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Introduction and motivation

Modeling return dynamics requires the specification of a stochastic volatil-

ity component (accommodates the persistence in volatility) and of a jump

component (takes care of the unpredictable large movements in the price

process).

Identification of the time and the size of jumps has profound implications

in risk management, portfolio allocation, derivatives pricing (Aıt-Sahalia,

2004).

The use of jump diffusion models proved very difficult, as there are no

closed forms of the likelihood function and in addition, the number of

parameters to estimate is very high.



Approach 1: to focus on the popular class of affine models (Duffie et al.,

2000): allow tractable estimation, but impose restrictive set of assump-

tions.

Approach 2: to use nonlinear volatility models. However, the estimation

procedure, based on simulation methods, such as the Gallant and Tauchen

(2002)’s efficient method of moments, is computationally demanding and

too much dependent on the choice of an auxiliary model (Chernov et al.,

2003; Andersen et al., 2002, for instance).

Development of nonparametric procedures to test for the presence of jumps

in the path of a price process during a certain time interval or at certain

point in time.

Such methods are



1) very simple to apply, they just require high frequency transaction prices

or mid-quotes.

2) developed in a model free framework, incorporating different classes of

stochastic volatility models.

Test procedures proposed:

Barndorff-Nielsen and Shephard (2006a, BNS),

Andersen, Bollerslev and Dobrev. (2007, ABD),

Lee and Mykland (2008, LM),

Aıt-Sahalia and Jacod (2008, AJ),

Jiang and Oomen (2008, JO) and

Podolskij and Ziggel (2008, PZ).



All tests are based on CLT-type results that require an intraday sampling

frequency that tends to infinity.

The test statistics are based on robust to jumps measures of variation in

the price processes which are estimated by using either realized multi-power

variations (Barndorff-Nielsen and Shephard, 2004, 2003, see) or threshold

estimators (Mancini, 2009).

ABD(2007) and LM (2008) tests have the null hypothesis of continuity of

the sample path at a certain moment, allowing for the exact identification

of the time of a jump.

The other procedures have a null of continuity within a certain time period,

such as a trading day.



Variety of nonparametric methodologies to identify jumps: which proce-

dure should be preferred, and is the choice dependend upon data charac-

teristics?.

Is the performance of the tests related to specific features of the data:

sampling frequencies, levels of volatility, varying persistence in volatility,

varying contamination with microstructure noise, varying jump size and

jump intensity.

Such characteristics vary between classes of assets, as well as between

different time periods.

For instance, equity prices are ‘jumpier’ than bond prices and markets in

general have been more volatile and at the same time ‘jumpier’ during the

last 2 years than before.



The main objective of this paper:

perform a thorough comparison among the six testing procedures via com-

prehensive Monte Carlo simulations, which embodies important features

of financial data.

Size of all tests: our simulations are based on both constant and stochastic

volatility models with varying persistence.

Power of all tests: we consider stochastic volatility models with jumps of

different sizes arriving with varying intensity.

The simulation exercise may provide a set of guidelines to users of non-

parametric tests for jumps



Additional contributions of this paper to the existing literature:

(1) for ABD. (2007) and LM (2008) tests, we explore the benefits from us-

ing approximate finite sample distributions, generating critical values based

on simulations (White (2000)’s Monte Carlo Reality Check approach).

(2) we propose a procedure that combines tests and frequencies to reduce

the probability of detecting spurious jumps.

(3) we apply the tests to high frequency data on the US Treasury 2-, 5- 10-

and 30- year bonds over a period lying between January 2003 and March

2004, sampled at different frequencies



Jump tests:

None of the procedures can test for the absence or presence of jumps in

the model or data generating process.

They supply us with information on whether within a certain time interval

or at a certain moment, the realization of the process is continuous or not.

ABD, LM assume the null of continuity of the sample path at time tj .

AJ, BNS, JO, PZ: the null is of continuity of the sample path during a

certain period, such as a trading day.

The alternative hypothesis implies discontinuity of the sample path, that

is the occurrence of at least one jump.



For all procedures, under the null, the test statistics are asymptotically

standard normal, though in some cases (ABD and LM) standard normal

thresholds, like 99% or 95% quantiles, appear too liberal and more restric-

tive thresholds need to be used.

