Humboldt Universität zu Berlin Department of Mathematics - Applied Financial Mathematics

Hidden Liquidity and the Optimal Display of Iceberg Orders

Ulrich Horst

Humboldt-Universität zu Berlin & QP Laboratory

(joint with Gökhan Cebiroglu & Mark DiBattista)

Fields Institute, September 30th, 2009

dbqpl quantitative products laboratory

Outline

- Hidden liquidity
- A simple model of placing iceberg orders
 - Hidden liquidity with higher time priority
 - Net order arrival dynamics
- Statistical analysis of hidden liquidity:
 - How much and where
 - Explanatory variables
- Some calibration results

Limit Order Books

- Almost all electronic exchanges are based on Limit Order Books (LOBs)
 - Market Orders: immediate execution
 - Limit Orders: stored in the LOB
- Orders may be schielded from public view.
- Orders are executed according to a set of Priority Rules:
 - Price Priority
 - Display Priority
 - Time Priority
- Large orders (limit or market) move the market

Hidden Liquidity

- Increasing proportion of liquidity is hidden: reduced market impact
- Dark pools:
 - Typically associated with a primary venue (e.g. LSE)
 - Trade settled only if matching liquidity is/becomes available
- Iceberg orders:
 - Only a fraction of the order is openly displayed in the LOB
 - The hidden part loses its time priority
- Uncertainty of execution

Iceberg Orders

- Only a fraction of the order is openly displayed in the LOB
- The hidden part loses time priority over the displayed part
- There may nor may not be a minimal display size
 - "Refill" upon execution of the visible part
- Synthetic iceberg order
 - Repeated submission of visible orders of a certain size
 - Inferior to icebergs in terms of time priority

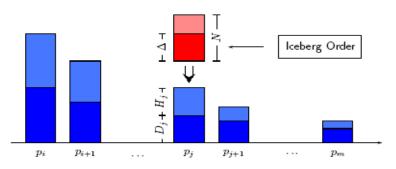
Data Issues

- No (Limited) real time data on hidden liquidity available
- Reconciling trade and quote data, executed hidden liquidity may be detected (difficult!)
- We use NASDAQ Modelview Data
 - One minute snapshots of the entire book (hidden and visible)
 - Stock Universe: S&P 500
 - Period: November/December 2008.

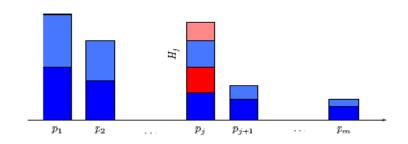
Sample Snapshot

Ticker	Time	Side	Price	Visible	Hidden
MSFT	11:51	В	27.11	27720	0
MSFT	11:51	В	27.12	34020	0
MSFT	11:51	В	27.13	39100	0
MSFT	11:51	В	27.14	35201	1800
MSFT	11:51	В	27.15	6920	37400
MSFT	11:51	S	27.16	44433	0
MSFT	11:51	s	27.17	41940	100
MSFT	11:51	S	27.18	41395	100
MSFT	11:51	S	27.19	34350	100
MSFT	11:51	S	27.20	41199	5000

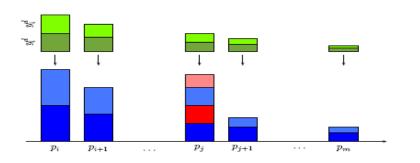
The Model


The Model

- What is the optimal display size of an iceberg order?
- Model assumptions:
 - Order placed at a single price level (top of book or in spread)
 - Select display size to maximize excepted execution volume
 - Visible orders have a market impact
- Model parameters:
 - Visible and hidden liquidty with higher priority
 - Order (market and limit) arrival rates
 - Market impact parameter



The Model


Iceberg Submission

After Iceberg Submission

Arrival of Competing Sell Orders

\vec{p}_i p_i p_{i+1} \dots p_j p_{j+1} \dots p_m

Order Arrival Rates

Aggregate (sell) volume at more competitive prices follows an exponential distribution with parameter

 $\beta_j(\Delta)$

where Δ is the display size.

