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Shocks to the interest rate term structure

Shocks of all frequencies come at the interest rate dynamics/term structure:

Long term: Inflation shocks tend to move the term structure in
parallel; Real GDP growth shocks tend to move short rates more than
long rates.

Intermediate term: Monetary policy shocks are often imposed at the
short end and they dissipate through the yield curve via expectations.

Short term: Supply/demand (transactions) shocks enter the yield
curve at a particular maturity and dissipate through the yield curve via
hedging and yield curve statistical arbitrage trading.

A successful model should capture the effects of shocks of all frequencies.

Curse of dimensionality often forces us to focus on a particular segment of
the frequency spectrum...

We propose a class of models that can include all identifiable frequencies,
but with no curse of dimensionality — The models are dimension invariant.
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A cascade multifrequency interest rate dynamics

The instantaneous interest rate rt follows a cascade dynamics,

rt = xn,t ,
dxj,t = κj (xj−1,t − xj,t) dt + σj,tdWj,t , j = n, n − 1, · · · , 1,
x0,t = θr .

(1)

Start the short rate at the highest identifiable frequency xn,t .

Let the short rate mean reverts to a stochastic tendency xn−1,t .
— By design, the tendency xn−1,t moves slower than xn,t .

The tendency mean reverts to another, even slower tendency ...

The lowest frequency reverts to a constant mean θr , which is also the
mean of the short rate.

Intuitively, the tendencies are like exponentially weighted moving
averages with increasingly long windows.

n→∞ is also an option.
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Cascade v. general affine

The general affine Gaussian models (Duffie & Kan, 96):
rt = a + b>Xt , dXt = K (c− Xt)dt + ΣdW .

Factors can rotate. For example, equivalently,
rt = a′ + (b′)>Zt , dZt = −K ′Ztdt + dW , with
a′ = a + b>c,b′ = Σb, c′ = Σ−1c,K ′ = Σ−1K .

Economic meaning for each factor is elusive.
Many of the parameters are not identifiable.

— Need careful specification analysis (Dai & Singleton, 2000).

The cascade structure ranks the factors according to frequency.
— a natural separation/filtration of the different frequency components
in the interest rate movements — no more rotation.

Economic meaning of each factor becomes clearer — helpful for
designing models to match data.
— 1/κ has the unit of time.

From time series, the highest identifiable frequency is the observation
frequency. The lowest frequency is the sample length.
From term structure, maturity range determines frequency range.

Liuren Wu (Baruch) Dimension-Invariant Cascade Dynamics 4/23/2010 4 / 18



Dimension invariant assumption on frequency distribution

We achieve dimension invariance by parameterizing the distribution of the
different frequencies.

We assume that the mean reversion speeds of different frequencies
scale via a power law: κj = κr b(j−1), b > 1.

Using a functional form to approximate a series of discrete coefficients
is a common trick used in econometrics to improve identification.

Example: Geometric distributed lags model assumes that the effects of
an variable xt diminishes as the lag j becomes larger: βj = β0λ

j .

The focus of this paper is on the interest rate term structure modeling.
Volatility variation is largely “unspanned” by the term structure.
⇒ We assume IID risks with constant volatility: σj,t = σr .

Risk premium is not important for term structure modeling, either.
⇒ We assume constant and identical market prices for risks of all
frequencies: γj,t = γr .

The result: Five parameters (θr , σr , κr , b, γr ), regardless of the number of
frequencies (n).
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Dimension invariant extensions

Option pricing:

Variance dynamics specification becomes important. A potentially
useful dimension-invariant cascade specification for variance:

σ2
j,t = vK ,t

dvk,t = κv
k (vk−1,t − vk,t) dt + ω

√
vK ,tdZk,t , k = K ,K − 1, · · · , 1,

v0,t = θv ,

ρ = E[dWj,tdZk,t ]/dt, κv
k = βk−1κv

1 , β > 1.

Bond risk premia/expectation hypotheses:

The different frequency components that we identify can be used as
the instruments to explain the bond risk premium.

