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Objective

Estimate (ex post) daily realized volatility (foT o2dt).
Continuous time model of the tick-by-tick data.
Alternative to lower frequency models (GARCH, Heston...)
Historical changes, Restrictive assumptions, Inconvenient...

Dilemma

Microstructure noise ruins the RV estimator >_(Xi;1 — X;)?,
when using full sample. Empirically,

Z(Xi+1 — )(,')2 — 00, as A — 0.

Suffering information loss if we sample every 5 minutes
(99.7%).
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Estimate the variance of the noise.
Transaction cost: Roll (1984)
Dilemma
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The logarithm of the transaction price X is observed at
O=710<7<..<Th=T,such that X, = X, + U;,.

The latent process X; satisfies
dXt = O'th

The microstructure noise U, is i.i.d. N(0,a?), L {W;}, and
EU;}I_ < o0.

The time intervals A; =77 — 1,1 = A.

Therefore, Y; = )N(T,. - )N(T,;1 has an MA(1) structure.
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Likelihood:

I(a%,0%) = —logdet(Q)/2 — nlog(2n)/2 — Y'Q7tY/2 (1)

where
o’ A +23° —a° 0
—a? o2 + 232 —a?
Q= 0 P o2 + 222
0 e 0 —32

Then the MLE (52, 3?) proves to be consistent:

I'l%l(('j'2 — 0'(2J) i) N( < 0 ) 830087'7%
nz (3% — ag) 0/’ 0
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In Theory:
Parametric Estimator

Constant Volatlity

In Practice:
pretty good!
Simulation Ait-Sahalia and Yu (2009), Hansen, Large and Lunde (2008)
Comparison Gatheral and Oomen (2007)
but why?
"The interesting situation is the one with nonconstant volatility...leading
to our conjecture that the consistency continues to hold when... The
asymptotic normality also seems to hold under nonconstant volatility;
however, the asymptotic variance is far more complicated due to

autocorrelation in the score function.” -Hansen, Large and Lunde (2008)
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So, it is natural to ask:
What is the impact of stochastic volatility on the MLE?
Will the MLE remain consistent and robust?

What are the convergence rate and asymptotic distribution of
the MLE?

How does it compare with other alternative nonparametric
estimators?

How to rationalize this approach?
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Xy = Xp, + Us,.

The latent process X; satisfies
dXt = /,Ltdt + O't_th

with p; locally bounded, o a positive, locally bounded It6
semimartingale. e.g.

do? = k(5% — 07)dt + 7(07)dB; + B(o¢— ) JedNy

The microstructure noise U, is i.i.d., L {W;} and {o:}
EU;, =0, and EUf_", < 0.

The time intervals A;s satisfy i.i.d. with mean A_ and L {X;},
{o+} and {U;}, so nT = Op(A~1) and n= T/A.
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Popular Estimators include but not limited to
Two,/ Multi Scales Realized Volatility

Zhang, Mkyland and Ait-Sahalia (2005)
Zhang (2006)

Realized Kernels
Barndorff-Nielsen, Hansen, Lunde and Shephard (2008)

Pre-Averaging Method
Jacod, Li, Mykland, Podolskij, and Vetter (2007)
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The parameter of interest () fOT o2dt, happens to be the
average of the volatility process.

No microstructure noise case:

1
l(w,0?) = —g log(c2A) — g log(2m) — 551 Y'Y

where Y; = X, — X, , = [7 0tdW;. Apparently, the MLE is

Ti—

TZW ZH:XT,— X, )22 / o2dt
=1

Here, the RV estimator recurs.

Volatility will not change too much in a small period?
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The parameter of interest () fOT o2dt, happens to be the
average of the volatility process.

No microstructure noise case:

1
l(w,0?) = —g log(c2A) — g log(2m) — 551 Y'Y

where Y; = X, — X, , = [7 0tdW;. Apparently, the MLE is

Ti—

TZW ZH:XT,— X, )22 / o2dt
=1

Here, the RV estimator recurs.
Volatility will not change too much in a small period? No!

Quadratic Representation
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Suppose the true data generating distribution is g(U).
Possibly Misspecified Assumption

g(U) € {f(6,U): 0 cO},ied b cO,stg(U)=f(bo, V)

6 maximizes the log likelihood:

f(o,U)= z”: log f(6, U;)
i=1
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Suppose the true data generating distribution is g(U).
Possibly Misspecified Assumption

g(U) € {f(6,U): 0 cO},ied b cO,stg(U)=f(bo, V)

6 maximizes the log likelihood:

f(o,U)= z”: log f(6, U;)
i=1

6* minimizes the Kullback - Leibler Information Criterion:

I(g - f,0) = E(log[g(V)/f(U,0)))
Under some conditions, see White (1982)

-2 o
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Roughly speaking, the rationale behind it is the law of large
numbers. Because

LS log (0, U) - Elog (6, 0))
i=1

Under some conditions, their maximizers should be close to
each other.
Correctly Specified Model: 0* = 6y

Misspecified Model: Intuitively, 8* minimizes one's ignorance
about the true structure.

