beta^2} e^{-\psi_0(\sigma^2(z^2 + \beta^2)/2, t)} dz$

Bond and CDS prices follow immediately.

Ford 06-08: VG Model Results

		Jan 06-	July 07-
		June 07	Dec 08
	number of weeks	78	78
	$\hat{\sigma}$	0.222(0.018)	0.226(0.027)
	\hat{b}	0.25	0.25
	ĉ	0.822(0.021)	0.574(0.020)
VG Model	\hat{eta}	-1.125(0.013)	-1.003(0.020)
	\hat{x}_{av}	0.544	0.370
	\hat{x}_{std}	0.137	0.183
	RMSE	1.496	0.939
	(bid/ask units)		

VG Default Model Results: Ford

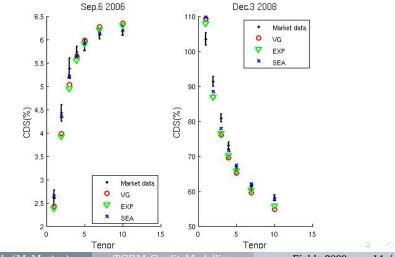
Ford CDS curves: VG model vs Market

Tom Hurd (McMaster)

TCBM Credit Modelling

Fields 2009

Ford CDS curves: 06/09/2006 (left) and 3/12/08(right)

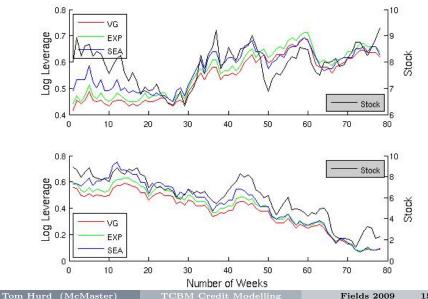


Tom Hurd (McMaster)

ГСВМ Credit Modelling

Fields 2009 14 / 31

Ford's log-leverage ratio versus stock price 2006-08



15 / 31

Applications of TCBM Framework

The TCBM Program

Implement and extend this framework.

- Bond and CDS pricing;
- Portfolio credit and CDO pricing (work in progress);
- Systemic risk (work in progress);
- Joint Credit-Equity modeling...

• Prices of bonds and Credit Default Swaps of different maturities reflect the value of the firm's debt, PD (probability of default), and LGD (loss given default);

- Prices of bonds and Credit Default Swaps of different maturities reflect the value of the firm's debt, PD (probability of default), and LGD (loss given default);
- Stock price S_t plus dozens of stock options with different strikes and maturities measure market value of the firm's equity and (indirectly) firm value;

- Prices of bonds and Credit Default Swaps of different maturities reflect the value of the firm's debt, PD (probability of default), and LGD (loss given default);
- Stock price S_t plus dozens of stock options with different strikes and maturities measure market value of the firm's equity and (indirectly) firm value;
- Market data is available instantaneously, while balance sheets are updated only quarterly.

- Prices of bonds and Credit Default Swaps of different maturities reflect the value of the firm's debt, PD (probability of default), and LGD (loss given default);
- Stock price S_t plus dozens of stock options with different strikes and maturities measure market value of the firm's equity and (indirectly) firm value;
- Market data is available instantaneously, while balance sheets are updated only quarterly.
- How well does market data reveal capital structure?

- Capital Structure Models: Merton 74, Black-Cox 76, Geske 77, Leland-Toft 96, Hull-Nelkin-White 03;
- Hybrid Models: Madan-Unal 00, Albanese-Chen 04, Carr-Wu 05, Carr-Linetsky 06, Bayraktar-Yang 09;
- Convertible Bonds: Grimwood-Hodges 02, Andersen-Buffum 03.

• Be internally consistent, that is arbitrage-free;

- Be internally consistent, that is arbitrage-free;
- **2** Reflect the capitalization structure of a typical firm;

- Be internally consistent, that is arbitrage-free;
- **2** Reflect the capitalization structure of a typical firm;
- Be simple enough, yet flexible;

- Be internally consistent, that is arbitrage-free;
- **2** Reflect the capitalization structure of a typical firm;
- Be simple enough, yet flexible;
- Give a good fit to reality for a variety of types of firms.

