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Objective

Our objective is to develop the general asymptotic theory for
maximum likelihood estimation, which is

I Not restricted to specific models and estimators

I Applicable for nonstationary, as well as stationary, models

I Useful for approximating finite sample distributions,

in contrast to the existing theory.
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Two-Dimensional Asymptotics

Our asymptotics are obtained as ∆→ 0 and T →∞, which has
some clear advantages. It provides

I Unifying framework for stationary and nonstationary models

I Important contrast between the asymptotics of drift and
diffusion parameters

I Theory applicable for a variety of MLE’s relying on
approximate transitions, which require ∆→ 0

More importantly, they yield primary asymptotics that are
practically more relevant and useful. Under stationarity, our
asymptotics become identical to the conventional one-dimensional
asymptotics.
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Diffusion

The parametric diffusion model is defined as a solution to the
stochastic differential equation (SDE)

dXt = µ(Xt, α)dt+ σ(Xt, β)dWt,

where α and β are unknown parameters, W is standard Brownian
motion, and

I µ(x, α): drift function specifying instantaneous mean

I σ(x, β): diffusion function specifying instantaneous volatility

of dXt at Xt = x. Let (Xt) take values on D = (x, x), where
D = (−∞,∞) or (0,∞) in most cases.
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Recurrence

For a diffusion X, define the hitting time of a point y ∈ D as

τy = inf{t ≥ 0|Xt = y}.

We say that a diffusion is recurrent if

P{τy <∞|X0 = x} = 1

for all x and y in the interior of D. A recurrent diffusion is said to
be positive recurrent if E{τy <∞|X0 = x} <∞, and null
recurrent if E{τy <∞|X0 = x} =∞. A diffusion which is not
recurrent is said to be transient.
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Diffusion


Positive recurrent
Null recurrent
Transient
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→ Nonstationary
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Examples

Some commonly used diffusion models are

I Brownian Motion with Drift: dXt = αdt+ βdWt

I Geometric Brownian Motion: dXt = αXtdt+ βXtdWt

I Ornstein-Uhlenbeck Process: dXt = (α1 + α2Xt)dt+ βdWt

I Feller’s Square-Root Process: dXt = (α1 + α2Xt)dt+ β
√
XtdWt

I Constant Elasticity of Variance Process:

dXt = (α1 + α2Xt)dt+ β1X
β2
t dWt

I Nonlinear Drift Diffusion Process:

dXt = (α1+α2Xt+α3X
2
t +α4X

−1
t )dt+

√
β1 + β2Xt + β3X

β4
t dWt

whose recurrence and stationarity properties are dependent upon
parameter values.
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Financial Time Series

Plots of three major financial time series given by

I Stock Index: Dow-Jones Industrial Average

I Exchange Rate: Euro-Dollar Exchange Rate

I Interest Rate: Federal Funds Rate

Many other financial time series show very similar patterns and
characteristics.
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Empirical Facts

We may summarize them as

I All important financial time series are either nonstationary or
near-nonstationary

I Existing nonstationarity cannot be fully removed by simple
detrending or transformations

I Null recurrent processes are of most practical relevancy

Some of financial time series appear to be transient. However, in
many cases we may readily reduce them to nonstationary recurrent
processes by simple detrending or transformations.
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Scale Function

The scale function is defined as

s(x) =
∫ x

w
exp
(
−
∫ y

w

2µ(z)
σ2(z)

dz

)
dy

for some w ∈ D, which is a solution of the ODE µṡ+ σ2s̈/2 = 0.
It follows from Ito formula that

ds(Xt) =
(
µṡ+ σ2s̈/2

)
(Xt)dt+ (σṡ) (Xt)dWt = (σṡ) (Xt)dWt,

and (Xs
t ), Xs

t = s(Xt), becomes a martingale, which is said to be
in natural scale. The scale function is defined uniquely up to any
affine transformations.
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Recurrence

A diffusion (Xt) on D = (−x, x) is recurrent if and only if

s(x) = −∞ and s(x) =∞

under the usual regularity conditions that are satisfied for most
commonly used diffusion models. Note that the scale function is
strictly increasing. A diffusion in natural scale has the identity
scale function.
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Speed Measure and Stationarity

