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� Modeling decision: Affine Markov process X := (Xt)t≥0,X0=x0∈D

with characteristic function

E
[
euXt |X0 = x0

]
= eφ(t,u)+ψ(t,u)·x0, u ∈ iRd

� φ and ψ solve system of Riccatti equations

� Construction around characteristic function (rather then distribution

function). What about likelihood-based inference?

� Theory on D = R
m
+ × R

n,D = S
+
d × R

n. Affine models are

members of the polynomial family. In this family polynomial

moments of order k map to polynomials of order ≤ k in x0
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� Develop approximations to transition densities that:

� avoid the need for Fourier inversion

� work for any fixed time horizon t > 0

� converge uniformly and pointwise to the true unknown

transition density

� are available in closed-form

� are tractable enough so that we can integrate over them in

closed-form

� This will be very beneficial for applications in:

� finance: option pricing, credit risk,...

� econometrics (likelihood inference), computational statistics
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� For existence of transition densities we can investigate asymptotic

behavior of the characteristic function. By Fourier theory

g(x) =
1

(2π)d

∫

Rd

e−iuxeφ(t,iu)+ψ(t,iu)x0du

if
∣
∣eφ(t,iu)+ψ(t,iu)x0

∣
∣ ∈ L1

� We have results for

� (multidimensional) CBI processes

� integrated affine processes

� Heston

� ...

� Parametric restrictions impose boundary non-attainment of D
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� Let g be a density function

� exists, but not given in tractable/closed form

� With moments of arbitrary order, µk :=
∫
ξkg(ξ)dξ <∞

� Desire: Approximate g in nice (closed) form

� Restrictions: Cannot apply nonlinear transformations (Aı̈t-Sahalia

(2002))

� Approximation Choice: L2 expansion → true conditional moments

will appear in the coefficients of the expansion
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� Pick some weight function w such that

� g/w ∈ L2
w, where

L2
w :=

{

f |

∫

D
|f(ξ)|2w(ξ)dξ <∞

}

� When w has exponential tails polynomials are dense in L2
w (use,

e.g., Carleman condition).

� Integrability condition (g/w ∈ L2
w) boils down to existence of

exponential moments, since we need

∫

D
g(ξ)2ea|ξ|dξ ≤ C

∫

D
g(ξ)ea|ξ|dξ <∞
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� Let Hk be an orthonormal basis of polynomials and

ck :=
∫
Hk(ξ)g(ξ)dξ. Then (Hilbert space theory)

g = w ·
∑

ckHk, and define (1)

g(J) := w ·
∑

0≤k≤J

ckHk (2)

Note: ck linear combination of µk

� Intuitively: The closer w to g the smaller the contribution from

correcting polynomials

� Nice: For each series truncation (J) in (2), the approximation

integrates to one

� Unfortunately (2) is not a density, because it may become negative
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� Sobolev Embedding Theorem gives us

‖g(J) − g‖∞ → 0, for J → ∞

if we can show that Dαg ∈ L2
1

w

for α > d
2 . Convergence depends

on dimensionality of state vector

� We can get a handle on Dαg through integration by parts formula

∫

D
Dg(ξ)ξαdξ = −

∫

D
g(ξ)Dξαdξ = −αiµα−1

� We can approximate derivatives of the density function (w.r.t.

forward variable) the same way as the original density function
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� Picture of Heston transition density with order 4 expansion and true

density with ∆ = 1/52, ρ = −0.8, κθ = 0.04 and

κ = 1, µ = 0.05, σ = 0.3, x0 = 5.1, v0 = v = 0.045
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� Picture of Heston transition density with order 4 expansion and true

density with ∆ = 1/52, κθ = 0.04 and

κ = 1, µ = 0.05, σ = 0.3, x0 = 5.1, v0 = v = 0.045
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� Exact simulations from Heston model and CBI jump-diffusion

dYt = (κθ − κYt)dt+ σ
√

YtdWt + EdPt,

where E is exponential with mean µ and Pt a Poisson counter with

intensity l

� 200 datasets for Heston and CBI model using reasonable

parameters

� Reestimate the model under Bayesian and Frequentist methodology

and assess posterior distribution, respectively sampling distribution

of parameters
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� Kolmogoroff-Smirnoff test for equality of posterior densities. The

numbers are p-values (H0 is equality)

Heston Model CBI
KS Order 2 Order 4 KS Order 2 Order 4

κθV 0.0199 0.6654 κθV 0.0038 0.2360
κV 0.0000 0.0693 κV 0.0396 0.7658
σV 0.0001 0.2574 σV 0.0000 0.6754
κθX 0.0018 0.0348 l 0.0000 0.0571
ρ 0.0003 0.3291 µ 0.0000 0.0049

� Posterior distribution from order 4 expansion can not statistically be

distinguished from posterior from true density for most parameters
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� We can construct density directly around Xt|v0, x0

� Natural standardization Y := X−µ
ζ

, where µ := E [Xt|x0, v0], and

ζ :=
√

V [Xt|x0, v0]

� Choose L2 weight w with support on R. For example bilateral

Gamma distribution, or double exponential

� Gaussian weight is not an admissible choice, but easy to work with

and ok for low orders. European Options prices under stochastic

(multi-)volatility jump-diffusion models in closed form
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� Recall that the price of a European call option with maturity t and

strike price K is given by :

C(t,K) := e−rtE
[(
eXt −K

)+
|x0, v0

]

= e−rt








∫ ∞

logK
exp(x|x0, v0)dx

︸ ︷︷ ︸

HA

−K

∫ ∞

logK
p(x|x0, v0)dx

︸ ︷︷ ︸

HB








� Compute HA and HB using (J) order density approximation g(J).

If w admits closed-form computation of
∫ ∞
C
eaxxkw(x)dx then we

get closed-from approximation for option prices
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� Same parameterization as in likelihood inference example before.

Figure shows the log difference of Heston call option prices using

our expansions (in closed form!) to true option prices (Carr/Madan)

for various strike prices K with spot=5.1
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� We develop approximations to transition densities using polynomial

expansion methods. The approximations are tailored for affine

models and exploit their properties to a great extent

� Approximations in this paper are applicable to multivariate models

with jumps

� It works equally well for reducible and irreducible models alike

� Quality of approximations independent of time interval between

observations

� Expansions are performed on the correct state space of the

processes

� Expansions integrate to unity by construction and hence are suited

for Bayesian inference
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