Apart from the procedures proposed by Aıt-Sahalia and Jacod (2008) and

Podolskij and Ziggel (2008), all other procedures work only when a finite

number of jumps occur within a certain time interval. This is due to the

fact that in all cases, the construction of the test statistics is based on

realized multi-power variation estimators, which are robust only to a finite

number of jumps.

For this reason, in the simulation set-up, we only consider processes with

a finite number jumps (compound Poisson) and compare tests under this

scenario.



In the light that the ABD and LM differ only in terms of the choice of

the critical values, for a large part of our simulation exercise, we do not

distinguish between the two of them .



Monte Carlo analysis: design...

First, we simulated a simple stochastic process with constant volatility.

Second, simulated several stochastic volatility processes with leverage ef-

fects, with and without jumps and different levels of persistence in volatility

as well as jump intensities and jump variances

- Under the null: benchmark model (SV1F):

dp(t) = μdt+ exp [β0 + β1v(t)] dwp(t)

dwp(t) = αvv(t)dt+ dwv(t)

corr(dwp, dwv) = ρ

p(t) =log-price process, w standard B motions, v(t) volatility factor, μ

drift of the process, αv drift of the volatility process, ρ is the leverage

effect.



SV1F: stochastic volatility model+one volatility factor+jumps under the

alternative of discountinuos sample paths

SV2F: two volatility factors: one controls persistence of the process, the

second controls high tails via volatility feedback component (Chernov et

al, 2003)

Volatility factor enters in an exponential form (Chernov et al, 2003)

- Under le alternative: SVF1J model=SV1F+jumps

- Compound Poisson process with jump intensity λ

- Jump size distributed as N(0, σ2jump)



further

- data simulated for 10000 trading days, for all models and under both

hypotheses (continuity and discontinuity).

- the simulation of each path, we use an Euler discretization scheme based

on increments of 1 second.

- sampling frequency: 1 sec, 1, min, 5min, 15 min, 30 min.



Remarks

1. For the intraday jump detection procedures, two sets of results:

(a) Comparing ABD and LM with the other tests applied on time intervals

equal to one trading day, we compute the test statistics for every moment

ti within a trading day and then pick up the maximum statistic as the

final test for that day. We do not distinguish between the two procedures:

ABD-LM. To contrast our results to the ones reported in Lee and Mykland

(2008), we also adopt their strategy to calculate for the intraday tests

both overall probabilities, as well as means and standard deviations of the

intraday probabilities of spurious and nonspurious detection of jumps.

(b) LM (2008) use critical values from the Gumbel distribution, ABD.

(2007) suggest the Sidak approach, with the advantage of considering



the daily number of observations and is expect to work better in finite

samples. However, it requires very low nominal sizes (10-5), whereas for all

other procedure, we use 5% and 1% significance levels. In order to assure

comparability with the other procedures and to gain better finite sample

properties for the intraday tests, we approximate, by means of Monte Carlo

simulations the finite sample distribution of the max for each window size

considered in estimating the realized bipower variation which enters the

test statistics. Then, critical values are picked up from this approximate

finite-sample distribution. We dedicate a separate section (4.1) to compare

results based on this procedure with results for the standard LM test.

2. AJ (2008) suggest two possible ways to estimate the variance of their

test statistic in a robust to jumps manner. The fiirst on threshold esti-

mators (Mancini 2009), the second one on realized multipower variations

(Barndorff-Nielsen and Shephard, 2004, 2006b, 2003). In our simulations,

we employ both versions.



3. In the paper we report results for a 5% significance level. Results for

lower significance levels, i.e. 1%, 0.1% and 0.01%, are in line with the

ones at 5%.



Monte Carlo analysis: ..and main findings

Constant volatility model

A very simple stochastic process with a diffusion parameter that remains

constant through time. When we evaluate the power of the tests, we add

to the diffusion term jumps of different sizes. Under this setup, extreme

dynamics are caused only by jumps. Consequently, this analysis enables us

to understand how well tests can disentangle jumps at different sampling

frequencies.



Stochastic volatility models

We simulate the stochastic processes for every second.

We sampled the process every 1, 5, 15 and 30 minute(s) and compare the

size of the tests.