The speed measure is given by the density

m(x, θ) =
2

(σ2ṡ) (x, θ)

with respect to the Lebesgue measure. A diffusion is positive
recurrent if and only if m(D, θ) <∞, and null recurrent if and
only if m(D, θ) =∞. For a positive recurrent diffusion,

π(x, θ) =
m(x, θ)
m(D, θ)

becomes the time invariant stationary density.
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Maximum Likelihood Estimator

For diffusion process (Xt), the samples of size n are assumed to be
collected at interval ∆ over time horizon T , i.e.,

x∆, x2∆, . . . , xn∆

with T = n∆. The maximum likelihood estimator θ̂ of θ is defined
as

θ̂ = argmax
θ∈Θ

n∑
i=1

log p(∆, x(i−1)∆, xi∆, θ)

where p is the transition density. In most cases, the exact transition
density is unknown and has to be approximated or simulated.
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Euler Approximation

The diffusion model is often approximated by

Xi∆ −X(i−1)∆ ' ∆µ(X(i−1)∆) + σ(X(i−1)∆)(Wi∆ −W(i−1)∆),

which yields the transition

L(Xi∆|X(i−1)∆ = x) = N
(
x+ ∆µ(x),∆σ2(x)

)
.

The transition based on the Euler approximation is therefore
normal.
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Milstein Approximation

A better approximation may be obtained from

Xi∆ −X(i−1)∆ ' ∆µ(X(i−1)∆) + σ(X(i−1)∆)(Wi∆ −W(i−1)∆)

+
1
2
σσ̇(X(i−1)∆)

[
(Wi∆ −W(i−1)∆)2 −∆

]
,

which yields the transition

L(Xi∆|X(i−1)∆ = x)

= L
(
x+ ∆µ(x) +

√
∆σ(x)N(0, 1) +

∆
2
σσ̇(x)

[
N(0, 1)2 − 1

])
,

where N(0, 1) is a standard normal random variate.

21 / 71 Joon Y. Park Asymptotic Theory of MLE for Diffusion Model



Basics and Background
Maximum Likelihood Estimation

Continuous Time Asymptotics
Asymptotic Theory of MLE

Simulation Results

Äıt-Sahalia (2002) Approach

First, define (X∗t ) from (Xt) using the Lamperti transformation
given by τ(x, β) =

∫ x
dy/σ(y, β), so that we have

dX∗t =
[
µ
(
τ−1(X∗t , β), α

)
σ (τ−1(X∗t , β), β)

− 1
2
σ̇
(
τ−1(X∗t , β), β

) ]
dt+ dWt,

whose transition density is denoted by p∗.

Second, consider the transition

L
(
X∗∗i∆ = ∆−1/2(X∗i∆ −X∗(i−1)∆)

∣∣∣X∗(i−1)∆ = x
)

and write its density as p∗∗.
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Third, approximate p∗∗ using the Hermite expansion

p∗∗(∆, x, y, θ) ' p∗∗K (∆, x, y, θ) = φ(y)
K∑
k=0

ck(∆, x, θ)Hk(y),

where (Hk) are Hermite polynomials and (ck) are coefficients
obtained from the approximated conditional moments of (X∗t ).

The original transition density can now be approximated by

pAS (∆, x, y, θ) =
1√

∆σ(y, β)
p∗∗K

(
∆, τ(x, β),

τ(y, β)− τ(x, β)√
∆

, θ

)
,

which we may use to do the maximum likelihood estimation.
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Quasi-ML Estimation

It is also possible to use the quasi-maximum likelihood approach
based on the approximated transition mean and variance. If the
conditional mean and variance of Xi∆ −X(i−1)∆ given
X(i−1)∆ = x are given by µ̄(x, θ) and σ̄2(x, θ), we may use the
corresponding normal density

pQM (∆, x, y, θ) =
1√

2πσ̄2(x, β)
exp

[
−
(
y − x− µ̄(x, α)

)2
2σ̄2(x, β)

]
for the quasi-maximum likelihood estimation.
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We may use

µ
M

(x, α) = ∆µ(x, α),

σ2
M

(x, β) = ∆σ2(x, β) +
∆2

2
(σσ̇)2(x, β),

which is based on the Milstein approximation. Kessler (1997) uses

µ
K

(x, θ) =
J∑
j=0

∆j

j!
Ljx

σ2
K

(x, θ) = ∆σ2(x, β)(
1 +

1
∆σ2(x, β)

J∑
j=2

∆j

J−j∑
k=0

∆k

k!
Lk
( ∑
a,b≥1,a+b=j

Lax

a!
Lbx

b!

