What is the Shape of the Risk-Return Relation?

A. Rossi¹ A. Timmermann²

¹UC San Diego

²UC San Diego, CREATES

April 2010

Introduction

Risk-return trade-off is central to modern finance

Little empirical consensus on the relationship btw the ex-ante equity premium and risk as measured by conditional stock market volatility:

- Negative:
 - Campbell (1987), Breen, Glosten, Jagannathan (1989), Glosten, Jagannathan, Runkle (1993), Whitelaw (1994), Brandt and Kang (2004).
- Positive:
 - French, Schwert and Stambaugh (1995), Bollerslev, Engle and Wooldridge (1988), Harvey (1989), Ghysels et al (2005), Ludvigsson and Ng (2007).

Risk-return trade-off: Theoretical insights

Should we be surprised by the inconclusive empirical evidence?

Backus and Gregory (1993, page 177): "... the relation between
the risk premium and the conditional variance of the excess return
can have virtually any shape: It can be increasing, decreasing,
flat, or even nonmonotonic. The shape depends on both the
preferences of the representative agent and the probability
structures across states."

Expected Return-Covariance Risk Trade-off: Theory

Merton's ICAPM establishes a trade-off between the conditional variance $\sigma_t^2(r_{t+1})$ and the expected market excess return:

$$E_t[r_{t+1}] = a_W \sigma_t^2(r_{t+1}) + b_W cov_t(r_{t+1}, x_{t+1}),$$

 x_{t+1} : state vector $cov_t(r_{t+1}, x_{t+1})$: hedging component

- stock market volatility
- covariance with 'investment opportunities'

First source of bias: conditional mean and volatility

 Expected return versus expected risk trade-off: both are unobserved - need model-based proxies

Econometric estimates may be biased:

- too few variables in the conditioning set
- use of linear forecasting models due to difficulties with large sets of predictor variables

Second source of bias: shape of risk-return relation

Analysis based on restrictive assumptions (such as linearity) on the risk-return relation could produce biased results.

- ⇒ Allow for flexible functional form in risk-return mapping.
 - Boosted Regression Trees
 - piece-wise constant approximation to unknown functional form
 - can handle large sets of predictor variables
 - no restrictions such as monotonicity
 - control overfitting through ensemble learning: model combination, sub-sampling and shrinkage

Third source of bias: How is risk measured?

- Conditional volatility of stock returns?
- Conditional covariance between economic activity (consumption growth) and stock returns?
- Merton's ICAPM: both should matter

What do we find?

- Strongly non-linear relationship between variations in the conditional mean and volatility:
 - At low-to-medium levels of volatility: positive risk-return trade-off
 - At high levels of volatility: the relationship is inverted
 - This finding also holds for the Great Depression, the recent financial crisis and in other subsamples
- Strongly monotonic (increasing) and significant relation between a new conditional covariance measure and expected returns

Models for Conditional Mean and Volatility

Empirical analysis of the risk-return relation typically relies on model-based proxies of the form

$$\hat{\mu}_{t+1|t} = f_{\mu}(x_t|\hat{\theta}_{\mu})$$

$$\hat{\sigma}_{t+1|t} = f_{\sigma}(x_t|\hat{\theta}_{\sigma})$$

Conventional to use an RV proxy and assume a linear model

$$r_{t+1} = \beta'_{\mu} x_t + \varepsilon_{rt+1}$$

 $\hat{\sigma}_{t+1} = \beta'_{\sigma} x_t + \varepsilon_{\sigma t+1}$

No theoretical justification for linearity assumption - model misspecification errors and biases.

Regression Trees

Determine

- splitting variable
- split point

A regression tree, \mathcal{T}_J , with J regions (states) and parameters $\Theta_J = \{S_j, c_j\}_{j=1}^J$ can be written

$$\mathcal{T}(x,\Theta_J) = \sum_{j=1}^J c_j I(x \in S_j).$$

- $S_1, S_2, ..., S_J$: J disjoint states
- $x = (x_1, x_2, ..., x_P)$: P predictor ("state") variables
- The dependent variable is constant, c_j , within each state, S_j

Returns as a function of log d/e and log e/p

コト 4 個 ト 4 注 ト 4 注 ト · 注 · かくぐ ·

Implementation - Boosting and Ensemble Learning

- Stochastic gradient boosting
- 10,000 boosting iterations
- Number of states, J = 2
- Shrinkage parameter, $\lambda = 0.001$, determines how much each tree contributes to the overall fit:

$$f_B(x_t) = f_{B-1}(x_t) + \lambda \sum_{j=1}^{J} c_{j,B} I\{x_t \in S_{j,B}\}.$$

- Subsampling, using half the data for fitting
- Objective function is MAE: $T^{-1} \sum_{t=1}^{T} |y_{t+1} f(x_t)|$

Data

Monthly excess returns on S&P 500 index, 1927-2008.