For the process with one volatility factor (SV1F), we consider three (low,

medium, high) alternative values for the mean reversion parameter of the

volatility factor.



Size. If we look at all the sampling frequencies, the biggest size distortion
is encountered in the case of the JO test, where, for a 1 second sampling
frequency, we have a size equal to 0.095, which grows fast when we diminish
the sampling frequency.

A similar pattern can be seen for the PZ procedure, which displays a size
close to the nominal one when sampling is performed every second, but
then gets rapidly and highly oversized. Thus, these tests should be applied
only when data sampled as frequent as possible.

The best behavior in terms of size is found for the BNS classic test and
for the intraday ABD - LM procedures. In all cases, size does not change
very much over the sampling frequency and the size distortion is not very
high.

TABLE 5



Table 5: Size of the tests for jumps for the SV1F model with medium

mean reversion

Procedure Nominal size: 5%
1 sec 1 min 5 min 15 min 30 min

AJ (threshold) 0.047 0.038 0.031 0.027 0.014
AJ (power var) 0.048 0.046 0.051 0.088 0.150

BNS 0.048 0.054 0.053 0.057 0.063
JO 0.095 0.091 0.099 0.119 0.151

ABD-LM 0.074 0.066 0.074 0.063 0.059
PZ 0.049 0.065 0.083 0.100 0.121

1



PowerWe added to the continuous stochastic volatility process SV1F jump

processes with different intensities and jump sizes.

Varying jump intensity In order to examine how jump detection changes

as the number of jumps grows, we consider Poisson jump arrival times

depending on the following varying jump intensities (λ): .014, .058, .089,

.118, .5, 1, 1.5, 2, and 2.5. For all these scenarios, we consider a jump

size that is N(0, σ2jump = 1.5%).

TABLE 10



Table 10: Power of daily jump tests for a 5% significance level. We consider

the SV1F model with medium mean reversion for the volatility factor and with a

varying number of jumps, as a result of varying jump intensities

Test 1 sec 1 min 5 min 15 min 30 min
AJ (threshold) 0.971 0.777 0.238 0.035 0.005
AJ (power var) 0.969 0.775 0.280 0.185 0.236

λ = 0.058 BNS 0.954 0.819 0.685 0.496 0.366
JO 0.478 0.445 0.386 0.353 0.321

ABD-LM 0.989 0.859 0.742 0.612 0.505
PZ 0.985 0.894 0.773 0.654 0.493

AJ (threshold) 0.971 0.779 0.208 0.031 0.007
AJ (power var) 0.970 0.796 0.301 0.187 0.246

λ = 0.118 BNS 0.954 0.831 0.704 0.544 0.368
JO 0.503 0.450 0.402 0.368 0.343

ABD-LM 0.981 0.863 0.762 0.651 0.521
PZ 0.975 0.895 0.783 0.667 0.513

AJ (threshold) 0.972 0.803 0.217 0.043 0.006
AJ (power var) 0.972 0.811 0.323 0.220 0.246

λ = 0.5 BNS 0.959 0.854 0.729 0.561 0.402
JO 0.492 0.461 0.421 0.379 0.347

ABD-LM 0.987 0.888 0.784 0.652 0.523
PZ 0.982 0.911 0.815 0.695 0.556

AJ (threshold) 0.982 0.833 0.206 0.040 0.005
AJ (power var) 0.982 0.852 0.351 0.228 0.255

λ = 1 BNS 0.970 0.890 0.783 0.609 0.430
JO 0.502 0.474 0.441 0.391 0.356

ABD-LM 0.989 0.912 0.828 0.688 0.535
PZ 0.988 0.932 0.861 0.738 0.570

AJ (threshold) 0.991 0.853 0.176 0.028 0.004
AJ (power var) 0.992 0.899 0.410 0.259 0.279

λ = 2 BNS 0.984 0.933 0.854 0.687 0.488
JO 0.535 0.516 0.484 0.443 0.397

ABD-LM 0.996 0.952 0.881 0.734 0.555
PZ 0.994 0.960 0.911 0.810 0.623

1



Varying jump size Fixed the number of jumps for the entire sample and

vary the jump size, generated by a normal distribution with mean 0 and a

standard deviation that ranges between 0 and 2 bs with a growth rate of

0.5.