- Volume at the submission price level is exponentially distributed
- Aggregate market order (MO) volume is exponentially distributed
- Both distributions may depend on $\,\Delta$ (market impact) and the market imbalance.

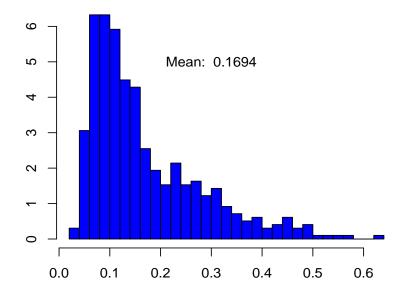
Discrete Execution Profile of Iceberg Orders

- Visible part of the iceberg is executed if the MO exceeds sum of
 - Displayed liquidity with higher priority at t=0
 - Visible liquidity with higher priority arriving at t=1
- Entire iceberg is executed if MO exceeds all of above plus
 - Hidden liquidity at t=0
- The expected execution size as a function of the display size is
 - Linear for low market impact
 - Bell-shaped for medium market impact
 - Strictly decreasing for strong market impact

The Optimal Display Size

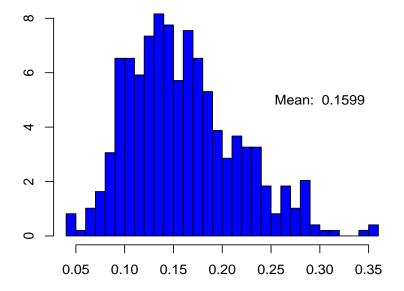
- Expected execution volume can be given in closed form
- Optimal display size:
 - Full display if the order size is small enough
 - Display size increases with the expected amount of hidden liquidity
 - Display size decreases with market impact
- To calibrate the model, we need an estimate of
 - Hidden liquidity (as a function of ...)
 - Net order arrival rates (as a function of volume imbalance, spread)

Statistical Properties of Hidden Liquidity



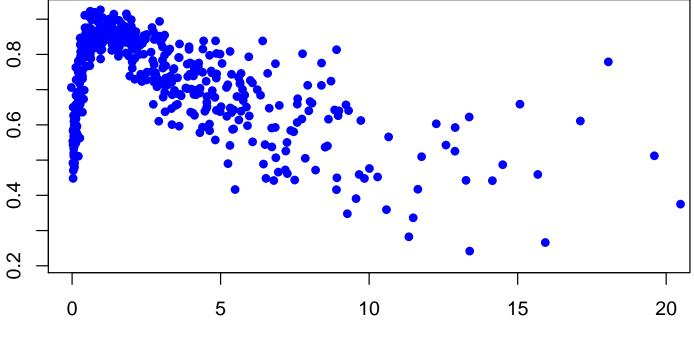
Statistical Properties of Hidden Liquidity

- Our empirical analysis was focussed on the following questions:
 - How much is hidden?
 - How much HL is in the spread/on top of the book?
 - Which macroscopic variables correlate with the HL volume in the spread/on top of the book?
- Can we estimate the HL volume in the spread/on top of the book?
- Hidden liquidity distribution in the spread

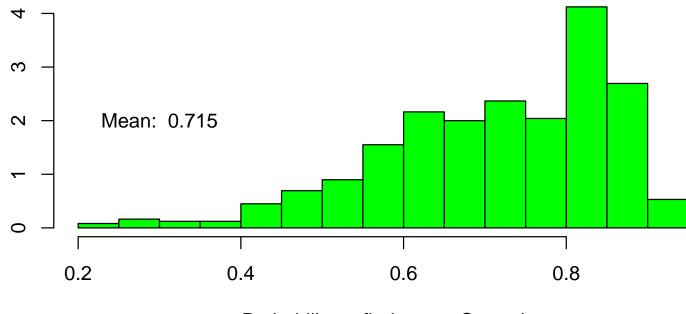

How Much is Hidden?

