Density Approximations for Multivariate Affine Jump-Diffusions

with Applications to Econometrics and Option Pricing

Damir Filipović, Eberhard Mayerhofer and Paul Schneider

Workshop on Financial Econometrics, Toronto 24 April, 2010

Affine Models

Motivation Affine Models Goals \mathcal{L}^2 Expansions

Applications

Modeling decision: Affine Markov process $X := (X_t)_{t \ge 0, X_0 = x_0 \in \mathcal{D}}$ with characteristic function

$$\mathbb{E}\left[e^{uX_t}|X_0=x_0\right] = e^{\phi(t,u)+\psi(t,u)\cdot x_0}, \quad u \in i\mathbb{R}^d$$

- ϕ and ψ solve system of Riccatti equations
- Construction around characteristic function (rather then distribution function). What about likelihood-based inference?

Theory on $\mathcal{D} = \mathbb{R}^m_+ \times \mathbb{R}^n$, $\mathcal{D} = \mathbb{S}^+_d \times \mathbb{R}^n$. Affine models are members of the polynomial family. In this family polynomial moments of order k map to polynomials of order $\leq k$ in x_0

	•
Motivation	•
Wotwation	•
Affina Madala	•
Anne wodels	•
Casla	•
Goals	•
	•
C^2 Expansions	•
	•
	•
Applications	
Applications	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•

- Develop approximations to transition densities that:
 - \Box avoid the need for Fourier inversion
 - \Box work for *any* fixed time horizon t > 0
 - converge uniformly and pointwise to the true unknown transition density
 - □ are available in closed-form
 - are tractable enough so that we can integrate over them in closed-form
- This will be very beneficial for applications in:
 - ☐ finance: option pricing, credit risk,...
 - □ econometrics (likelihood inference), computational statistics

Existence of (Derivatives of) Densities

Motivation \mathcal{L}^2 ExpansionsExistence of Densities \mathcal{L}^2 Basics I \mathcal{L}^2 Basics II \mathcal{L}^2 Basics IIIConvergenceApplications

For existence of transition densities we can investigate asymptotic behavior of the characteristic function. By Fourier theory

$$g(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{-iux} e^{\phi(t,iu) + \psi(t,iu)x_0} du$$

if
$$\left|e^{\phi(t,iu)+\psi(t,iu)x_0}\right| \in \mathcal{L}^1$$

- We have results for
 - □ (multidimensional) CBI processes
 - □ integrated affine processes
 - □ Heston
 -] ...

Parametric restrictions impose boundary non-attainment of ${\cal D}$

Weighted L^2 s Spaces: Basics I

Motivation \mathcal{L}^2 ExpansionsExistence of Densities \mathcal{L}^2 Basics I \mathcal{L}^2 Basics II \mathcal{L}^2 Basics IIIConvergenceApplications

Paul Schneider

Let g be a density function

- \Box exists, but not given in tractable/closed form
- \square With moments of arbitrary order, $\mu_k := \int \xi^k g(\xi) d\xi < \infty$
- **I** Desire: Approximate g in nice (closed) form
- Restrictions: Cannot apply nonlinear transformations (Aït-Sahalia (2002))
- Approximation Choice: \mathcal{L}^2 expansion \rightarrow true conditional moments will appear in the coefficients of the expansion

Weighted L^2 s Spaces: Basics II

Motivation \mathcal{L}^2 ExpansionsExistence of Densities \mathcal{L}^2 Basics I \mathcal{L}^2 Basics III \mathcal{L}^2 Basics III \mathcal{L} Basics IIIConvergenceApplications

Pick some weight function w such that

 $\blacksquare g/w \in \mathcal{L}^2_w$, where

$$\mathcal{L}^2_w := \left\{ f \mid \int_{\mathcal{D}} |f(\xi)|^2 w(\xi) d\xi < \infty \right\}$$

- When w has exponential tails polynomials are dense in L^2_w (use, e.g., Carleman condition).
- Integrability condition $(g/w \in \mathcal{L}^2_w)$ boils down to existence of exponential moments, since we need

$$\int_{\mathcal{D}} g(\xi)^2 e^{a|\xi|} d\xi \le C \int_{\mathcal{D}} g(\xi) e^{a|\xi|} d\xi < \infty$$

Weighted L^2 s Spaces: Basics III

Motivation \mathcal{L}^2 ExpansionsExistence of Densities \mathcal{L}^2 Basics I \mathcal{L}^2 Basics II \mathcal{L}^2 Basics IIIConvergence

Applications

Let H_k be an orthonormal basis of polynomials and $c_k := \int H_k(\xi) g(\xi) d\xi$. Then (Hilbert space theory)

$$g = w \cdot \sum c_k H_k, \text{ and define}$$
(1)
$$g^{(J)} := w \cdot \sum_{0 \le k \le J} c_k H_k$$
(2)

Note: c_k linear combination of μ_k

- Intuitively: The closer w to g the smaller the contribution from correcting polynomials
- Nice: For each series truncation (J) in (2), the approximation integrates to one
- Unfortunately (2) is not a density, because it may become negative

Beyond \mathcal{L}^2 Convergence

Motivation \mathcal{L}^2 ExpansionsExistence of Densities \mathcal{L}^2 Basics I \mathcal{L}^2 Basics II \mathcal{L}^2 Basics IIIConvergence