 Capital Structure Arbitrage: an arbitrage-free framework for credit and equity can spot mispricing in the market, and suggest improved "hedge fund" strategies;

- Capital Structure Arbitrage: an arbitrage-free framework for credit and equity can spot mispricing in the market, and suggest improved "hedge fund" strategies;
- ² Hedging credit securities with equity options and vice versa;

- Capital Structure Arbitrage: an arbitrage-free framework for credit and equity can spot mispricing in the market, and suggest improved "hedge fund" strategies;
- ² Hedging credit securities with equity options and vice versa;
- Pricing convertible bonds, equity default swaps and other "hybrid" products;

- Capital Structure Arbitrage: an arbitrage-free framework for credit and equity can spot mispricing in the market, and suggest improved "hedge fund" strategies;
- ² Hedging credit securities with equity options and vice versa;
- Pricing convertible bonds, equity default swaps and other "hybrid" products;
- Market and credit risk management.

• Risk neutral probability space $(\Omega, \mathcal{F}, \tilde{P})$;

- Risk neutral probability space $(\Omega, \mathcal{F}, \tilde{P})$;
- ② Constant interest rate r, wlog r = 0;

- Risk neutral probability space $(\Omega, \mathcal{F}, \tilde{P})$;
- ② Constant interest rate r, wlog r = 0;
- ⁽³⁾ all non-dividend paying traded assets are \tilde{P} -martingales;

- **(**) Risk neutral probability space $(\Omega, \mathcal{F}, \tilde{P})$;
- ② Constant interest rate r, wlog r = 0;
- ⁽³⁾ all non-dividend paying traded assets are \tilde{P} -martingales;
- **3** Stock price process $S_t \ge 0$ (observed directly);

- Risk neutral probability space $(\Omega, \mathcal{F}, \tilde{P})$;
- ② Constant interest rate r, wlog r = 0;
- (a) all non-dividend paying traded assets are \tilde{P} -martingales;
- **3** Stock price process $S_t \ge 0$ (observed directly);
- log-leverage process $X_t \ge 0$ (not observed directly);

- Risk neutral probability space $(\Omega, \mathcal{F}, \tilde{P})$;
- ② Constant interest rate r, wlog r = 0;
- (a) all non-dividend paying traded assets are \tilde{P} -martingales;
- (a) Stock price process $S_t \ge 0$ (observed directly);
- log-leverage process $X_t \ge 0$ (not observed directly);
- Time of default

$$t^* = \inf\{t | S_t = 0\} = \inf\{t | X_t = 0\};\$$

- Risk neutral probability space $(\Omega, \mathcal{F}, \tilde{P})$;
- ② Constant interest rate r, wlog r = 0;
- (a) all non-dividend paying traded assets are \tilde{P} -martingales;
- **③** Stock price process $S_t \ge 0$ (observed directly);
- log-leverage process $X_t \ge 0$ (not observed directly);
- Time of default

$$t^* = \inf\{t | S_t = 0\} = \inf\{t | X_t = 0\};\$$

• For
$$t > t^*$$
, $X_t = S_t = 0$.

Related Processes

We can define V_t, D_t by

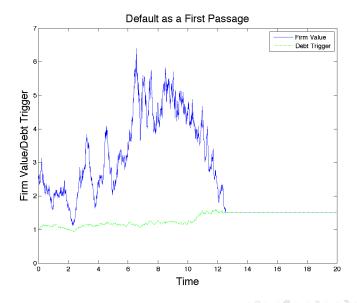
$$V_t := e^{v_t} = \frac{S_t}{1 - e^{-X_t}} \ge D_t := e^{d_t} = \frac{e^{-X_t} S_t}{1 - e^{-X_t}} > 0.$$

Then

$$X_t = \log \left(V_t / D_t \right), \quad S_t = V_t - D_t.$$

- V_t is reminiscent of "market value of the firm", per share;
- 2) D_t is reminiscent of "market value of the debt", per share;
- **3** D_t plays the role of a stochastic default trigger in structural models.

Default Simulation



• For simplicity: only two independent factors.

- For simplicity: only two independent factors.

- For simplicity: only two independent factors.
- Itealthy firms have X ≫ 0 and V ≫ D, and hence S ~ V.
 Suggests that V be modeled analogously to traditional stock models, eg as geometric BM or TCBM.

- For simplicity: only two independent factors.
- Itealthy firms have X ≫ 0 and V ≫ D, and hence S ~ V.
 Suggests that V be modeled analogously to traditional stock models, eg as geometric BM or TCBM.
- Computability: Models for X_t must lead to solvable first passage problem.

Motivated by these considerations we assume:

- V_t, D_t, S_t are \tilde{P} -martingales;
- $v = \log V, d = \log D, v d$ are stopped TCBMs with a common time change G.