TABLE 11



Table 11: Power of daily jump tests for a 5% significance level. We

consider the SV1F model with medium mean reversion for the volatility factor

and with a varying jump variance

1 sec 1 min 5 min 15 min 30 min
AJ (threshold) 0.921 0.490 0.101 0.024 0.012
AJ (power var) 0.921 0.509 0.159 0.123 0.171

σ = 0.5 BNS 0.872 0.565 0.341 0.176 0.120
JO 0.469 0.365 0.281 0.205 0.202

ABD-LM 0.967 0.719 0.491 0.288 0.167
PZ 0.950 0.725 0.509 0.303 0.200

AJ (threshold) 0.972 0.713 0.189 0.029 0.006
AJ (power var) 0.972 0.727 0.265 0.176 0.211

σ = 1 BNS 0.943 0.779 0.612 0.416 0.267
JO 0.487 0.419 0.366 0.318 0.278

ABD-LM 0.987 0.850 0.713 0.528 0.384
PZ 0.982 0.867 0.733 0.557 0.394

AJ (threshold) 0.976 0.797 0.214 0.039 0.007
AJ (power var) 0.976 0.815 0.332 0.216 0.245

σ = 1.5 BNS 0.962 0.861 0.731 0.565 0.403
JO 0.507 0.475 0.430 0.385 0.344

ABD-LM 0.986 0.890 0.794 0.648 0.517
PZ 0.984 0.914 0.819 0.691 0.534

AJ (threshold) 0.983 0.847 0.223 0.038 0.004
AJ (power var) 0.983 0.857 0.376 0.249 0.274

σ = 2 BNS 0.970 0.890 0.799 0.659 0.503
JO 0.519 0.489 0.459 0.418 0.385

ABD-LM 0.991 0.907 0.831 0.715 0.597
PZ 0.988 0.932 0.862 0.752 0.625

AJ (threshold) 0.985 0.878 0.233 0.039 0.002
AJ (power var) 0.984 0.890 0.418 0.267 0.288

σ = 2.5 BNS 0.976 0.915 0.840 0.721 0.578
JO 0.506 0.484 0.462 0.430 0.401

ABD-LM 0.990 0.922 0.861 0.759 0.639
PZ 0.987 0.945 0.893 0.811 0.690

1



Overall, the performance of all tests increases with the size of the jumps.

The ranking of the tests is in line with what was found for the case of

varying jump intensity.

- Very good ability of the the ABD-LM and PZ tests to detect jumps, with

powers around 98% and 99% at 1 second, which gradually decreases with

the sampling frequency.

- BNS shows power around 97% and 98% at 1 second, which decays when

sampling less frequently, but to lower numbers than for the intraday and

PZ test.

- AJ does again very well for the highest frequency, with a dramatic de-

crease in power at 5 and 15 minutes frequencies.



- JO show very modest performance

The behavior of the different tests for jumps in the presence
of microstructure noise (see TABLE 12 in the paper)



Extensions to the jump testing procedures

(a)Advantages of approximate finite sample distributions for
the ABD and LM tests

The difference between the ABD and LM procedures resides in the choice

of the critical values.

Sidak approach for the ABD, which has the advantage of taking into con-

sideration the daily number of observations and the size of the window on

which the local volatility estimator that enters the test statistic is com-

puted.

LM test makes use of the asymptotic distribution of the maximum and is

characterized by simplicity in comparison with the ABD approach.



Although we expect better finite sample properties for the ABD approach,

it requires very smal nominal sizes, not allowing for comparisons with all

other tests considered here.

In this section, we propose to use simulated critical values for the maximum

of the tests statistics.

This approach enables us to attain comparability with the other tests and

to benefit from accounting for the sample size in the inference process

White (2000) suggests the procedure in the context of model selection,

where so-called “Monte Carlo Reality Check” defined as a simulation based

method for “obtaining a consistent estimate of a p-value for the null in the

context of a specification search” (White, 2000, pp 1102) is proposed.



In our case, this “Reality Check” implies the following.

Let M be the number of daily observations and σ̂j the local volatility es-

timate at time tj. At each time, tj, we simulate from N(0, σ̂j) 10, 000

paths, where each path includes a number of M observations. For every

path, we take the maximum over the M observations, resulting in an ap-

proximate finite sample distribution of the maximum. From this empirical

distribution, we select the critical values.

