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The StressVaR 

How to measure risk with nonlinear models in a scarce data environment 
 

Raphael Douady 



Problem 
• X1…Xn  are market factors (indices, rates, etc.) 

o Long term history 
o Daily data (even better) 
o Accurate, liquid 
o 1000’s of data points 
 

• Y  is a hedge fund return for next month 
o Short history: at best a few years 
o Monthly data (sometimes weekly) 
o Illiquid, inaccurate 
o Only a few 10’s of data points 
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Risk Measure Question 
Find the distribution of Y(t + 1) including possible extreme events, looking forward 

Difficulty 
The forward distribution may strongly differ from that of past returns, due to hidden risks 

Factor Analysis 
• Write Y = ϕ(X1,…,Xn) + Z 
• Estimate ϕ and the distribution of Z 
• Estimate the joint distribution P of (X1,…,Xn) and “confidence sets” Eα with prob. 1 – α 
• Push forward ϕ* P and merge with the distribution of Z to get that of Y 
• Get confidence intervals ϕ(Eα) and compute the VaR 

Stress Test 
Find the expected impact of a given market move on the fund, i.e. the “Risk Surface” 

ϕ(x1,…,xn) = E[Y | X1 = x1,…,Xn = xn] 

Difficulties 
• ϕ is strongly nonlinear 
• Not enough data points to calibrate a multi-dimensional model 
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Single Factor Scanning 
 

• Calibrate single factor models, i.e. “Risk Curves” ϕi(xi) = E[Y | Xi = xi] 
o Assume they all have the same expectation, say 0 

 

• Estimate the joint distribution of factors P(x1,…,xn) 
 

• Merge curves to obtain the “Risk Surface” ϕ(x1,…,xn) 
 

• Find ϕ : Rn → R such that, for any i : 
E[ϕ(X1,…,Xn) | Xi] = ϕi(Xi) 

        4  



Edgeworth Decomposition 

• i( )i iY X Zϕ= +     Hk = Hermitte polynomials ( ) ( )i i ik k i
k

X H Xϕ β=∑

• 1( ,..., )nY X X Zϕ= +   1
,

( ,..., ) ( )n ik k i
i k

X X H Xϕ λ=∑

• )    ( ) (, Cov (

• Solution is given by: Λ = Γ–1C 
), ( )ik j k i jH X H XγΓ = =l l ( ) ( ),ik ik ik ikC c β γ= =

The method works in L2 with ∞ sums under ellipticity condition: 2
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X c Xϕ ϕ
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Examples with Ellipticity 
• The joint distribution (X1,…, Xn) is a Gaussian copula 
• X1,…,Xn are independent 

 
Ellipticity fails when there is tail concentration of the joint distribution along non axis directions 
Unfortunately very common in practice: diversification disappears when crises occur! 
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Co-linearity 
Due to the large number of possible factors and insufficient data, even in the linear case, Γ is not 
invertible. It is even worse in the nonlinear case. One needs model selection 
 
Algorithms for model selection 

• Stepwise Regression 
• Matching pursuit 

 
These algorithms apply in the nonlinear setting to Hermitte regressors. However, in practice, 
they miss two essential issues: 

• Model selection should depend on the chosen scenario (x1,…,xn) 
• When the scenario is extreme, the distribution of factors is very different from under normal 

conditions (due to tail concentration), some factors that usually are uncorrelated, become 
very correlated and the selection should be made accordingly. 
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Stress Test: Stepwise Regression with Information Maximization 
( )ˆ• Given a scenario x = (x1,…,xn) we estimate ( ) cov ( , )x i jx X XΓ =  by LOESS regression, 

using weights ωx(t) that depend on the proximity of the sample data to the scenario. 
o LOESS = LOcally wEighted Scatter plot Smoothing 

• Y is estimated against each Xi by LOESS regression: Y = βi(x) (Xi – xi) + αi(x) + Zi 
• Let C(x) = (βi(x)γii(x))i=1…n and Λ(x) = Γ(x)–1C(x) 
• Assuming Gaussian inputs, βi estimate is Fischer, αi is Gaussian, Γ is Wishart and Λ is 

inverse Wishart. 
( )2 2( ) ( )t t tn x xω ω= ∑ ∑  • The efficient number of points is 

• For a given subset of indices I ⊂ {1,…,n}, we can make a joint estimate, also by LOESS 
regression: ( )( )IY x Z= + +∑  i i i I I

i I
X xλ α

∈

−

• The estimate is yI(x) = αI and the variance is  var ( ) ( ) ( ) varI I I I IY C x x C x Z′= Γ +