))
,

where L is the infinitesimal generator.
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Simulated ML Estimation

The exact transition may be obtained through simulations. As
Gihman and Skorohod (1972) show, we have

p(∆, x, y, θ) =

√
σ(x, β)

2π∆σ3(y, β)
exp

[
− 1

2∆

(
τ(y, β)− τ(x, β)

)2
+

∫ y

x

µ(z, α)

σ2(z, β)
dz

]
× E exp

[
∆

∫ 1

0

ω
(

(1− t)τ(x, β) + tτ(y, β) +
√

∆W ◦t , θ
)
dt

]
,

where W ◦t = Wt − tW1 is Brownian bridge, τ is the Lamperti
transformation and ω(x, θ) = −(1/2)

(
ν2(x, θ) + ν̇(x, θ)

)
with

ν(x, θ) =
µ(τ−1(x, β), α)

σ(τ−1(x, β), β)
− 1

2
σ̇(τ−1(x, β), β)

provided in particular that |ω(x, θ)| = O(x2) as x→∞. The
expectation part involving Brownian bridge can be obtained by
simulation up to arbitrary precision.
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Utilizing the Chapman-Kolmogorov equation, Pedersen (1995) and
Brandt and Santa-Clara (2002) suggest simulating the transition
density with

pN (∆, x, y, θ) = E
[
p∗
(

∆
N
,X∗∆−∆/N , y, θ

)∣∣∣∣X∗0 = x

]
,

where p∗ is an approximated transition density based on, for
example, the Euler approximation, and X∗ is the corresponding
process generated with that approximation. They show that pN
converges to the true transition density as N →∞, thus we can
use it to obtain the exact ML estimation with arbitrary precision.
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Asymptotics for Continuous Time Process

To derive the limit distributions for the MLE’s of diffusion models,
we need to establish the asymptotics for continuous time processes∫ T

0
f(Xt)dt and

∫ T

0
g(Xt)dWt

as T →∞, which we call, respectively, the additive functional
asymptotics and the martingale transform asymptotics.
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Function Classes

We consider classes of functions f such that

I f is integrable in m

I f is asymptotically homogeneous with limit function locally
integrable in m

with speed density m, i.e., the classes of integrable functions and
asymptotically homogeneous functions in speed measure.
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Recurrence Property and Function Classes

For positive recurrent processes, m(D) is finite and f is expected
to be integrable in m for a large class of functions f . Therefore, we
only consider the class of integrable functions in speed measure.

For null recurrent processes, m(D) =∞. Therefore, we consider
the class of functions f such that f is integrable in m and the
class of functions f such that f is only locally integrable in m, i.e.,
both classes of integrable and asymptotically homogeneous
functions in speed measure.
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Scale Transformation

We write
f(Xt) = (f ◦ s−1)(s(Xt)) = fs(Xs

t ),

where s is the scale function. Recall that

ds(Xt) = (σṡ)(Xt)dWt =
(
(σṡ) ◦ s−1

)
(s(Xt))dWt.

Therefore, Xs is a driftless diffusion having speed measure

ms(x) =
2

σ2
s(x)

with σs = (σṡ) ◦ s−1.

32 / 71 Joon Y. Park Asymptotic Theory of MLE for Diffusion Model



Basics and Background
Maximum Likelihood Estimation

Continuous Time Asymptotics
Asymptotic Theory of MLE

Simulation Results

Preliminaries
Limit Theories

Integrability

We say that f is m-integrable, if f is integrable with respect to the
speed measure m. Similarly, we say that f is m-square integrable,
if f ⊗ f is integrable with respect to the speed measure m.

The scale transformation does not affect integrability. That is, f is
m-integrable or m-square integrable if and only if fs is
ms-integrable or ms-square integrable.