What is a “tent shape” in our frequency decomposition?
Do the volatility frequency components identified from the “vol cube”
have anything to say about bond risk premium?
Excess Bond Returnt+∆t = a +

∑
j bjxj,t +

∑
j ckvk,t + et+∆t

Parameterize the distribution of (bj , ck) to achieve dimension-invariance
and enhance identification.
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Bond pricing

The values of zero-coupon bonds are exponential-affine in Xt = {xj,t}nj=1,

P (Xt , τ) = EP
t

[
exp

(
−
∫ T

t

rsds

)
E

(
−
∫ T

t

γs · dXs

)]
= e−b(τ)>Xt−c(τ),

The instantaneous forward rate is affine in the state vector,

f (Xt , τ) = a (τ)> Xt + e (τ) ,

The intercept has 3 components: long-run mean, risk premium,
convexity: e (τ) =

κrθr
∑n

i=1 αi,1 (1− e−κiτ )
−γrσ

2
r

∑n
j=1

∑n
i=j αi,j (1− e−κiτ )

−σ
2
r

2

∑n
j=1

∑n
i=j

∑n
k=j αi,jαk,j

(
1− e−κkτ − e−κiτ + e−(κi +κk )τ

)
The loading coefficients a(τ) are convolutions of exponentials.
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The forward rate response functions

to shocks from different frequency components, aj(τ):

−− Highest frequency 99K(intermediate) — Lowest frequency
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Numerical example: κr = 1/30, κn = 52, n = 15, b = 1.69.

One can think of a(τ) as basis functions and Xt as time-varying weights.
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Data and estimation

Data

Six LIBOR (at 1, 2,3,6,12 months),
Nine swap rates (at 2,3,4,5,7,10,15,20,30 years).
Weekly sampled (Wednesday) from January 4, 1995 to December 26,
2007. 678 observations for each series; 10,170 data points.

Estimation:

Cast the model into a state space form:

Regard Xt as the hidden state, regard the LIBOR and swap rates as
observations with errors.

Given parameters, use unscented Kalman filter to infer the states Xt

from the observations at each date.

Construct the log likelihood by assuming that the forecasting errors on
LIBOR and swap rates are normally distributed.

Estimate the 5 parameters by maximizing the likelihood of forecasting
errors.
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Dimensionality

Normally, this is the first thing one decides on before one can pin down the
parameter space.

Under our framework, the parameter space is invariant to the dimensionality
decision. We worry about the dimensionality the last.

Since we have 15 interest rate series, we estimate 15 models with
n = 1, 2, 3, · · · 15.

The estimations of these models are equally easy and fast.

The extensive estimation exercise serves at least two purposes:

Determine how many frequency components the data ask for — This
normally depends on the data. More maturities would naturally ask for
more frequency components.
Analyze how high-dimensional models differ from low-dimensional
models in performance.
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Parameter estimates and likelihood ratio tests

n κr θr σr θQ
r b σ2

e L V

1 0.2092 0.0436 0.0065 0.0688 0.0000 0.1574 4086 47.91
3 0.0526 0.0000 0.0101 0.0662 7.3138 0.0047 19928 20.70
5 0.0441 0.0000 0.0125 0.0507 2.8266 0.0010 25551 15.99
7 0.0283 0.0000 0.0129 0.0419 2.6150 0.0004 27898 11.93
8 0.0275 0.0000 0.0133 0.0632 2.5271 0.0004 28445 11.00
9 0.0278 0.0000 0.0141 0.0650 2.2351 0.0003 28801 9.18

10 0.0313 0.0000 0.0140 0.0507 2.2010 0.0003 28972 6.68
11 0.0305 0.0000 0.0144 0.0966 1.9603 0.0003 29036 6.06
12 0.0359 0.0000 0.0147 0.0876 1.9130 0.0002 29194 4.41
13 0.0383 0.0000 0.0149 0.0833 1.8953 0.0002 29283 3.33
14 0.0409 0.0000 0.0151 0.0781 1.8757 0.0002 29332 2.32
15 0.0572 0.0000 0.0156 0.0559 1.7400 0.0002 29377 —

Vuong test (last column): More is significantly better.

Spacing (b) is finer when more is allowed.

Parameters (κr , σr ) stabilize as n increases.
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Power law scaling: Theory and evidence
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Circles: κi as free parameters; Solid line: power-law scaling

Power-scaling is reasonable.
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In-sample fitting performance: Pricing error statistics