• The estimation error distribution is ( )var var ( ) ( )I
I i i i

i I
Y x x E Xλ

∈

⎡ ⎤+ −⎢ ⎥
⎣ ⎦
∑  

• The information ratio is: 
2( )( )

var ( )
I

I
I

y xJ x
Y x

=  
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Stepwise Algorithm 
1. Select first a subset of factors that pass some type of individual significance test against the 

fund (e.g. F-test with LOESS weights) 
2. Compute Γ(x), C(x) and their estimation error distribution 
3. Find the factor Xi that maximizes Ji(x) 

X4. Given i1, find the second factor  that maximizes  2i 1 2{ , }( )i iJ x
5. Due to the competition between the estimate improvement and the error Δ(x), after a few 

iterations, one cannot increase JI(x). The algorithm stops here. 
 
In practice the algorithm stops very fact: most of the time at the first iteration. 
It can be adapted to matching pursuit. 

Back-test 
• Selector Factor Universe (X1,…,Xn) and fund Y 
• xi(t) are historical factor returns, y(t) are historical fund returns 
• For each time t, compute the “stress test” ŷ(t) from factor returns xi(t), with model 

calibrated and selected using returns on the period [0, t–1] 
• Compare ŷ(t) to actual return y(t) 
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Example: S&P500 vs. Economic Indicators 

Prediction vs. Actual S&P500 Monthly Returns
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Prediction of 3000 hedge fund returns in Sep 08 with data until Aug 08 
Fung-Hsieh 7-factors multi-linear model 

y = 0.3684x2 + 0.4048x - 0.0038
R2 = 0.2925
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Prediction of 3000 hedge fund returns in Sep 08 with data until Aug 08 
Nonlinear single factor prediction (173 factors) 

y = 0.8846x - 0.011
R2 = 0.8121
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Risk Measurement and Portfolio Construction: The Stress VaR 
Computing stress tests assume that one knows which factor shifts to apply. In a factor-based risk 
measure, the shifts can be anything within a “confidence set” for a given probability 1–α. Then 
the worst impact of factors on the fund across this set is a conservative estimate of the VaR of 
the explained part Ŷ = ϕ(X1,…,Xn) : 

1 1
ˆ( ) min ( ,..., )nE

VaR Y x x
α

α ϕ− ≤ −  

Incorporating Z, one needs to solve an equation involving the cdf of Z and that of Ŷ, but we 
again get a conservative estimate by a simple sum: 

1 1 1( ) min ( ,..., ) ( )nE
VaR Y x x VaR Z

α
α αϕ− −≤ − +  
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Tail Concentration and Stress VaR 
During crises, factors tend to be correlated and funds returns are mostly driven by one single 
factor. Taking the worst value across all single factor models is sufficient for a good risk 
estimate. For each factor Xi, define : 

1 ( )
ˆ( , ) min ( )

i
i i iE X

StressVaR Y X x
α

α ϕ− = −  

2 2
1 1( )

( , ) min ( ) ( )
i

i i i iE X
StressVaR Y X x VaR Z

α
α αϕ− −= +  

Let I be a set of factors that have been identified as having a significant relationship with the 
fund under extreme conditions. The StressVaR is defined by: 

1 1( ) max ( , )ii I
StressVaR Y StressVaR Y Xα α− −∈

=  

As a risk measure, it is no more coherent than the VaR, but can easily be made coherent if one 
changes the individual factor StressVaR by a coherent risk measure (see Cherny-Madan). Then 
the global StressVaR is coherent if one assumes that I is fixed, but can be made non coherent if 
selecting factors is part of the algorithm. 
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Properties of the StressVaR 
This question is, however, a minor issue, regarding the advantages of the StressVaR: 

• It is anticipative because it relies on a very long term factor history, including past crises 
when the fund did not exist 

• Most correlation breaks are the result of the common impact of a single factor on several 
funds. 

• Liquidity crises make the market very correlated: the StressVaR provides a quantitative 
measure of the impact of such crises 

• Repeated tests for factor significance are a problem in normal conditions, when markets are 
uncorrelated. But not under extreme conditions, when correlations are very high. In other 
words, the StressVaR is only precise when needed! 

• Hidden Risk Ratio 
StressVaR MaxDrawDownHRR

Volatility
−=
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 Anticipation of Risky Funds during the Crisis, as of June 08 
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Performance of an Equal-risk distributed Portfolio 
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Track Record  of Quant Driven Portfolios With a 3% Tail Risk Budget
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