- 12 predictor variables
 - log dividend-price ratio (symbol: dp);
 - log earnings-price ratio (ep);
 - three-month T-bill rate (rfree);
 - de-trended T-bill rate (rrel);
 - yield on long term government bonds (lty);
 - term spread (tms);
 - default yield spread (defspr);
 - lagged excess return (exc);
 - long term return (ltr);
 - stock variance (vol);
 - log dividend-earnings ratio (de)
 - inflation rate (infl).
- Realized variance

$$\hat{\sigma}_t^2 = \sum_{i=1}^{N_t} r_{i,t}^2.$$

Relative influence of predictor variables: Excess Returns

1927-2008	infl	ер	rrel	lty	vol	de	Top 3	Top 5
relative influence	17.48%	17.31%	10.10%	9.47%	8.30%	7.50%	44.89%	62.66%
p-value	0.1%	0.4%	11.5%	11.0%	29.5%	38.8%	0.0%	0.0%
1927-1967	infl	ер	de	dp	exc	ltr	Top 3	Top 5
relative influence	12.41%	11.01%	10.35%	9.30%	9.27%	8.99%	33.77%	52.34%
p-value	11.0%	24.5%	37.8%	51.0%	60.4%	57.5%	28.7%	52.50%
1968-2008	infl	ер	dp	rrel	exc	vol	Top 3	Top 5
relative influence	16.49%	12.54 %	12.52%	10.97%	8.45%	7.31%	41.55%	60.97%
p-value	0.6%	6.3%	7.3%	12.6%	47.1%	67.7%	0.3%	0.0%

Relative Influence of predictor variables: Realized Volatility

1927-2008	vol	defspr	exc	de	infl	ер	Top 3	Top 5
relative influence	66.10%	8.87%	7.39%	6.25%	2.89%	2.42%	82.36%	91.50%
p-value	0.0%	0.0%	0.0%	0.0%	1.3%	2.8%	0.0%	0.0%
1927-1967	vol	de	defspr	dp	lty	exc	Top 3	Top 5
relative influence	41.99%	13.92%	13.61%	6.12%	6.09%	5.94%	69.52%	81.73%
p-value	0.0%	0.0%	0.0%	0.4%	0.1%	0.8%	0.0%	0.0%
1968-2008	vol	exc	ер	dp	infl	rfree	Top 3	Top 5
relative influence	60.16%	11.65%	6.25%	5.40%	4.35%	3.99%	78.06%	87.81%
p-value	0.0%	0.0%	0.0%	1.0%	4.4%	5.3%	0.0%	0.0%

Unknown shape of Risk-Return Trade-off

Theoretical analysis suggests the need to avoid imposing strong functional form assumptions on the risk-return relationship

Explore a general (non-linear) risk-return relationship:

$$\hat{\mu}_{t+1|t} = f(\hat{\sigma}_{t+1|t}, \hat{\sigma}_{t|t-1}, \hat{\mu}_{t|t-1}) + \varepsilon_{t+1}$$

Relative influence of variables in the flexible risk-return trade-off: Volatility Model

Model: $\mu_{t+1 t} =$	$f(\sigma_{t+1 t}, \sigma_{t t-1}, \mu_{t t})$	$_{t-1})$
------------------------	--	-----------

0.1.0			
Sub-Samples	$\sigma_{t+1 t}$	$\sigma_{t t-1}$	$\mu_{t t-1}$
1927-2008	7.6%	9.4%	83.0%
1927-2006	(1.8%)	(0.0%)	(0.0%)
	, ,	, ,	, ,
1007 1007	21.1%	19.5%	59.4%
1927-1967	(0.0%)	(0.0%)	(0.0%)
	(0.070)	(0.070)	(0.070)
	9.9%	9.9%	80.2%
1968-2008	(70.6%)	(53.9%)	(0.0%)
	(10.070)	(00.070)	(0.070)
High-	Volatility Pe	riode	
i ligii-	volutility i c	.11043	
	24.5%	35.4%	40.1%
1927-1939	(8.8%)	(0.0%)	(0.0%)
	(0.070)	(0.076)	(0.0 /6)
	23.0%	20.6%	56.4%
2001-2008			
	(55.3%)	(88.8%)	(0.0%)

