The Dynamic Mixed Hitting-Time Model for Multiple Transaction Prices and Times (DMHT)

Eric RENAULT
Thijs VAN DER HEIJDEN
Bas J.M. WERKER

UNC Chapel Hill, Tilburg University, and Tilburg
University

April 2010

Summary

DMHT → a Structural Dynamic Model for Durations

- Structural foundations for ACD (Autoregressive Durations Models) and extensions
- Structural because based on a Latent
 Multivariate Brownian Motion (→ Extensive
 set of analytical expressions)
- Joint structural model for durations and prices
- Easy to accommodate multiple assets
- Applications in finance: paired trading, noise traders versus informed traders,...

Outline

- 1. Introduction
- 2. Single asset durations
- 3. Single asset prices
- 4. Likelihood formulas
- 5. Multiple assets
- 6. Preliminary empirics
- 7. Conclusion

1.Introduction

Problem: how to analyze events that occur at endogenous random times?

Duration models:

Direct modeling of the time elapsed between events

→ need of a structural approach to:

- Joint duration/price model with various levels of correlation between prices/durations
- → can be estimated and interpreted w.r.t. noise traders/insiders
- 2. Possibility to study remaining durations at intermediate times
- 3. Multiple assets with multiple causality relationships (Renault-Werker(2010, JoE)) duration/volatility

- 4. Nesting and specification testing of popular models:
 - Engle-Russell (1998) ACD
 - Engle (2000) ACD-GARCH
 - Engle-Russell (2004) ACM-ACD
 - Bauwens-Veredas (2004) SCD
 - •Ghysels-Gourieroux-Jasiak (2004) SVD

Multiple asset dynamic mixed hitting time model (DMHT)

Observations (up to price discreteness issues):

 $(t_i)_{i=1}^n$ = increasing sequence of random observation times (transaction times, etc.)

→ stopping times for a continuous - time

filtration : $(\mathfrak{I}_t)_{t\geq 0}$

 $Z_{t_i} = (Z_{t_i:k})_{k=1}^p = p$ asset prices at time t_i

 $=\mathfrak{I}_{\mathfrak{t}_{\mathsf{i}}}-measurable$

2. Single asset durations: Dynamic version of Abbring (2007) mixed hitting time model

$$t_{i+1} = Inf\{t > t_i : W_t - W_{t_i} + \mu_{t_i}(t - t_i) = c_{t_i}\}$$

$$\mu_{t_i}, c_{t_i} = \mathfrak{I}_{t_i}$$
 – measurable and > 0 .

$$(W_t) = Wiener\ process\ w.r.t.(\mathfrak{I}_t)$$

$$\Delta t_{i+1} = t_{i+1} - t_i \middle| \mathfrak{I}_{t_i} \approx IG \left(\frac{c_{t_i}}{\mu_{t_i}}, c_{t_i}^2 \right)$$

Inverse Gaussian $IG(a_{t_i}, b_{t_i})$

 \rightarrow Laplace transform:

$$E_{t_i} \left\{ \exp(-u\Delta t_{i+1}) \right\} = \exp\left(\frac{b_{t_i}}{a_{t_i}} - \frac{b_{t_i}}{a_{t_i}} \sqrt{1 + 2\frac{a_{t_i}^2 u}{b_{t_i}}} \right)$$

$$= \exp \left(\mu_{t_i} c_{t_i} - \mu_{t_i} c_{t_i} \sqrt{1 + 2 \frac{u}{\mu_{t_i}^2}} \right)$$

$$\Delta t_{i+1} = t_{i+1} - t_i \Big| \mathfrak{I}_{t_i} \approx IG \left(\frac{c_{t_i}}{\mu_{t_i}}, c_{t_i}^2 \right) = IG(a_{t_i}, b_{t_i})$$

$$\rightarrow E_{t_i}(\Delta t_{i+1}) = a_{t_i} = \frac{c_{t_i}}{\mu_{t_i}}$$

$$\to V_{t_i}(\Delta t_{i+1}) = \frac{a_{t_i}^3}{b_{t_i}} = \frac{c_{t_i}}{\mu_{t_i}^3}$$

$$\Delta t_{i+1} \times \lambda \iff a_{t_i}, b_{t_i} \times \lambda \iff c_{t_i} \times \sqrt{\lambda}, \mu_{t_i} \div \sqrt{\lambda}$$

R1. Finite moments because μ >0

- \rightarrow Alternative way to get finite moments (even with μ = 0) = introducing two boundaries = exit time model instead of hitting time (former version)
- → less tractable multivariate extensions R2. Flexible speciation of conditional probability distribution of duration given past information
- \rightarrow Introducing mixture components into boundary c and drift μ .