• Zero coupon bond price (with stochastic recovery RD_{t^*}/D_0):

$$\bar{P}_{0}(T) = \tilde{E}[\mathbf{1}_{\{t^{*}>T\}} + \mathbf{1}_{\{t^{*}\leq T\}}RD_{t^{*}}/D_{0}]$$

- ② Credit derivatives such as CDS, coupon bonds etc, follow from $\overline{P}_t(T)$: these depend strongly only on factor X.
- Equity derivatives depend strongly on both factors:
- Call option price:

$$\mathsf{Call}^{KT}(v_0, d_0) = \tilde{E}_{v_0, d_0}[(e^{v_T} - e^{d_T} - K)^+ \mathbf{1}_{\{t^* > T\}}]$$

A barrier spread option.

New Result for Spread Options

We can efficiently compute spread options using a new result: Proposition (Hurd-Z. Zhou, 2009)

The payoff function has the Fourier representation

$$(e^{x_1} - e^{x_2} - 1)^+ = (2\pi)^{-2} \iint_{\mathbb{R}^2 + i\epsilon} e^{i(u_1x_1 + u_2x_2)} \hat{P}(u_1, u_2) du_1 du_2$$

for any $\epsilon = (\epsilon_1, \epsilon_2)$ with $\epsilon_2 > 0$ and $\epsilon_1 + \epsilon_2 < 0$. Here

$$\hat{P}(u_1, u_2) = \frac{\Gamma(iu_1 + iu_2 - 1)\Gamma(-iu_2)}{\Gamma(iu_1 + 1)},$$

where $\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt$ is the complex gamma function defined for $\Re z > 0$.

Call Option Formula

Corollary

In the case of a single time change G,

$$\mathsf{Call}_0^{1T}(v_0, d_0) = \iint_{\mathbb{R}^2 + i(0, \tilde{\epsilon}_2)} e^{i(z - i\beta_1)X_0 + iu\tilde{X}_0^{\perp}} F(z, u; T) Q(z, u) dz du.$$

where

$$F(z, u; T) = \exp\left[-\psi_G\left(r + \tilde{\sigma}_1^2(z^2 + \beta_1^2)/2 + \tilde{\sigma}_2^2(u^2/2 - i\beta_2 u), T\right)\right]$$

$$Q(z, u) = \frac{iz(\det M)}{4\pi^3} \int_{\mathbb{R}+i\tilde{\epsilon}_1} \frac{1}{(v - i\beta_1)^2 - z^2} \hat{P}(M'[v; u]) dv$$

and $M = [1, -1; 1 m].$

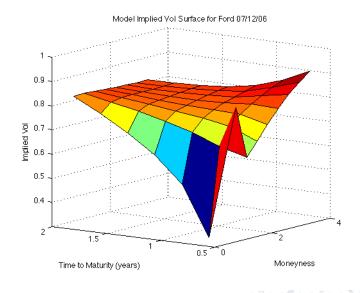
This gives call option price as a function of the current values S_0, X_0 in an explicit two-dimensional FFT.

Tom Hurd (McMaster)

TCBM Credit Modelling

Fields 2009 28 / 31

Ford Model Implied Vol Surface: 12/07/06



 New results in first passage expand the range of feasible structural credit models;

- New results in first passage expand the range of feasible structural credit models;
- Two factor models for (S_t, X_t, V_t, D_t) are a simple, natural generalization of traditional "structural credit models" whose detailed features have not yet been studied;

- New results in first passage expand the range of feasible structural credit models;
- Two factor models for (S_t, X_t, V_t, D_t) are a simple, natural generalization of traditional "structural credit models" whose detailed features have not yet been studied;
- **③** FFT methods lead to fast computations.

- New results in first passage expand the range of feasible structural credit models;
- Two factor models for (S_t, X_t, V_t, D_t) are a simple, natural generalization of traditional "structural credit models" whose detailed features have not yet been studied;
- FFT methods lead to fast computations.
- TCBMs extend efficiently to multiple firms, enabling CDO pricing and portfolio credit VaR.

- New results in first passage expand the range of feasible structural credit models;
- Two factor models for (S_t, X_t, V_t, D_t) are a simple, natural generalization of traditional "structural credit models" whose detailed features have not yet been studied;
- **③** FFT methods lead to fast computations.
- TCBMs extend efficiently to multiple firms, enabling CDO pricing and portfolio credit VaR.
- Much work to be done!

Available (or will be soon) at www.math.mcmaster.ca/tom

- T. R. Hurd, "Credit Risk Modelling using time-changed Brownian motion"
- T. R. Hurd, A. Kuznetsov, "On the first passage time for Brownian motion subordinated by a Levy process"
- T. R. Hurd and Z. Zhou. "Modeling credit derivatives via time changed Brownian motions"
- T. R. Hurd and Z. Zhou. "A Fourier transform method for spread option pricing"