Hidden Liquidity

Average Ratio of Posted HL


Hidden Liquidity at Top of the Book

Average Ratio of Posted HL at Top


Probability of Finding an Empty Spread

Average Spread -1 (Ticks)

Probability of Finding an Empty Spread

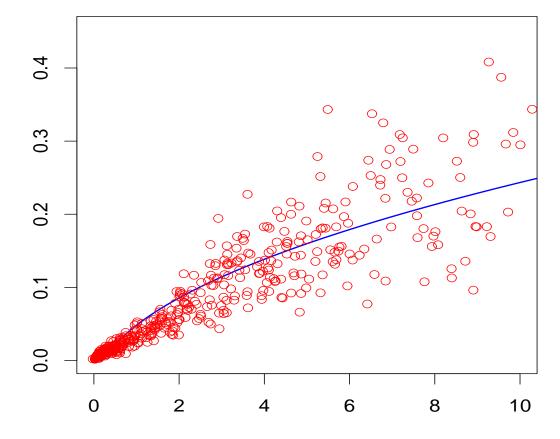
Probability to find empty Spread

- Averaged over the S&P 500 the spread is empty 70% of time
- Small spreads (<1 tick, MSFT, EBAY, DELL): good chance of HL in spread
- Medium spreads (1- 5 ticks, e.g. AMZN): empty > 70% of time
- Larger spreads (5+ ticks, e.g. GOOG): good chance of HL in spread
- What variables correlate with the HL volume in the spread?

HL Volume\Ratio in the Spread

- Correlation of hidden liquidity volume with:
 - Average Spread: 0.474
 - Average Price: 0.404
 - 1/(Average Order Size): 0.374
 - Average Daily Trading Volume (ADV): 0.223
 - Average Trade Size: 0.084
- HL volume not well explained by either quantity ($R^2 < 0.4$)

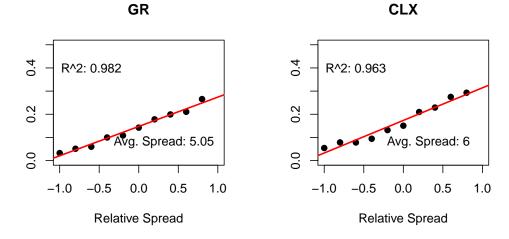
- Correlation of hidden liquidity ratio with:
 - Average Spread: 0.859
 - Average Price: 0.755
 - 1/(Average Order Size): NA
 - Average Daily Trading Volume (ADV): -0.212
 - Average Trade Size: -0.322
- HL ratio well explained by average spread.



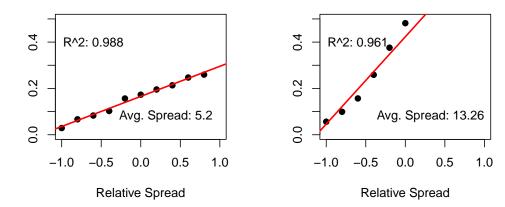
• HL Ratio in the spread is well explained by the spread $(R^2 > 0.7)$:

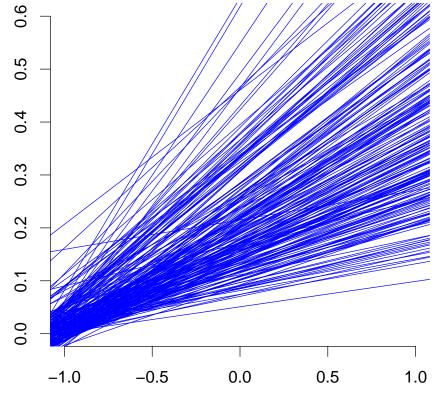
$$H_{Ratio} = -0.04 + 0.09\sqrt{Spread}$$