Mixed Hitting Time Model

→ flexibility on duration distributions:

$$\Delta t_{i+1} = t_{i+1} - t_i \middle| \mathfrak{I}_{t_i}, M_i, N_i \approx IG \left(\frac{\widetilde{c}_{t_i}}{\widetilde{\mu}_{t_i}}, \widetilde{c}_{t_i}^2 \right)$$

$$\widetilde{c}_{t_i} = c_{t_i}(M_i), \widetilde{\mu}_{t_i} = \mu_{t_i}(N_i)$$

 $M_i, N_i = i.i.d.$ mixing variables,

$$\left| (\mathfrak{I}_{t_i}, M_i, N_i) \right| = mutually independent$$

$$\widetilde{\psi}_{t_i} = E_{t_i} \left[\Delta t_{i+1} \middle| M_i, N_i \right] = \frac{\widetilde{c}_{t_i}}{\widetilde{\mu}_{t_i}}$$

$$\Rightarrow \frac{\Delta t_{i+1}}{\widetilde{\psi}_{t_i}} \Big| \mathfrak{I}_{t_i}, M_i, N_i \approx IG(1, \widetilde{\mu}_{t_i} \widetilde{c}_{t_i}) \Big|$$

SCD model of Bauwens-Veredas (2004):

$$rac{\Delta t_{i+1}}{\widetilde{oldsymbol{arphi}}_{t_i}}oldsymbol{oldsymbol{\Im}}_{t_i}$$

$$\Leftrightarrow Var_{t_i} \left(\frac{\Delta t_{i+1}}{\widetilde{\psi}_{t_i}} \middle| M_i, N_i \right) = \left(\widetilde{\mu}_{t_i} \widetilde{c}_{t_i} \right)^{-1} \perp \mathfrak{I}_{t_i}$$

ACD model of Engle-Russell (1998)?

$$\frac{\Delta t_{i+1}}{E_{t_i}(\Delta t_{i+1})} = \frac{\Delta t_{i+1}}{\widetilde{\psi}_{t_i}} \cdot \frac{\widetilde{\psi}_{t_i}}{\psi_{t_i}} = \frac{\Delta t_{i+1}}{\widetilde{\psi}_{t_i}} \cdot \frac{\widetilde{\mu}_{t_i} \widetilde{c}_{t_i}}{\widetilde{\mu}_{t_i}^2 \psi_{t_i}} \perp \mathfrak{I}_{t_i}$$

ACD (within SCD)
$$\iff \widetilde{\mu}_{t_i} = \frac{1}{\sqrt{\psi_{t_i}}} N_i$$

$$ACD \Leftrightarrow \widetilde{\mu}_{t_i} = \mu_{t_i} N_i, \widetilde{c}_{t_i} = c_{t_i} M_i, \mu_{t_i} c_{t_i} = 1,$$

$$\Rightarrow \frac{\widetilde{\mu}_{t_i}}{E_{t_i}(\widetilde{\mu}_{t_i})} \text{ and } \frac{\widetilde{c}_{t_i}}{E_{t_i}(\widetilde{c}_{t_i})} \perp \mathfrak{I}_{t_i}$$

3. Single Asset Prices

$$Z_t = \log - price$$
 at time $t \in [t_i, t_{i+1}]$

$$Z_{t} - Z_{t_{i}} = \widetilde{\mathcal{V}}_{t_{i}}(t - t_{i})$$

$$+\widetilde{\sigma}_{t_i}\left[\widetilde{
ho}_{t_i}(W_t-W_{t_i})+\sqrt{1-\widetilde{
ho}_{t_i}^2}(B_t-B_{t_i})
ight]$$

 (W_t, B_t) bivariate Wiener w.r.t. (\mathfrak{I}_t)

$$\widetilde{\mathcal{V}}_{t_i}, \widetilde{\sigma}_{t_i}, \widetilde{\rho}_{t_i} = \mathfrak{I}_{t_i} - measurable$$

functions of mixing variables M_i, N_i .