Applications

Sobolev Embedding Theorem gives us

$$\|g^{(J)} - g\|_{\infty} \to 0$$
, for $J \to \infty$

if we can show that $D^{\alpha}g \in \mathcal{L}^2_{\frac{1}{w}}$ for $\alpha > \frac{d}{2}$. Convergence depends on dimensionality of state vector

We can get a handle on $D^{\alpha}g$ through integration by parts formula

$$\int_{\mathcal{D}} Dg(\xi)\xi^{\alpha}d\xi = -\int_{\mathcal{D}} g(\xi)D\xi^{\alpha}d\xi = -\alpha_i\mu_{\alpha-1}$$

We can approximate derivatives of the density function (w.r.t. forward variable) the same way as the original density function

Heston Density Picture

Applications

Picture of Heston transition density with order 4 expansion and true density with $\Delta = 1/52$, $\rho = -0.8$, $\kappa \theta = 0.04$ and $\kappa = 1$, $\mu = 0.05$, $\sigma = 0.3$, $x_0 = 5.1$, $v_0 = v = 0.045$

Paul Schneider

The Effect of Leverage

Motivation \mathcal{L}^2 ExpansionsExistence of Densities \mathcal{L}^2 Basics I \mathcal{L}^2 Basics II \mathcal{L}^2 Basics IIIConvergenceApplications

Paul Schneider

Density Approximations – 10/16

Likelihood Inference

 Motivation

 \mathcal{L}^2 Expansions

 Applications

 Likelihood I

 Likelihood II

 Options I

 Options II

 Summary

Exact simulations from Heston model and CBI jump-diffusion

$$dY_t = (\kappa\theta - \kappa Y_t)dt + \sigma\sqrt{Y_t}dW_t + EdP_t,$$

where E is exponential with mean μ and P_t a Poisson counter with intensity l

- 200 datasets for Heston and CBI model using reasonable parameters
- Reestimate the model under Bayesian and Frequentist methodology and assess posterior distribution, respectively sampling distribution of parameters

Bayesian Inference

Motivation
\mathcal{L}^2 Expansions
Applications
Likelihood I
Likelihood II
Options I
Options II
Summary

Kolmogoroff-Smirnoff test for equality of posterior densities. The numbers are p-values (H_0 is equality)

Heston Model			CBI		
KS	Order 2	Order 4	KS	Order 2	Order 4
$\kappa \theta_V$	0.0199	0.6654	$\kappa heta_V$	0.0038	0.2360
κ_V	0.0000	0.0693	κ_V	0.0396	0.7658
σ_V	0.0001	0.2574	σ_V	0.0000	0.6754
$\kappa heta_X$	0.0018	0.0348	l	0.0000	0.0571
ρ	0.0003	0.3291	μ	0.0000	0.0049

Posterior distribution from order 4 expansion can not statistically be distinguished from posterior from true density for most parameters

Heston Option Pricing I

Motivation
\mathcal{L}^2 Expansions
Applications
Likelihood I
Likelihood II
Options I
Options II
Summarv

- We can construct density directly around $X_t | v_0, x_0$
- Natural standardization $Y := \frac{X-\mu}{\zeta}$, where $\mu := \mathbb{E}[X_t | x_0, v_0]$, and $\zeta := \sqrt{\mathbb{V}[X_t | x_0, v_0]}$
- Choose \mathcal{L}^2 weight w with support on \mathbb{R} . For example bilateral Gamma distribution, or double exponential
- Gaussian weight is not an admissible choice, but easy to work with and ok for low orders. European Options prices under stochastic (multi-)volatility jump-diffusion models in closed form

Motivation \mathcal{L}^2 Expansions Applications Likelihood I Likelihood II Options I Summary

Recall that the price of a European call option with maturity t and strike price K is given by :

$$C(t,K) := e^{-rt} \mathbb{E} \left[\left(e^{X_t} - K \right)^+ | x_0, v_0 \right]$$
$$= e^{-rt} \left(\underbrace{\int_{\log K}^{\infty} e^x p(x|x_0, v_0) dx - K}_{\text{HA}} \underbrace{\int_{\log K}^{\infty} p(x|x_0, v_0) dx}_{\text{HB}} \right)$$

Compute HA and HB using (J) order density approximation $g^{(J)}$. If w admits closed-form computation of $\int_C^\infty e^{ax} x^k w(x) dx$ then we get closed-from approximation for option prices

Picture of Heston Option Prices

Same parameterization as in likelihood inference example before. Figure shows the log difference of Heston call option prices using our expansions (in closed form!) to true option prices (Carr/Madan) for various strike prices K with spot=5.1

Paul Schneider

Density Approximations – 15/16

Summary

Motivation
\mathcal{L}^2 Expansions
Applications
Likelihood I
Likelihood II
Options I
Options II
Summary

- We develop approximations to transition densities using polynomial expansion methods. The approximations are tailored for affine models and exploit their properties to a great extent
- Approximations in this paper are applicable to multivariate models with jumps
- It works equally well for reducible and irreducible models alike
- Quality of approximations independent of time interval between observations
- Expansions are performed on the correct state space of the processes
- Expansions integrate to unity by construction and hence are suited for Bayesian inference