12/ 29



Let Qn(w,0) and @,(w,6) be two random functions such that for each 6 in ©,
a compact subset of R, they are measurable functions on Q and, for each

w € Q, continuous functions on @. In addition, Q,(w, ) is almost surely
maximized at 0, (w). Further, as n — oo:

Uniform Convergence:

sup || Qn(w, 0) — Qu(w, 0) = 0.
6cO

Identifiability: for every ¢ > 0, there exists a constant Jp > 0, such that

P(Qn(w,07) — Qu(w,0) > 6o) — 1.

max
0€O:||0—0x||>e€

Then any sequence 0, s.t. Q,(w,0,) > Supgeo @n(w, d) + op(1) converges in
probability to 67, i.e., 6, — 05 —— 0.
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Let W,(w,0)and W,(w,0) be random vector-valued functions. For each 6 in ©,
a compact subset of R, they are measurable function on €2, and for each w in
Q, continuous functions on ©. In addition, there exists a sequence of 6},
satisfying W ,(w, #;) = 0 almost surely, such that as n — oo,

Uniform Convergence:

sup [|Wa(w,8) — W,(w, )] —— 0.
0co

Identifiability: For every € > 0, there exists a constant o > 0, such that,

P T 5
Ceo i, s [Vn(w, Ol > do) —

Then any sequence of estimators f, such that W,(w, f,) = op(1) converges in

probability to 87, i.e., §, — 07 — 0.
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Theorem 3: CLT of the Quasi-M-Estimators

Suppose that the conditions of Consistency Theorem are satisfied. In addition,
V,(w,0) and V,(w, 6) are continuously differentiable of order 1 on ©. Also,
there exists a sequence of positive definite matrices {V,(w)} such that

Vi(w)(Wn(w, ) — Wn(w, 07)) == N(O, Ii)

If VU ,(w,0) is stochastic equicontinuous, and
VW, (w,0) — VU, (w,0)| —— 0, uniformly for all § € ©, then

V(@) Vo (w, 02) (0, — 62) = N(O, Ii)
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Misspecification
Or =0

U ~ N(0, 22).
The log likelihood function is

I(a%,02) = — log det(Q)/2 — nlog(2m)/2

o’ A + 23° —a? 0
—32 o’ A +23° — 32
Q= 0 —a? g2\ + 232
0 o 0

where Ys are observed log returns.
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Consistency'
32 — a2 = Op(n~2)
R T _1
62—+ [, odt=0p(n 1)

Central Limit Theorem (stable convergence):

@ )
5a [, ofdt 3(Jy o2dt)? a
W((§)-( Tt £ )
0 2ag + cumy[U]

Robustness:
Non-Gaussian and Serial Dependent Microstructure Noise

Jumps in Prices: 62 2~ 1 fOT ordt + Y < 7(AX:)?)
Random Intervals
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Parametric vs Nonparametric
Realized Kernels (RKs):

H
K(%:) = 200%) + 3 k) 0m(%0) +7-4(%0))
h=1
where

n

Vh(xf) = Z(X‘rj - )~<7'j—1)()~<7'j—h - )N<7'j—h—1)
j=1
Bandwidth and Kernel Selection: burden vs flexibility

rule-of-thumb approximation / ad hoc ways
sensitivity
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Asymptotic Behavior
Constant Volatility: the QMLE becomes the MLE
Stochastic Volatility: depending on heteroskedasticity

p= fOT o2du/y/ TfOT otdu
Avar(RK)
Avar(QMLE)
1

-

2 2
16\/M (1 +VIF 3kok2/pk2) (1 VI 3k0k2/pk1)
+3p

m\w

1
2

Finite Sample Performance
Infeasible RK: require out-of-period data
Edge Effect

’yih(;(r) = Z ()N(TJ - 5(7771)()?777/7 - )~<7'jfh—1)
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QMLE vs RKs:

Avar(QMLE) / Avar(RK)

Relative Efficiency Plot

Asymptotic Relative Efficiency
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Quaderatic iterative representation of the QMLE:
The QMLE (62, 3°) satisfies the following equations:

8T = YWY
?® = YWY
W, — n-tr(Q2A) - Q7 INQL — n- tr(Q72A%) - Q72
(tr(Q2N))2 — tr(Q-2) - tr(Q2A2)
tr(Q2A) - Q2 — tr(Q72)- QIAQ !
W, =

(tr(Q2N))2 — tr(Q2) - tr(Q—2A2)

Wi and W, depend on o2 and a? only through A = a?/02T.
The feasible THy, kernel estimator can be expressed as

K(X.)=Y' Wy
Wii = lgayn<i<n—wy
e e
Wiy = k(=) lu<ii-ji<H) - Lasnsi<n-ny
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QMLE of Volati

Tukey-Hanning Kernel
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We fix T as 1 day. Within [0, T], the data are simulated using
Euler scheme based on stochastic volatility models, for instance the
Heston Model with jumps in volatility process.

dXy = pdt+ o dW;
do? = k(3% - 02)dt + d0:_dB; + o JY dNo;

where E(dW; - dB;) = pdt.
=003, p=-075 k=50 =04, ap = 0.5%.
JY = exp(z), where z ~ N(=5,1), A = 12.