As Engle (2000), we characterize the (joint) distribution of future returns given future durations:

• Conditionally on $\mathfrak{T}_{t_i}, M_i, N_i \ and \ \Delta t_{i+1}$ The distribution of the price change $Z_{t_{i+1}} - Z_{t_i}$ $E_{t_{i}}\left\{Z_{t_{i+1}}-Z_{t_{i}}\middle|\mathfrak{T}_{t_{i}},M_{i},N_{i},\Delta t_{i+1}\right\}$ is Gaussian with: $= \widetilde{\nu}_{t_i} \Delta t_{i+1} + \widetilde{\rho}_{t_i} \widetilde{\sigma}_{t_i} (\widetilde{c}_{t_i} - \widetilde{\mu}_{t_i} \Delta t_{i+1})$ $Var_{t_{i}} \left\{ Z_{t_{i+1}} - Z_{t_{i}} \middle| \mathfrak{T}_{t_{i}}, M_{i}, N_{i}, \Delta t_{i+1} \right\}$ $=(1-\widetilde{\rho}_{t}^{2})\widetilde{\sigma}_{t}^{2}\Delta t_{i+1}$

R1.Instantaneous causality volatility/duration

(Renault-Werker ,2010): $\rho_{t_i} \neq 0$

Contemporaneous Duration ↓ ⇔ Volatility ↑

$$\widetilde{\mathcal{V}}_{t_i}, \widetilde{\rho}_{t_i}, \widetilde{\sigma}_{t_i}, \widetilde{\mu}_{t_i} = \mathcal{V}_{t_i}, \rho_{t_i}, \sigma_{t_i}, \mu_{t_i}$$

(no mixture component), $\tilde{c}_{t_i} = c_{t_i} M_i$

$$= \nu_{t_i} + \rho_{t_i} \sigma_{t_i} \left(\frac{c_{t_i}}{\Delta t_{i+1}} E_{t_i} (M_i | \Delta t_{i+1}) - \mu_{t_i} \right)$$

$$Var_{t_i} \left\{ Z_{t_{i+1}} - Z_{t_i} \left| \Delta t_{i+1} \right. \right\} / \Delta t_{i+1}$$

$$= (1 - \rho_{t_i}^2)\sigma_{t_i}^2 + \rho_{t_i}^2\sigma_{t_i}^2 \frac{c_{t_i}^2}{\Delta t_{i+1}^2} Var_{t_i}(M_i | \Delta t_{i+1})$$

R2. Distribution of price change = mixture of normal

⇒ (skewness, kurtosis, etc...)

- Mean, variance = affine functions of Δt
- ⇒Easy to deduce closed form formulas for the joint Laplace transform from Laplace transform of IG

$$E_{t_i} \left[\exp[-u\Delta t_{i+1} - v(Z_{t_{i+1}} - Z_{t_i})] \middle| M_i, N_i \right]$$

⇒ May be used for GMM inference

4. Likelihood Formulas

• 4.1. Durations:

$$\Delta t_{i+1} = t_{i+1} - t_i \middle| \mathfrak{I}_{t_i}, M_i, N_i \approx IG \left(\frac{\widetilde{c}_{t_i}}{\widetilde{\mu}_{t_i}}, \widetilde{c}_{t_i}^2 \right)$$

$$f_{\mu,c}(t) = \frac{c}{\sqrt{2\pi t^{3/2}}} \exp\left(-\frac{(c-\mu t)^2}{2t}\right)$$

$$\widetilde{c}_{t_i} = c_{t_i} M_i, \widetilde{\mu}_{t_i} = \mu_{t_i}$$

 M_i i.i.d. mixing variables, half – normal:

$$f_{M}(m) = \frac{1}{\sigma_{M}} \sqrt{\frac{2}{\pi}} \exp\left(-\frac{m^{2}}{2\sigma_{M}^{2}}\right), E(M) = \sigma_{M} \sqrt{\frac{2}{\pi}}.$$

$$f(\Delta t_{i+1} = t \middle| \mathfrak{I}_{t_i}) = \int_0^\infty f_{\mu t_i, mct_i}(t) f_M(m) dm$$