Model A. Three-factor model B. 15-factor model

Maturity Mean Rmse Auto Max VR Mean Rmse Auto Max VR

1 m -0.68 7.47 0.86 43.93 99.83 0.02 0.62 0.36 5.40 100.00
2 m 0.63 3.82 0.69 37.42 99.96 0.01 1.76 0.52 16.31 99.99
3 m 1.61 5.03 0.85 42.54 99.93 -0.11 1.79 0.60 18.96 99.99
6 m 0.39 6.78 0.93 24.05 99.86 0.04 1.06 0.59 8.78 100.00
9 m -1.74 6.88 0.89 32.06 99.86 0.38 0.92 0.69 4.31 100.00
1 y -3.06 6.74 0.79 33.00 99.88 -0.49 1.21 0.06 4.71 100.00
2 y 2.11 6.17 0.81 24.38 99.86 0.28 1.09 -0.02 4.52 100.00
3 y 1.97 6.90 0.88 34.12 99.78 -0.19 0.75 0.36 3.88 100.00
4 y 0.87 6.32 0.90 33.48 99.76 -0.04 0.81 0.16 8.08 100.00
5 y -0.21 5.85 0.90 27.63 99.76 0.07 0.73 0.20 4.60 100.00
7 y -1.89 5.55 0.92 17.32 99.77 0.08 0.70 0.35 6.86 100.00
10 y -2.35 5.17 0.89 18.65 99.78 -0.12 0.95 0.23 9.00 99.99
15 y 0.88 3.87 0.86 13.14 99.82 0.00 0.72 0.29 4.68 99.99
20 y 1.91 5.35 0.90 17.64 99.66 0.08 0.79 0.33 6.90 99.99
30 y -0.76 9.67 0.95 31.88 98.68 -0.09 0.71 0.23 4.82 99.99
Average -0.02 6.11 0.87 28.75 99.75 -0.00 0.98 0.33 7.45 99.99
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Application: Yield curve stripping

Model-generated forward curves Piece-wise constant assumption
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Similar to Nelson-Siegel (basis function is exponentials), with two
advantages:

Dynamic consistency.

No longer limit to a three-factor structure — Near-perfect fitting is a
must for stripping swap rate curves.
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In-sample forecasting performance

Predictive variation: 1− Mean Squared Forecasting Error
Mean Squared Interest Rate Change

Model A. AR(1) B. Three-factor model C. 15-factor model

h 1 2 3 1 2 3 1 2 3 weeks

LIBOR maturity in months:
1 25.85 43.84 57.50 -0.71 32.92 42.84 21.71 40.82 52.16
2 23.83 36.65 47.28 -1.94 15.23 23.31 17.65 28.50 37.00
3 22.82 32.19 41.34 -50.31 -12.95 1.57 8.78 21.86 29.17
6 20.85 25.00 31.90 -87.43 -42.16 -24.57 5.77 12.56 16.94
9 20.22 19.35 23.79 -67.23 -38.76 -28.15 1.30 4.99 7.06
12 21.45 17.53 20.58 -39.25 -26.45 -21.32 6.85 3.71 3.07

AR(1) is the best;
3-factor model cannot beat random walk.
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Out-of-sample forecasting performance

Model A. AR(1) B. 15-factor model

Statistics Predictive variation Predictive variation t-statistics against RW

h 1 2 3 1 2 3 1 2 3 (weeks)

LIBOR maturity in months:
1 -1.57 -3.22 -4.89 24.24 38.91 52.76 1.73 3.49 4.80
2 -1.50 -3.24 -5.04 19.59 28.00 40.31 1.68 3.48 5.03
3 -1.98 -3.71 -5.45 9.80 21.90 32.77 1.69 4.75 6.33
6 -3.36 -5.62 -7.49 8.45 14.70 21.36 2.46 4.58 5.83
9 -4.52 -7.14 -9.17 4.71 7.74 11.53 2.26 3.53 4.15
12 -4.90 -7.78 -9.87 7.94 4.78 4.85 3.63 2.33 2.02

AR(1) is the worst;
15-factor model beats random walk in sample and out of sample!
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Where does the forecasting strength come from?

AR(1) neither uses the term structure information, nor parsimonious.

To exploit the term structure information, need a VAR(1) structure.
One AR(1) on each series, 15× 2 = 30 parameters already!
Forget about a general VAR(1).

Our model can be regarded as a constrained VAR(1):

Exploits information on the term structure.

Parsimony generates out-of-sample stability for all our models.

... as simple as possible, but not simpler.

Low-dimensional models cannot even fit — The forecast is almost
surely wrong over short horizons.

Our high-dimensional model is:

simple and stable: Similar in and out of sample performance.
flexible and fits perfectly: The forecast starts at the right place.
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Concluding remarks

We propose a class of dimension-invariant cascade multifrequency dynamic
term structure models:

The cascade factor structure eliminates factor rotation, pins down the
meaning of each factor, and provides a natural separation/filtration of
different frequency components.

We achieve dimension invariance by parameterizing the frequency
distribution.

Power law scaling on mean reversion — enjoys empirical support.
IID risk and risk premium — simplification for term structure modeling.

Model estimation and performance analysis reveal several advantages over
traditional “general” specifications:

No more curse of dimensionality: high-dimensional models are just as
easy to be estimated/identified as low-dimensional models.

High-dimensional models do perform better in several fronts.

The dimension-invariant cascade multifrequency framework can be readily
applied to (i) option pricing, and (ii) risk premium analysis.
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