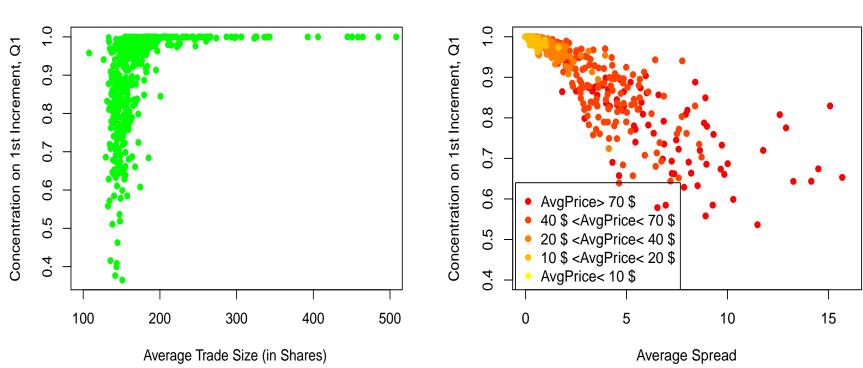
- For stocks with average spreads between 5 and 10:
 - Linear relation between spread and HL ratio
 - Slope is well estimated using ADV



Average Spread–1 (Ticks)






Relative Spread

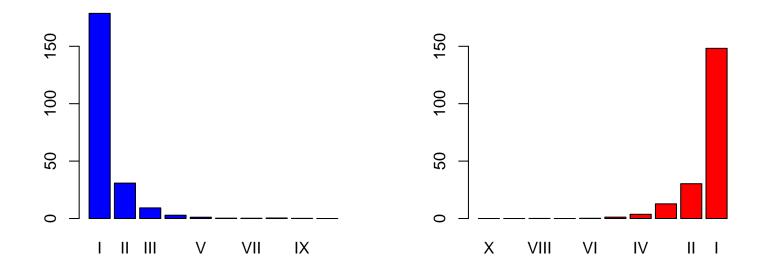
HL Distribution in the Spread

Hidden Liquidity Concentration in the Spread

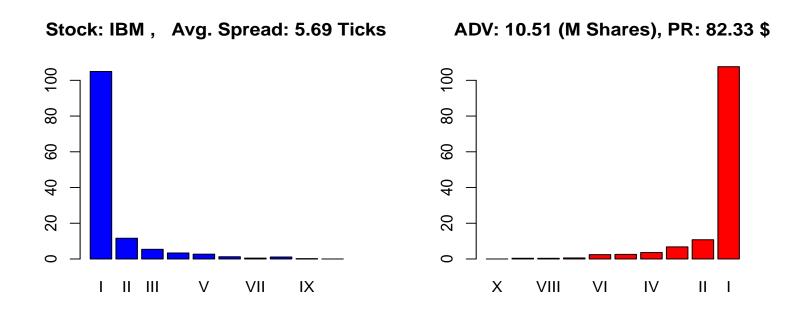
Hidden Liquidity Concentration in the Spread

Hidden Liquidity Concentration in the Spread

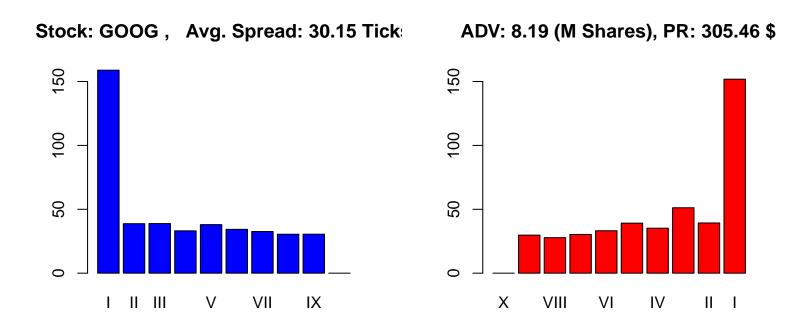
Hidden Liquidity Concentration in the Spread


- Spread-liquidity mainly concentrated on the first best increment
- Take at "First-Increment-in-Spread" not at Midpoint
- Exception: Google with 34% of liquidity on the first increment
 - Spread/price ratio exceptionally high
 - Stepping deeper into the spread is cheap

