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Diffusions

• Diffusions are used to model continuous time processes and are
therefore commonly used in financial models

• A diffusion process is described as a solution to the stochastic
differential equation (SDE)

dYt = µ(Yt, θ) dt + σ(Yt, θ) dWt 0 ≤ t ≤ T

where

. Yt takes values in <d

. µ is the drift function of dimension d

. σ is the volatility function of dimension d× d

. θ is parameter vector

. Wt is a d−dimensional Brownian motion

• The transition density
pY (∆, x|x0, θ)

is the conditional density of Yt+∆ = x given Yt = x0
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Data, Likelihood

• Assume that the process Y is observed at discrete time points
ti = i∆, i = 0, . . . , n, yielding observations

x = (x0, . . . , xn)

. (Yt may be observed with noise, Xt = Yt + εt)

• By the Markov property, if all components of Y at time ti
(i = 0, . . . , n) are observed without noise, the likelihood function is

L(x|θ) =
n∏

i=1

pY (∆, xi|xi−1, θ)

• In most instances, the transition densities

pY (∆, xi|xi−1, θ)

are not analytically available

. The likelihood is therefore not available
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Cox-Ingersoll-Ross Model

• CIR model
dYt = β(α− Yt) dt + σ

√
Yt dWt

where

. α = mean reverting level

. β = speed of the process

. σ = volatility parameter

. θ = (α, β, σ)

• The true transition density

pY (∆, x|x0, θ)

(the conditional density of Yt+∆ = x given Yt = x0) is a non-central
χ2 distribution
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Closed–Form Approximation-one dimensional diffusions

The analytical, closed–form (CF) approximation of the unknown
transition density was introduced by Äıt-Sahalia (2002) for one
dimensional diffusions.

. Avoids a computationally intensive data augmentation scheme

. For univariate diffusions, the CF approximation is a non-Gaussian
approximation to the transition density by means of a truncated
Hermite series expansion

. Converges to the true, unknown likelihood function as the number of
terms in the Taylor–like expansion increases

. The effectiveness of the CF approximation is well documented by
Jensen and Poulsen (2002), Hurn, Jeisman and Lindsay (2007), and
Stramer and Yan (2007).

. The CF approximation should be used with caution for very volatile
models or sparse data-sets (see Stramer and Yan, 2007)
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Closed Form Approximation-multivariate diffusions

• Äıt-Sahalia (2008) provides an extension of the CF approximation
for multidimensional diffusions. This includes a broad class of
models used in the literature such as stochastic volatility models.

. The CF approximation for the log–transition density,
log pY (∆, x|x0, θ), is a Taylor expansion around ∆ = 0 and x = x0.
Away from x0, the error is a polynomial in (x− x0).

. We therefore assume that the CF approximation for pY (∆, x|x0, θ) is
zero outside some compact set around x0.
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Bayesian Approach Using Data Augmentation

Typical approach for Bayesian estimation in discretely observed diffusion
models are classical missing-data techniques

. Introduce latent auxiliary data to complete the missing diffusion
between each adjacent pair of data points (computationally
intensive)

. These algorithms can break down due to high dependence between
the volatility coefficient and the missing data

. Re-parametrization methods can help break down the high
dependency (see Roberts and Stramer (2001), Kalogeropoulos et al.
(2007), Chib et al. (2006), Golightly and Wilkinson (2008))
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Bayesian Approach Using the CF Approximation

• The CF likelihood does not integrate to 1

• The normalizer:

. is an intractable function of the parameters θ

. is very close to 1 for values of θ close to the MLE

. can differ markedly from 1 when θ is far from MLE

. is not a problem if we only seek to find the MLE

• Bayesian practitioners want to use MCMC techniques to sample
from the posterior distribution of θ

. May need to evaluate the likelihood far from the MLE

. The CF approximation is least accurate in such instances

. The MCMC sampler may get stuck in the tails of the posterior,
typically when θ is far from the MLE
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Comparison Of Exact, Norm CF, Un-Norm CF Likelihoods
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Addressing the Normalizer
• Univariate case: DiPietro (2001) approximated, the unknown

normalizer using numerical integration
. His simulation study, shows that the normalized CF approximation

outperforms the augmentation technique introduced in Elerian et al.
(2001)

. Yet, effect of using an estimate of normalizing constant on the
MCMC algorithm is not clear

• multidimensional diffusions
. Clearly, the normalization constant cannot be easily approximated,

and even if it could, it would require tremendous computational
effort.

. It is therefore not feasible to extend the results in DiPietro (2001) to
the CF approximation for most multivariate diffusions.