 \rightarrow closed – form formula with:

$$erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x \exp(-t^2) dt$$

$$E_{t_i}(\Delta t_{i+1}) = \frac{c_{t_i}}{\mu_{t_i}} E(M_i) \approx AR(1) Engle - Russell(1998)$$

$$\frac{c_{t_{i+1}}}{\mu_{t_i+1}} = \beta_0 + \beta_1 \Delta t_{i+1} + \beta_2 \frac{c_{t_i}}{\mu_{t_i}} \Rightarrow auto-correlation:$$

$$\beta_1 E(M_i) + \beta_2 = \beta_1 \sigma_M \sqrt{2/\pi} + \beta_2 < 1.$$

4.2. Price change given current duration:

Distribution of
$$(Z_{t_{i+1}} - Z_{t_i}) | M_i, \Delta t_{i+1}$$

= normal with mean:

$$\nu \Delta t_{i+1} + \rho \sigma(c_{t_i} M_i - \mu_{t_i} \Delta t_{i+1})$$

and variance: $(1-\rho^2)\sigma^2\Delta t_{i+1}$.

Bayes formula for
$$f(M_i = m | \Delta t_{i+1} = t)$$

 \rightarrow closed – form formula (with erf function) for

Distribution of
$$(Z_{t_{i+1}} - Z_{t_i}) | \Delta t_{i+1}$$

Two empirical issues:

1.Intra-day seasonality:

- →Model applied to durations after diurnal adjustment:
- Hasbrouck (1999)
- Andersen, Dobrev, Schaumburg (2008)

$$\Delta \tilde{t}_{i+1} = \frac{\Delta t_{i+1}}{\phi(t_i)}$$

$$\phi(t_i) = \text{function of } t_{cal}$$
and 3 unknown parameters χ_1, χ_2, χ_3 .

2. Discretely observed prices:

→We assume that the unobserved fundamental price is in the interval [0.95,1.05]×observed midquote

- → Ordered Probit model ≈Autoregressive Conditional Multinomial Model in Engle-Russell(2004)
- → Additional complexity without qualitative difference in estimation results

5. Multiple Assets

- K assets → K -dimensional Brownian motions1
 - + 1 common Wiener defining times:

$$\begin{split} t_{i+1} &= Inf\{t > t_i : W_t - W_{t_i} + \widetilde{\mu}_{t_i}(t - t_i) = Min_{1 \leq k \leq K} \widetilde{c}_{t_i : k} \} \\ Min_{1 \leq k \leq K} \widetilde{c}_{t_i : k} &= \widetilde{c}_{t_i : l} \Leftrightarrow Transaction \ on \ asset \ l \end{split}$$

Internal consistency property when adding an asset

6. PRELIMINARY EMPIRICS

- PBG (Pepsi Bottling Group) traded on NYSE,
 February 2008, 20 trading days
- 42858 observed trade-to-trade durations (remove zero durations)
- Average duration: 10.9 seconds
- Transaction date → price = midquote (average of bid and ask quotes)
- Half of prices changes = 0
- Price ∈ [\$33.82,\$36.37]

Parameter	β1	β2	μ	σ(M)	ρ
Estimate	0.126	0.917	0.409	0.443	0.019
	(0.0074)	(0.0041)	(0.0050)	(0.0314)	(0.0065)

- P[M<1]=97.6%
 → large fraction of very short durations (while fitting some long durations)
- •Persistence: β 1.E(M)+ β 2 = 0.962
- •SCD/ACD restriction = strongly rejected.
- • ρ >0 \rightarrow correlation price/duration

$$\begin{split} E_{t_{i}} & \{ Z_{t_{i+1}} - Z_{t_{i}} | \Delta t_{i+1} \} / \Delta t_{i+1} \\ &= \nu_{t_{i}} + \rho_{t_{i}} \sigma_{t_{i}} \frac{\mu_{t_{i}}}{\Delta t_{i+1}} \left(\frac{c_{t_{i}}}{\mu_{t_{i}}} E_{t_{i}} (M_{i} | \Delta t_{i+1}) - \Delta t_{i+1} \right) \\ & \rho_{t_{i}} > 0 \end{split}$$

⇒Expected returns are lower for longer durations:

Engle (2000), Engle-Russell(2004)

Diamond-Verrechia (1987):

Bad news but short selling constraints ⇒ no trade

7. CONCLUSION

- Structural version of SCD/ACD model
- •Useful theoretical basis for modeling random times between events, including non ACD extensions
- Models the complete distribution of durations, at any point of time
- Joint with multivariate prices models

 Work in progress on mixture models to capture Granger/instantaneous causality relationships between volatility and duration

= parametric complement to:

Renault-Werker (2010) = semiparametric (GMM)

Li-Mykland-Renault-Zhang-Zheng (2009)

= model free (realized variance)