
The Realized Laplace Transform of Volatility

George Tauchen Viktor Todorov
Duke University Northwestern University

2010



Realized Laplace Transform of Volatility Viktor Todorov and George Tauchen 2010

Motivation

• Strong parametric and nonparametric evidence for presence of persistent stochastic

volatility and jumps on the stock markets.

• Volatility typically associated with a slowly-moving investment opportunities set that

adds intertemporal component in an asset position (e.g. Merton’s intertemporal hedging

demand).

• However

– there is recent nonparametric evidence that volatility has relatively short-lived spikes,

i.e., jumps that are triggered by a jump on the stock market (Todorov and Tauchen

(2009), Jacod and Todorov (2009)) ...

– ... and such moves in volatility are of real concerns to investors: evidence from

options markets in Bollerslev and Todorov (2009) suggests those risks bear non-trivial

premia.
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Motivation

• Therefore, we need a much better understanding of the statistical features of the

stochastic volatility...

• ... and high-frequency data is the natural source for providing a robust (i.e. model-free)

way of doing this.
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Main Results

In this study:

• We propose an alternative way to aggregate high-frequency data into a realized measure

that we name Realized Laplace Transform of Volatility (RLT).

• RLT is a measure for the stochastic volatility and in the jump-diffusion case is robust

to jumps.

• RLT is an estimate for the empirical Laplace transform of the spot volatility and thus

provides direct information for its marginal distribution.

• We show that recovering the statistical features of stochastic volatility crucially depends

on the small scale behavior of the asset price.

• The concept of RLT can be extended to the estimation of the conditional Laplace

transform of the volatility.
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Connection with previous work

Estimating spot volatility from high-frequency data is very difficult:

• it goes back at least as early as the work of Foster and Nelson (1996) in which they

analyze the spot variance estimator in a diffusion setting...

• ... however, such estimator has very slow rate of convergence.

Alternatives that possess much better statistical properties (e.g. a rate of convergence of√
n) are

• to aggregate in time, i.e., use fill-in asymptotics to estimate integrated over time

quantities - the leading example being Realized Volatility

• to aggregate over sample paths in the probability space, i.e., use long-span asymptotics

to estimate functionals over the invariant distribution of the spot volatility
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Connection with previous work

• The jump-robust extensions of the Realized Volatility estimate
∫ t

0
σ2

sds and moments

of the latter do not have, in general, a one-to-one mapping with the moments of the

spot volatility. Hence the time-aggregation embodied in those measures distorts the

connection with the statistical properties of the spot volatility.

• Our RLT estimator, instead, aggregates the high-frequency data in a different way

(by cosine transformation of the returns) and estimates
∫ t

0
e−uσ2

sds. The latter when

averaged over time is a direct estimate of the Laplace transform of the spot volatility

and hence does not suffer from the time-distortions above.
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Construction of the Realized Laplace Transform

Recall for a generic non-negative random variable X and scalar u ≥ 0 we denote by

LX(u) = E

(
e
−uX

)

the real Laplace transform of X. The family of functions {eux}u≥0 is separating within

the class of distribution functions supported on [0,∞), so the mapping from F (x) to

LX(u) is one-to-one.

Our Goal: To estimate the Laplace transform of the spot volatility (or some power of it).
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Construction of the Realized Laplace Transform

In the case when σ2
t is observed directly things are easy

=⇒ use the associated empirical process:

1

T

T∑

t=1

e−uσ2
t P−→ E

(
e−uσ2

t

)

However volatility is latent!
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Construction of the Realized Laplace Transform

We will use the high-frequency data to solve the latency problem: if we sample frequently

enough the volatility will be approximately constant =⇒ the high-frequency return will be

σ × Zi ×
√

∆,

where σ is the unknown level of (locally constant) volatility, ∆ is the length of the

high-frequency interval, and {Zi} is a sequence of independent standard normal variables

=⇒ by using fill-in asymptotics and averaging “locally”

1

n

∑

i

cos
(
∆−1/2 × σ × Zi ×

√
∆

)
,

we can recover the characteristic function of the normal innovation with variance σ2, i.e.

e−u2σ2/2.
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Construction of the Realized Laplace Transform

Recognizing that volatility changes and integrating over time we have cancelation of errors

which allows us to estimate on a given path

∫ t+1

t

e
−u2σ2

s/2
ds

at the standard
√

n-rate.

From here, by using long-span asymptotics, we can estimate

E

(
e−u2σ2

t /2

)
,

which, when viewed as a function in u2/2, is the Laplace transform of σ2
t .
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Construction of the Realized Laplace Transform

The above discussion was based on the premise that by sampling frequently returns look

like Gaussian.

However, returns even locally might be non-Gaussian, e.g., the VIX index data. A more

general assumption is that returns are locally Stable with index β (β = 2 nests the

locally Gaussian case).

In this case the high-frequency returns will be approximately

σ × Zi × ∆1/β,

for Zi being stable random variable and our analysis will lead us to recover more generally

E

(
e
−uβσ

β
t Zβ

)
,

for an appropriate constant Zβ.
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Construction of the Realized Laplace Transform

• Formally, the discretely-observed process is denoted with X

• The observation times are: 0, ∆n, ..., [T/∆n]

• Most of the asymptotic results will be for the case ∆n ↓ 0 and T ↑ ∞

The Realized Laplace Transform is defined as

VT (X, ∆n, β, u) =

[T/∆n]∑

i=1

∆n cos(u∆−1/β
n ∆n

i X), ∆n
i X = Xi∆n − X(i−1)∆n.
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Construction of the Realized Laplace Transform

This is different from two classical approaches based on trigonometric transformations:

1. Fourier transform of the price increments

1

n

∑

j

xje
−i u j/n

Malliavin and Mancino (2008)

2. Empirical characteristic function of the price increments

1

n

∑

j

e
−iuxj

where xj = ∆n
j X. The empirical characteristic function for a fixed grid is used for method

of moments estimation when the density is not available in convenient closed form but the

characteristic function is.
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Assumptions

The process X is defined on some filtered probability space (Ω,F , P).