• The first method that avoids such approximations was proposed by
Møller et al. (2006)

. Introduce a cleverly chosen auxiliary variable into the
Metropolis-Hastings (M-H) algorithm so that the normalizing
constants cancel in the M-H ratio

. A simpler and more efficient version, which inspired our work, is
proposed in Murray et al. (2006)
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Bayesian Framework: CF Transition Density

• Denote the CF approximation of pY (∆, x|x0, θ) by

gCF (∆, x|x0, θ)

• Denote the normalized CF transition density by

pN
CF (∆, x|x0, θ)

def=
gCF (∆, x|x0, θ)

Z(x0, θ)

. Z(x0, θ) =
R

gCF (∆, x|x0, θ) dx
. Z(x0, θ) is analytically intractable
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CF Likelihood & Posterior

• The CF likelihood is

LN
CF (x|θ) =

n∏
i=1

pN
CF (∆, xi|xi−1, θ)

=
n∏

i=1

gCF (∆, xi|xi−1, θ)
Z(xi−1, θ)

• Goal: use MCMC techniques to sample from the posterior
distribution

πN
CF (θ|x) ∝ LN

CF (x|θ)π(θ)

where π(θ) is the prior distribution on θ
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Metropolis-Hastings Algorithm

Can not use a standard M-H algorithm for updating θ since the
acceptance ratio involves the intractable normalizing constants

1. Let θ be the current value. Generate θ∗ from some proposal density
q(θ∗|θ)

2. Accept θ∗ with probability min[1,RMH ] where

RMH =
LN

CF (x|θ∗)
LN

CF (x|θ)
π(θ∗)
π(θ)

q(θ|θ∗)
q(θ∗|θ)

=
∏n

i=1 gCF (∆, xi|xi−1, θ
∗)/Z(xi−1, θ

∗)∏n
i=1 gCF (∆, xi|xi−1, θ)/Z(xi−1, θ)

π(θ∗)
π(θ)

q(θ|θ∗)
q(θ∗|θ)

The intractable normalizers Z(·, ·) do not cancel
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Exchange Algorithm
• Murray et al. (2006) suggested a clever auxiliary variable algorithm

to simulate from the posterior

• Assume likelihood takes the form L(x|θ) =
∏n

i=1 g(xi|θ)/Z(θ)
where Z(θ) is an intractable normalizer

• Update procedure
1. Generate θ∗ from some proposal density q(θ∗|θ)
2. Generate a sample w from

L(w|θ∗) =
nY

i=1

g(wi|θ∗)/Z(θ∗)

3. Accept θ∗ with probability min[1,RMur] where

RMur =

Qn
i=1 g(xi|θ∗)/Z(θ∗)Qn

i=1 g(xi|θ)/Z(θ)

π(θ∗)

π(θ)

q(θ|θ∗)
q(θ∗|θ)

×
Qn

i=1 g(wi|θ)/Z(θ)Qn
i=1 g(wi|θ∗)/Z(θ∗)

The intractable Z’s cancel
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Exchange Algorithm Continued

The Murray algorithm is not applicable in our situation since

1. Generate θ∗ from some proposal density q(θ∗|θ)
2. Generate a sample from

LN
CF (w|θ∗) =

n∏
i=1

gCF (∆, wi|wi−1, θ
∗)

Z(wi−1, θ∗)

3. Accept θ∗ with probability min[1,RMur] where

RMur =
∏n

i=1 gCF (∆, xi|xi−1, θ
∗)/Z(xi−1, θ

∗)∏n
i=1 gCF (∆, xi|xi−1, θ)/Z(xi−1, θ)

π(θ∗)
π(θ)

q(θ|θ∗)
q(θ∗|θ)

×
∏n

i=1 gCF (∆, wi|wi−1, θ)/Z(wi−1, θ)∏n
i=1 gCF (∆, wi|wi−1, θ∗)/Z(wi−1, θ∗)

The intractable normalizers Z(·, ·) do not cancel
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Modified Exchange Algorithm
1. Propose a new value θ∗ from some proposal density q(θ∗|θ)
2. Generate w = (w1, . . . , wn) from

n∏
i=1

gCF (∆, wi|xi−1, θ
∗)

Z(xi−1, θ∗)
,

3. Accept θ∗ with probability min[1,Rθ] where

Rθ =
∏n

i=1 gCF (∆, xi|xi−1, θ
∗)/Z(xi−1, θ

∗)∏n
i=1 gCF (∆, xi|xi−1, θ)/Z(xi−1, θ)

π(θ∗)
π(θ)

q(θ|θ∗)
q(θ∗|θ)

×
∏n

i=1 gCF (∆, wi|xi−1, θ
∗)/Z(xi−1, θ)∏n

i=1 gCF (∆, wi|xi−1, θ)/Z(xi−1, θ∗)