Hidden Liquidity in the Spread (AMZN)


Stock: AMZN, Avg. Spread: 2.92 Ticks

ADV: 11.74 (M Shares), PR: 44.52 \$



Hidden Liquidity in the Spread (IBM)

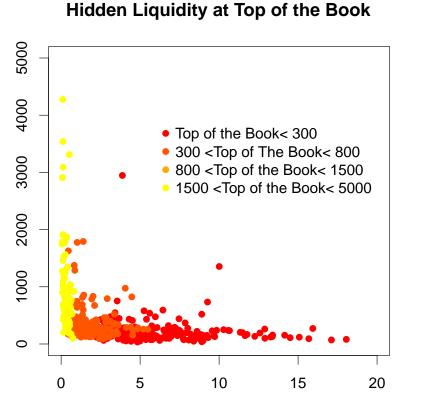
Hidden Liquidity in the Spread (GOOG)

Hidden Liquidity in the Spread/on Top-Of-The Book

- Amount of HL in the spread not well explained by macroscopic variables
- HL ratio well estimated by average spread (plus ADV)
- Hidden liquidity at the top of the book correlates strongly with
 - average trade size
 - average top-of-the book volume
 - inverse average price and spread

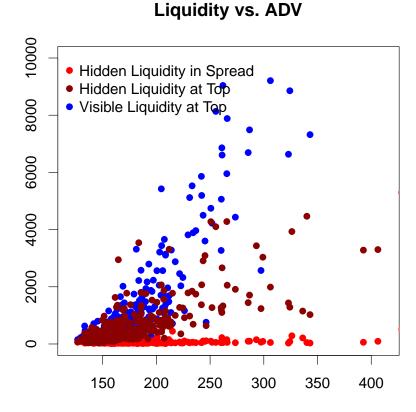
HL at Top of the Book

Hidden Liquidity at Top of the Book


• Correlation of hidden liquidity volume at TOB with:

٠	Average Trade Size:	0.783
•	Average (Visible) Volume at TOB :	0.691
٠	1/(Average Price):	0.677
٠	1/(Average Spread):	0.669
٠	ADV:	0.508

- HL volume at TOB highly correlated with ...
- Linear relation for HL ratio as before.



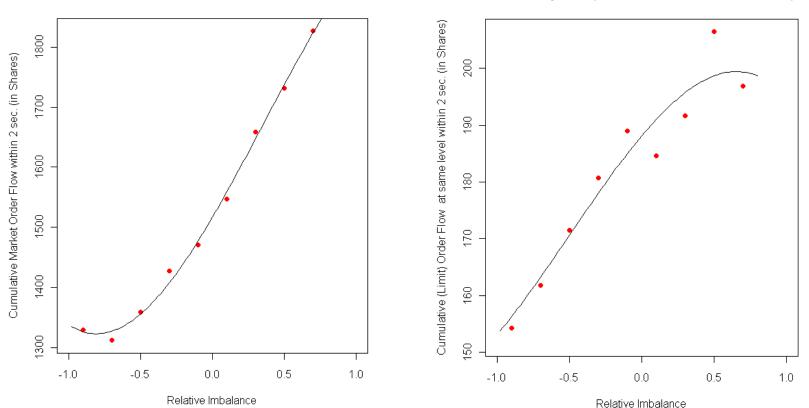
Hidden Liquidity at Top of the Book

Average Spread-1 (Ticks)

Humboldt-Universität zu Berlin Applied Financial Mathematics

Average Trade Size (Shares)