The arrival of transactions {7;} follows a Poisson process with
mean=1 sec.
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Integrated Volatility Noise Variance
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The implementation of the Tukey-Hanning, (TH>) kernel
k(x) = sinz(g(l — x)?)

RK1 as a benchmark: infeasible bandwidth + out-of-period
data: H = c*¢n? with ¢* given by

k 3kok
C*:\lpk;(l-l- 1+ﬁ)
1

RKj>: infeasible bandwidth + edge effect
RKj3: rule-of-thumb bandwidth + out-of-period data

H = 5.743\/n/RV4o(X)

where 3 = 1/ RV(X)/2n and RVio(X) is the RV estimator based on

10-min returns.
RKj4: rule-of-thumb bandwidth + edge effect
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This table reports the estimates for 100 - (62 — + fOT o2dt).

1 sec 5 sec 30 sec 1 min 3 min

QMLE Bias 0.0189 0.0480 -0.0341 -0.0452 -0.0838

RMSE 1.1861 1.8178 2.9272 3.5831 4.9210

RK; Bias 0.0178 0.0465 -0.0079 -0.0192 0.0003

RMSE 1.2329 1.8850 3.0087 3.6851 5.0185

RK3> Bias -0.1620 -0.3659 -1.0288 -1.4913 -2.5874

RMSE 1.2305 1.8827 3.0492 3.7345 5.1255

RK3 Bias 0.0186 0.0247 -0.0452 0.0009 0.3615

RMSE 1.8604 2.7556 4.1697 4.8708 6.2360

RK4 Bias -0.0641 -0.1568 -0.4934 -0.6316 -0.7731

RMSE 1.8557 2.7337 4.1066 4.7863 6.0173
Comment:

QMLE dominates.
The edge effect bias is large, but negligible in large sample.
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Goal: Estimate the Daily Realized Variance + fOT o?dt.
Data: Euro/Dollar FX Future on CME in 2008.

Annualized Daily Realized Variance of the EUR/USD FX Future in 2008
0.1z

Realized Kernel
MLE

oal
Icelandic Crisis
o.08|
Lehman Brothers' Bankruptey,
o-061 Fannie Mae and Freddie Mac Bailout
o.0a| Bear Stearns’ Fire Sale
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This paper proposes
A QMLE, which

is Parametric and Free of Tuning-Parameters
is Consistent and Rate Efficient
has No Edge Effect
has a Quadratic lterative Representation
A Framework, which

can Deal with Stochastic Parameters using Model
Misspecification
Links Parametric Approach to Nonparametric Methods

An Empirical Study with Euro/Dollar Future, which

Uncovers Realized Volatility Trajectory in the FX Market
Identifies Abnormal Volatility Movements with News Impact

Future work
Covariance/Correlation: Ait-Sahalia, Fan and Xiu (2009)
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Part Il

Thanks!
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Summary Statistics

Avg No of Obs  Avg Freq Mean Std Err 1st Lag  2nd Lag
19550 4.42s -8.83e-09  6.95e-05 -0.073 0.0091
. Sample Autocorrelation Function (ACF)
B oz2h TTe,
0 R

Lag
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Py

1 0l(a2, 02 1 0l(a?, o2
Y = (0 Vo) = (- M) 2Oy
1 Oln(detQ) 89 1 1 aln(detQ) ,0071 !
- il Y 4
(5o Y ant Y m )
- 1 Oln(detQ) o1 1  Oln(detQ) oa~1 /
Vn = Tr o)}, — L X
" (2\/3 902 (G Tb o i (52 )
Lo?dt + 232 —a? 0 0
—a J7? ofdt + 2a3 —a3
= 0 —a? [ otdt +2a5 0
—ag
0 0 —a2 [ o¥dt+2a]
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The proof can be divided into two steps:

Applying Theorem 2:
52 — 0% = op(1)
3,2, a,2,* = op(1)
By direct calculations:
2« _ 1 [T 524t = Op(n~3)

On T Jo
a%* — a3 = Op(n~1)

Combining the two:

34/ 29



— )
- )
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%(lﬁf;ghr + aga{0a3f + 1883503) ° )
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