We compare the results of the RC with the those based on the asymptotic

distribution of the maximum.

Daily size= % of days when tests erroneously identified the occurrence of

at least 1 jump.



Overall size= proportion of incorrectly identified jumps in the total number

of observations.

Size distortion= overall size minus adequate nominal size.

Figures 6 depicts all the above measures together with the corresponding

nominal sizes for different sampling frequencies for the SV1F model with

medium mean reversion.

The “Reality Check” approximation of the critical values works very well

for a nominal size of 5%.

At a lower 0.01% significance level the “Reality Check” still performs bet-

ter, except for the case of 30 minutes data, whereas at .1%, we notice that

the departures of the “Reality Check” size from the nominal one becomes

greater compared to the asymptotic size starting from 15 minutes data.
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Figure 6: Daily size, overall size and size distortion for the SV1F model and for different significance levels: from left to right: 5%, 1%

and .1%
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FIGURE 6 (size, SV1F)

The poor performance of the “Reality Check” procedure at low frequencies

and for very small significance levels can be explained by considering the

combination of two different effects.

First, the number of observations per day, M, is decreasing with the sam-

pling frequency, i.e. 23399 for data sampled every second, 389 at 1 minute,

77 at 5 minutes and only 25 and 12 for 15 and 30 minutes respectively.

As the “Reality Check” procedure requires taking maxima over M normal

variables, these maxima generally decrease with the frequency, as they are

taken over fewer values.

Second, under the null of jumps, returns are assumed to be conditionally

normal. When applying the intraday tests, we rely on nonparametric es-

timators of the local volatility, which require a sampling frequency that
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Figure 7: Size distortion for the SV1F model plus microstructure noise for different significance levels: from left to right: 5%, 1% and .1%
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becomes higher and higher, i.e. M → 1. For volatile processes and low

frequencies, the realized bipower variation seems to underestimate the in-

tegrated variance of the price process.

Thus, the standardized intraday returns are no longer i.i.d. normal and con-

sequently, the critical values obtained as a result of the “Reality Check”

procedure become too permissive, leading to a higher size for lower fre-

quencies and very small significance levels.



Power Daily power= % of days the procedures were able to correctly signal

that at least one jump occurred, overall power= proportion of observations

correctly classified as jumps.

We report daily power for the SV1F model with jumps with λ = 0.5 and

σjump = 1.5%, to which we further add microstructure noise with noise

σnoise = 0.052.

FIGURE 8 (power)

The main conclusion of this section is that the “Reality Check” approach

can lead to more correctly sized intraday tests with respect to the asymp-

totic counterpart, accompanied by an increase in power, provided that the

number of observations per day is not very low (over 15 minutes).
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Figure 8: Power for the SV1F + jumps model in the absence/ presence of microstructure noise for different significance levels: from left

to right: 5%, 1% and .1%
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(b) Cross-performances of the tests

This simple approach is meant to show that combinations of tests and/or

sampling frequencies can do better than just applying one single procedure.

It preserves a high percentage of rightly classified jumps, with significant

decrease in the percentage of spurious jumps.

Since the BNS test is the most utilized in applied work, we analyze here all

combinations of this test with the other four tests. For each case we con-

sider, we compute the percentages of correctly identified days with jumps,

correctly identified days without jumps, as well as spuriously detected dis-

continuities.

TABLE 14



Table 14: Cross-performances of the BNS test coupled with the following

tests: LM,PZ, JO and AJ, at a sampling frequency of 15 minutes

Intersection BNS-ABDLM BNS-PZ BNS-JO AJ (power var)
’Jump’ 0.4940 0.5323 0.2692 0.1418

’No Jump’ 0.9082 0.0258 0.8507 0.8502
’Spurious’ 0.0069 0.0237 0.0132 0.0064

Reunion BNS-ABDLM BNS-PZ BNS-JO AJ (power var)
’Jump’ 0.6856 0.6851 0.6473 0.6134

’No Jump’ 0.9931 0.9289 0.9868 0.9936
’Spurious’ 0.4550 0.4838 0.5125 0.5130
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First column in the upper panel of Table 14 (intersection of two jump

detection criteria)

0.4940 means that 49.4% of jumps were identified by both the BNS and

intraday procedures,

0.9082 indicates that in 90.82% of the days without jumps, both procedures

did not identify jumps.