Back to the Model

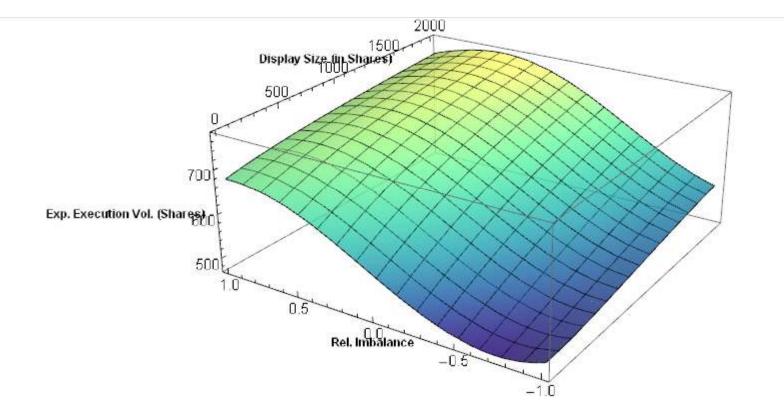

Calibration Results for Apple: Parameter Setting

- Calibration period: Jan 01, 2008 Jan 15, 2008
- Submitted order size: 2000 Shares
- Submission price level: best bid/ask
- Trading horizon: 2 seconds
- Top of the book size: 300 shares
- We calibrated the order arrival rates as a function of market imbalance.

Calibration Results for Apple: Order Arrivales

Market Impact I (Market Order Flow)

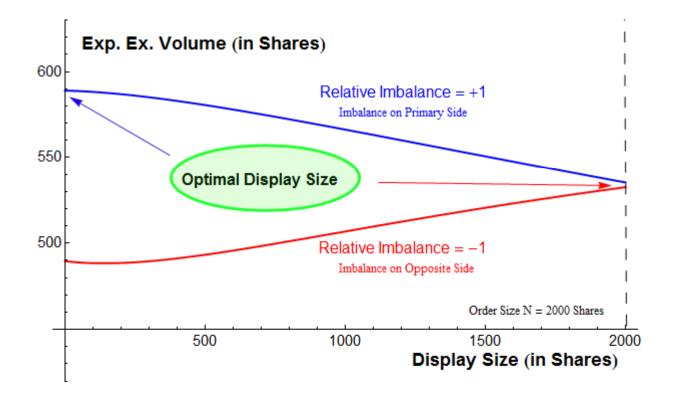
Market Impact II (Limit Order Flow at Price Level)



Calibration Results for Apple: What to Expect

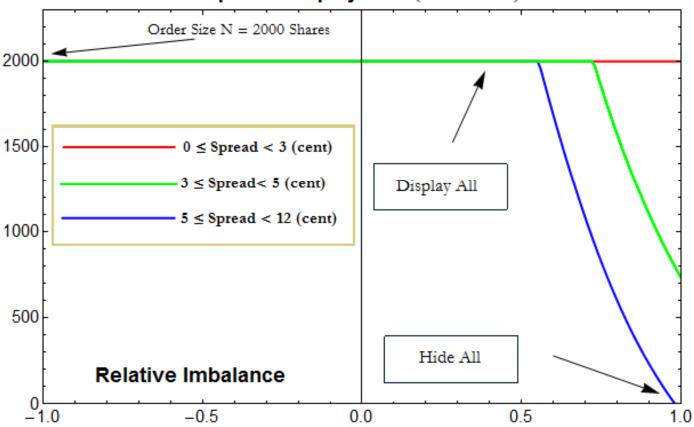
- "Benchmark price" for liquidity providers: spread to midpoint
- Small spread: full display
- Medium \Large spreads:
 - More liquidity on the opposite side: display
 - Much more liquidity on my side: hide
- Similar effects, but amplified by spread

Execution Profile for Narrow Spreads (< 2 Cents)


Display Order

Humboldt-Universität zu Berlin

Applied Financial Mathematics



Execution Profile for Large Spreads (3-12 Cents)

Execution Profile

Optimal Display Size (in Shares)

Conclusion

- Simple model for the optimal display of icebergs
- HLRatio well explained the ADV and VL at the top of the book
- Calibration for Apple:
 - Small spread: full display
 - Large Spread: dependence on market imbalance
- Future research topics:
 - Dynamic models
 - High frequency data
 - ...