33 / 71 Joon Y. Park Asymptotic Theory of MLE for Diffusion Model



Basics and Background
Maximum Likelihood Estimation

Continuous Time Asymptotics
Asymptotic Theory of MLE

Simulation Results

Preliminaries
Limit Theories

Asymptotic Homogeneity

We say that f is m-asymptotically homogeneous if

fs(λx) ∼ κ(fs, λ)h(fs, x)

for large λ, where κ(fs, λ) is nonsingular for all large λ and h(fs, ·)
is locally integrable in both ms and mr. We call κ(fs, ·) and
h(fs, ·) respectively the asymptotic order and limit homogeneous
function of f . Similarly, we say that f is m-square asymptotically
homogeneous if h(fs, ·) is locally square integrable in both ms and
mr.
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Regularity Condition for Null Recurrent Process

A null recurrent process is said to be regular with index r > −1 if
for its speed density ms in natural scale, we have

ms(x) = mr(x) + εr(x),

where mr is a homogeneous function of degree r > −1, and εr is a
locally integrable function such that ε(x) = o(|x|r) as |x| → ∞.
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Asymptotics for Positive Recurrent Process

If X is positive recurrent and f and g ⊗ g are m-integrable, then
we have

1
T

∫ T

0

f(Xt)dt→a.s. π(f),
1√
T

∫ T

0

g(Xt)dWt →d N
(
0, π(gg′)

)
as T →∞.

For positive recurrent processes with integrability condition,

I The usual LLN and CLT hold respectively for the additive
functional asymptotics and the martingale asymptotics

I The standard normal asymptotics apply

36 / 71 Joon Y. Park Asymptotic Theory of MLE for Diffusion Model



Basics and Background
Maximum Likelihood Estimation

Continuous Time Asymptotics
Asymptotic Theory of MLE

Simulation Results

Preliminaries
Limit Theories

Limiting Null Recurrent Process

Let X be a regular null recurrent process with index r > −1 with
speed density ms in natural scale, and let the process XsT ) be
defined on [0, 1] for each T by XsT

t = T−1/(r+2)Xs
T t. Then we

have (
XsT

)
→d

(
Xr
)

as T →∞ in the space C[0, 1] of continuous functions defined on
[0, 1]. Here Xr is defined by Xr = W r ◦ τ r with

τ rt = inf
{
s

∣∣∣∣∫
D
lr(s, x)mr(x)dx > t

}
for 0 ≤ t ≤ 1, where W r is standard Brownian motion and lr is the
local time of W r.
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Limit Process

The scaled limit process[(
a

r + 1

) 1
r+2

+
(

b

r + 1

) 1
r+2

]
Xr

is a skew Bessel process in natural scale of dimension

2(r + 1)/(r + 2), where mr(x) =
(
a1{x ≥ 0}+ b1{x < 0}

)
|x|r

with a and b are nonnegative constants such that a+ b > 0. It
becomes

I Bessel process if b = 0
I skew Brownian motion if r = 0
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Extension

If we define W T , W T
t = T−1/2WTt, jointly with XsT , then we

have (
XsT ,W T

)
→d

(
Xr,W

)
jointly as T →∞, where W is Brownian motion identical to W r

for r = 0 and independent of W r for all r 6= 0.
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Remarks

If r 6= 0, the limit processes Xr and W are independent. This is
because the Brownian motion driving XsT becomes independent of
W T as T →∞ unless they run at the same speed

If r = 0, the Brownian motion defining the limit process Xr

becomes identical to the limit process W . This case arises when
the limit process Xr becomes a skew Brownian motion after scale
transformation.
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Asymptotics for Null Recurrent Process

Let X be null recurrent and regular with index r > −1.

(a) Under integrability condition, we have

1
T 1/(r+2)

∫ T

0

f(Xt)dt→d Km(f)A1/(r+2)

1√
T 1/(r+2)

∫ T

0

g(Xt)dWt →d

√
Km(gg′)1/2B ◦A1/(r+2),

jointly as T →∞, where A1/(r+2) is the Mittag-Leffler process
with index 1/(r + 2) at time 1, and B is standard vector Brownian
motion independent of A1/(r+2), and K is a constant depending
upon r and the asymptotes of ms(x)/|x|r.
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(b) Under asymptotic homogeneity condition, we have

1
T
κ
(
fs, T

1/(r+2)
)−1

∫ T

0

f(Xt)dt→d

∫ 1

0

h(fs, Xr
t )dt

1√
T
κ
(
gs, T

1/(r+2)
)−1

∫ T

0

g(Xt)dWt →d

∫ 1

0

h(gs, Xr
t )dWt

jointly as T →∞, where Xr is the limit process of Xs and W is
identical to W r for r = 0 and independent of W r for all r 6= 0.
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Remarks

Under required conditions, we have

T 1/(r+2) � Tκ
(
fs, T

1/(r+2)
)
,
√
T 1/(r+2) �

√
Tκ
(
fs, T

1/(r+2)
)
,

since, loosely put, asymptotically homogeneous functions are
bigger than integrable functions.