Risk-Return Trade-off

Consumption vs Activity Based Asset Pricing

Under concave utility and a positive relation between consumption growth and stock returns:

$$\frac{\partial E_t[r_{t+1}]}{\partial cov_t(\Delta c_{t+1}, r_{t+1})} > 0$$

Under a monotonically increasing relationship btw consumption growth and changes in economic activity, ΔEA_{t+1} :

$$\frac{\partial E_t[r_{t+1}]}{\partial cov_t(\Delta EA_{t+1}, r_{t+1})} > 0$$

"Realized" Covariance

ADS index (Aruoba-Diebold-Scotti, 2009) tracks high frequency (daily) business conditions.

 ADS index blends high- and low-frequency information using the Kalman filter in a dynamic factor framework.

We compute monthly "realized" covariances btw stock returns and changes in the ADS index from daily observations

$$\widehat{cov}_t = \sum_{i=1}^{N_t} \Delta ADS_{i,t} \times r_{i,t}$$

 $\triangle ADS_{i,t}$: change in the ADS index on day i during month t $r_{i,t}$: daily stock market return

Correlation between the ADS index and aggregate consumption

	Monthly	Quarterly	Semiannual	Annual
Consumption	19.80%	34.06%	49.07%	54.67%
Durable Consumption	16.12%	20.11%	39.01%	45.69%
Non-Durable Consumption	15.81%	35.11%	45.17%	54.72%

Conditional Covariance

Expected Return-Covariance Risk Trade-off

We estimate a linear model relating expected returns to the conditional covariance as well as lags of these variables:

$$\widehat{\mu}_{t+1|t} = \alpha + \beta_1 \widehat{\mathit{cov}}_{t+1|t} + \beta_2 \widehat{\mathit{cov}}_{t|t-1} + \beta_3 \widehat{\mu}_{t|t-1} + \varepsilon_{t+1}.$$

We also consider a model that is not restricted to be linear

$$\hat{\mu}_{t+1|t} = g(\widehat{cov}_{t+1|t}, \widehat{cov}_{t|t-1}, \hat{\mu}_{t|t-1}) + \varepsilon_{t+1}.$$

Risk-return relation for the Covariance Model

A. Linear Model

Model: $\mu_{t+1|t} = \alpha + \beta_1 \ cov_{t+1|t} + \beta_2 \ cov_{t|t-1} + \beta_3 \ \mu_{t|t-1} + \epsilon_{t+1}$

Sample	$cov_{t+1 t}$ (t-stat)	$cov_{t t-1}$ (t-stat)	$\mu_{t t-1}$ (t-stat)	R^2
1960-2008	0.018 (8.71)	-0.007 (-3.37)	0.580 (17.23)	45.34%

B. Flexible Risk-Return Model

Model: $\mu_{t+1|t} = f(cov_{t+1|t}, cov_{t|t-1}, \mu_{t|t-1})$

Sample	$cov_{t+1 t}$	$cov_{t t-1}$	$\mu_{t t-1}$
1960-2008	26.3 %	9.6%	64.1%
	(0.0%)	(43.3%)	(0.0%)

Risk-Return Trade-off for the Covariance Model

Risk-return: Joint Specification

Monotonicity test for the risk-return relation

	Number of Observations per Portfolio						
Horizon (months)	Small	Medium	Large				
A. Volatility Estimates							
1	0.000	0.018	0.010				
2	0.000	0.000	0.017				
3	0.000	0.000	0.039				
B. Covariance	Estimate	s					
1	0.420	0.984	0.994				
2	0.320	0.898	0.949				
3	0.000	0.960	0.899				
C. VIX-based Estimates							
1	0.027	0.041	0.091				

Conclusion: Is there a risk-return trade-off?

- Explored a new method for estimating the conditional equity premium and the conditional volatility
 - flexible, avoids imposing strong functional form assumptions
 - can handle large-dimensional sets of predictor variables
 - controls overfitting
- Evidence of a non-monotonic risk-return relationship if risk is measured by volatility
 - at low-to-medium conditional volatility levels: positive risk-return trade-off
 - at high conditional volatility levels: inverted risk-return trade-off
- The risk-return relationship is monotonically increasing if risk is measured through the "realized" (conditional) covariance btw changes in economic activity and stock returns