0.0069 shows that there are .69% spurious jumps detected when both

procedures are simultaneuosly considered

First column in the lower panel of the table (reunion of two jump detection

criteria):



in 68.56% of the days with jumps at least one of the two above procedures

identifies jumps,

in 99.31% of the days without jumps at least one of the two tests did not

identify jumps,

in 45.5% of the days without jumps at least one of the two tests spuriously

identifies jumps.



Combine intersections and reunions across procedures and across frequen-

cies. Table 15 reports the results for some of the combinations

For instance, for the results in column 3, we applied the BNS test on both

5 and 15 minutes simulated data, as well as the ABD-LM procedure based

on 15 minutes data.

We adopted the following decision rule: on a certain trading day, the path

of the price process is considered discontinuous if one or more jumps is/are

detected by the ABD-LM test and at least by one of the two BNS tests.

The results suggest that this procedure manages to average the power

over frequencies and/or tests, combined with a substantial decrease in the

percentage of spurious jumps.



Third column of Table 15, we observe that the percentage of spuriously

detected jumps becomes very low and is combined with a very high pro-

portion (94.98%) of days that were rightly classified as without jumps and

a high proportion of correctly identified jumps (approximately 60.70%, de-

fined % averages of the powers of individual tests, i.e. around 54% and

69% for BNS and 64% for ABD-LM as reported in Table 13.

TABLE 15



Table 15: Cross-performance for different combinations of tests

(BNS5 ∩ BNS1)∪ (ABDLM5 ∩ ABDLM1)∪ (BNS5 ∩ ABDLM15)∪ (PZ15 ∩ ABDLM15)∪
(BNS5 ∩ BNS15) (ABDLM5 ∩ ABDLM15) (BNS15 ∩ ABDLM15) (ABDLM15 ∩ BNS15)

’Jump’ 0.660199 0.756965 0.606965 0.597761
’No Jump’ 0.954682 0.93796 0.949833 0.932274
’Spurious’ 0.001672 0.024582 0.00903 0.014883

1



Conclusions...

We offer a robust and comprehensive comparison between alternative jump

detection procedures based on high frequency data available in the litera-

ture

We offer some useful guidelines to potential users on which test/combinations

of tests to use to detect jumps in the prices of financial assets

To potential users we recommend to use LM -ABD intraday procedure, as

well as the PZ test, which have good power properties combined with a

manageable size.

ABD-LM and PZ tests are the most robust to microstructure noise.



When the price processes are very volatile, as it might happen for some

assets such as some derivatives, stocks, they become highly oversized. In

this case, we recommend the use of the BNS test, as its size distortion is

smaller and more stable across frequencies.

We propose as an alternative to the LM asymptotic test critical values

calculated according to White (2000)’s “Monte Carlo Reality Check” ap-

proach. Provided that the frequency is lower than 15/30 minutes, this

approach shows systematic improvements in terms of size and power.

We show that potential users of these procedures can gain advantages by

combining them through both reunion and intersection across procedures

and across sampling frequencies.

...further developments



There are at least three interesting developments from our work.

The first one concerns with measures of the integrated variance alternative

to the Barndorff-Nielsen and Shephard (2004)’ realized bipower variation.

For instance, Andersen et al. (2009) propose the MinRV and MedRV

estimators, whereas Christensen et al. (2009) propose the quantile based

realized variance. Andersen et al. (2009) also provide an asymptotic result

on the joint limit distribution of the realized variance, the bipower variation,

MinRV and MedRV, which enables the testing for jumps.

The second development concerns with the extension of the simulation

design to an infinite number of jumps. In this paper, we only considered

processes that generate a finite number of jumps within a certain time

interval, given that the available tests (the only exceptions being AJ and



PZ) are based on multipower variation-type estimators, which are robust

only to a finite number of jumps.

Finally, to reduce the probability of detecting spurious jumps, the combi-

nation of tests could be enriched by considering test averaging procedures

using Fisher (1925)’s method of combining p-values of different tests.

THANK YOU