(a) Jump-Diffusion

dXt = αtdt + σtdWt +

∫

R

δ(t−, x)µ(dt, dx),

where αt and σt are càdlàg processes; Wt is a Brownian motion; µ is a homogenous

Poisson measure with compensator (Lévy measure) ν(x)dx; δ(t, x) : R
+ × R → R

is càdlàg in t;

(b) Pure-Jump

dXt = αtdt +

∫

R

σt−κ(x)µ̃(dt, dx) +

∫

R

σt−κ
′
(x)µ(dt, dx),

where αt and σt are càdlàg processes; κ is a symmetric function with bounded support

with κ(x) = x in a neighborhood of 0 and κ′(x) = x − κ(x); µ̃(dt, dx) =

µ(dt, dx) − dtν(x)dx.
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Assumptions

Assumption A. The Lévy measure of µ satisfies:

(a) Jump-Diffusion

∫ t

0

∫

R

(|δ(s, x)|p ∧ 1)dsν(x)dx < ∞,

∫

R

|δ(t, x)|ν(x)dx < ∞,

for every t > 0 and every p > β′, where 0 ≤ β′ < 1 is some constant.

(b) Pure-Jump

ν(x) =
A

|x|β+1
+ ν ′(x), A > 0, β ∈ (1, 2),

∫

R

|x|ν(x)dx < ∞,

where there exists x0 > 0 such that for |x| ≤ x0 we have |ν ′(x)| ≤ K

|x|β′+1
for

some β′ < 1 and a constant K ≥ 0.

Plus additional regularity conditions (See paper).
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Asymptotic Results: Increasing Span and Estimated Activity

Theorem 1. Suppose there exists an estimator of β, denoted with β̂ and assumptions

A, B and C-u for some u > 0 hold.

(a) If β̂ − β = op

(
∆α

n√
T

)
for some α > 0, then we have

√
T

(
1

T
VT (X, ∆n, β̂, u) − 1

T
VT (X, ∆n, β, u)

)
= op

(
1

√
T

)
.
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Asymptotic Results: Increasing Span and Estimated Activity

(b) If we have in addition assumption B′, β̂ uses only information before the beginning of

the sample or an initial part of the sample with a fixed time-span (i.e., one that does not

grow with T ), and further β̂ − β = Op(∆
α
n) for 0 < α < (1− β′/β)∨ (2− 2/β)

and α ≤ 1/2, then we have

√
T

(
1

T
VT (X, ∆n, β̂, u) − 1

T
VT (X, ∆n, β, u)

)

−
√

T log(∆n)E(Gβ(uZβσt))

β2
(β̂ − β)

P−→ 0,

where Gβ(x) = βxβe−xβ
for x > 0.

(c) Under the conditions of part (b), a consistent estimator for E(Gβ(uZβσt)) is given by

Ĝβ =
∆n

T

[T/∆n]∑

i=1

(
u∆−1/β̂

n ∆n
i X

)
sin

(
u∆−1/β̂

n ∆n
i X

)
P−→ E(Gβ(uZβσt)).
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Asymptotic Results: Increasing Span and Estimated Activity

Comments:

• The estimation β does not need long span, it requires only high-frequency

• An example of estimator β̂ with
√

1/∆n rate of convergence is the one proposed in

Todorov and Tauchen (2009):

β̂ =
ln (2) p∗

ln (2) + ln [Φt(X, p∗, 2∆n)] − ln [Φt(X, p∗, ∆n)]

where p∗ is optimally chosen from a first-step estimation of the activity and the power

variation ΦT(X, p, ∆n) is defined as

Φt(X, p, ∆n) =

[t/∆n]∑

i=1

|∆n
i X|p.
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Monte Carlo

See Paper
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Empirical Application

We use two data sets:

• 1-minute level data on the S&P 500 futures index, January 1, 1990, to December 31,

2008, yielding 1, 900, 000 1-minute log returns

• 5-minute observations on the S&P volatility index, the VIX index, from September 22,

2003, to December 31, 2008, for a total of 93, 324 returns
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Empirical Application

What is driving the wedge between the Laplace transforms of RV and spot volatility?

• price jumps?

• short-term volatility spikes?

• wrong beta?
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Empirical Application

What is the marginal distribution of volatility?

• the Gamma as implied by square-root or CIR model (see Case A above) for volatility ?

• the Generalized Inverse Gaussian or GIG model (see Barndorff-Nielsen and Shephard

(2001)?

Calibrate the parameters by fitting the model-implied Laplace transform to the estimated

Laplace transform.
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Conclusions

• We propose a jump-robust estimator for volatility from high-frequency data: Realized

Laplace Transform.

• It provides a direct estimate for the Laplace transform of the spot volatility and hence

fully identifies its marginal distribution.

Future work:

• Develop estimation of the marginal distribution by minimizing distance on the space of

Laplace transforms

• Extend the analysis to the case of conditional Laplace transform:

V1(X, ∆n, β, u) (Vk(X, ∆n, β, u) − Vk−1(X, ∆n, β, u))

P−→
∫ 1

0

∫ k

k−1

e
−|Zβuσt|βe

−|Zβuσs|βdsdt.
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