=
∏n

i=1 gCF (∆, xi|xi−1, θ
∗)∏n

i=1 gCF (∆, xi|xi−1, θ)
π(θ∗)
π(θ)

q(θ|θ∗)
q(θ∗|θ)

×
∏n

i=1 gCF (∆, wi|xi−1, θ
∗)∏n

i=1 gCF (∆, wi|xi−1, θ)
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Modified Exchange Algorithm: Generating w

The key features of the exchange algorithm in Murray et al. (2006) is
that exact samples should be drawn from the likelihood. The same is
needed for the modified exchange algorithm. Drawing samples from
gCF (∆,wi|xi−1,θ)

Z(xi−1,θ) is usually not feasible. There are two main approaches:

. For reducible diffusions this can be done via exact simulation
(Beskos 2006). For the general case, (i.e. for irreducible diffusions)
this has traditionally implied the use of some of the time discrete
approximation methods (Euler, Taylor’s expansion, etc.) which rely
on small time approximate increment distributions for the diffusion

. A different approach is to run an inner-loop Metropolis-Hastings

algorithm to simulate from gCF (∆,wi|xi−1,θ)
Z(xi−1,θ) .
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Example: FedFunds Rate
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FedFunds Analysis

• Use CIR model. Compare Bayesian analyses using:

. Exact likelihood (using standard M–H)

. Euler likelihood (using standard M–H)

. Un–normalized CF likelihood (using standard M–H)

. Normalized CF likelihood (via Modified Exchange Algorithm)

• Prior: Same as in DiPietro (2001):

π(θ) = π(α, β, σ) = I(0,1)(α)I(0,∞)(β)σ−1I(0,∞)(σ)

• Proposals: Joint (α, β)−move uses a multivariate−t proposal,
random–walk proposal for σ

• Ran 500,000 iterations (after burn-in period)

. When using the un-normalized CF likelihood, the sampler repeatedly
became stuck at a late stage (e.g. one chain got stuck after 95,000
iterations, another after 60,000 iterations)
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FedFunds: Estimated Marginal Posterior Densities
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Example: Heston Model

• The Heston model takes the form [Yt, Vt] where

. Yt is the log-price for the stock St

. Vt is a volatility process; Vt is latent and is estimated from the VIX
implied volatility index (observed w/ or w/o noise) published by the
CBOE

• We assume that [Yt, Vt] follows

dYt =
(

µ− 1
2
Vt

)
dt + ρ

√
Vt dWt +

√
1− ρ2

√
Vt dBt

dVt = β(α− Vt)dt + σ
√

Vt dWt

. B and W are independent standard Brownian motions

. Instantaneous correlation between dYt and dVt is controlled by ρ

. To keep the simulation study simple we make the assumption of risk
premia such that Wt = W Q

t and dBt = dBQ
t + r−µ√

(1−ρ2)Vt

dt

. θ = (α, β, µ, σ, ρ)
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Heston Model Continued

• Simulation study of non-noisy Heston model:

. Weekly Data: Excellent performance of both normalized and
un-normalized CF

. Monthly Data: The sampler using un-normalized CF occasionally
became stuck, all normalized CF mix well

. Quarterly Data: All chains using un-normalized CF become stuck, all
normalized CF mix well. CF estimates exhibit a tendency to
underestimate the diffusion coefficient σ and the
speed-of-mean-reversion coefficient β

• Simulation study of noisy Heston model:

. Weekly data: Excellent performance of both normalized and
un-normalized CF

. Monthly data: All un-normalized CF get stuck, all normalized CF
mix properly

. Quarterly data: All un-normalized CF get stuck, all normalized CF
mix properly.
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Example: S&P 500 and VIX Implied Volatility
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Figure: The figure depicts log S&P 500 and VIX implied volatility data from 1
March 2000 to 27 February 2009. The scale for the VIX index can be seen on
the left axis, the right axis shows the scale for log S&P 500.
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Example: S&P 500 and VIX Implied Volatility
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Discussion

• The closed form (CF) transition density of Äıt-Sahalia is a powerful
tool for the analysis of diffusions

. The intractable normalizer in the CF likelihood is close to 1 when
near the MLE, but can markedly differ when away from the MLE

. The unnormalized CF likelihood is least accurate when far from MLE

• The Modified Exchange Algorithm:

. is quite efficient

. is relatively easy to implement

. greatly stabilizes and improves mixing behavior of the sampler
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Thank you


	Introduction
	Closed--Form Approximation
	Bayesian Framework
	Metropolis--Hastings Algorithm
	Exchange Algorithm
	Modified Exchange Algorithm

	Example: CIR Model
	Example: Volatility Models
	Discussion