The martingale transform asymptotics under integrability yield
mixed normal limit distributions.

The martingale transform asymptotics under asymptotic
homogeneity yield mixed normal limit distributions if r 6= 0. When
r = 0, they yield Dickey-Fuller type limit distributions.
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Basic Framework

If we let S = ∂L/∂θ and H = ∂2L/∂θ∂θ′, we have

S(θ̂) = S(θ0) +H(θ̃)(θ̂ − θ0),

where θ̃ lies in the line segment connecting θ̂ and θ0. To derive our
asymptotics, it suffices to establish that

I AD1: w−1S(θ0)→d N ,
I AD2: w−1H(θ0)w−1′ →d M for some M positive definite

a.s., and
I AD3: There is a sequence v such that vw−1 → 0, and

sup
θ∈N

∣∣v−1
(
H(θ)−H(θ0)

)
v−1′∣∣→p 0,

where N = {θ : |v′(θ − θ0)| ≤ 1},
as T →∞ and ∆→ 0 at appropriate rates.
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Assumption 3.1

(a) σ2(x, β) > 0,

(b) µ(x, α), σ2(x, β) and `(t, x, y, θ) are infinitely differentiable in
t ≥ 0, x, y ∈ D and θ ∈ Θ, and that for any f(t, x, y, θ) of
their derivatives we have |f(t, x, y, θ)| ≤ g(x) for all t ≥ 0
small, for all y ∈ D close to x ∈ D and for all θ ∈ Θ, where
g : D → R is locally bounded and |g(x)| ∼ c|x|p at boundaries
±∞ and |g(x)| ∼ c|x|−p at boundary 0 for some constant
c > 0,

(c) sup0≤t≤T |Xt| = Op(T q) if the boundaries are ±∞ and

(inf0≤t≤T |Xt|)−1 = Op(T q) if one of the boundaries is 0, and

(d) ∆T 4(pq+1) → 0 as T →∞ and ∆→ 0.
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Lemma 3.1

Let `(∆, x, y, θ) = ∆ log
[√

∆p(∆, x, y, θ)
]

be the normalized

log-likelihood for the transition density obtained by using any of
the methods introduced earlier, and define the functional operators
A and B as

Af(t, x, y) = ft(t, x, y) + µ(y)fy(t, x, y) +
1
2
σ2(y)fyy(t, x, y)

Bf(t, x, y) = σ(y)fy(t, x, y).

Then we have
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For all x ∈ D and θ in the interior of Θ,

`(0, x, x, θ) = 0, A`(0, x, x, θ) = − σ2(x)

2σ2(x, β)
− log(σ(x, β)),

B`(0, x, x, θ) = 0, B2`(0, x, x, θ) = − σ2(x)

σ2(x, β)

ignoring the terms which do not dependent upon θ, and

A2`(0, x, x, θ) = −µ
2(x, α)

σ2(x, β)
+ µ(x)

2µ(x, α)

σ2(x, β)
+
(
σ2(x)− σ2(x, β)

)
`tyy(0, x, x, θ),

AB`(0, x, x, θ) = BA`(0, x, x, θ) = σ(x)
µ(x, α)

σ2(x, β)
,

B3`(0, x, x, θ) = 0

ignoring the terms which are independent of α.
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Lemma 3.2

We have

Sα(θ0) =
∫ T

0

µ′α
σ

(Xt)dWt +Op(
√

∆T 4pq+1)

Sβ(θ0) =

√
2
∆

∫ T

0

σ′β
σ

(Xt)dVt +Op(∆−1/4T 4pq+7/4)

and

Hαα(θ0) = −
∫ T

0

µαµ
′
α

σ2
(Xt)dt+

∫ T

0

µαα′

σ
(Xt)dWt +Op(

√
∆T 4pq+1)

Hαβ(θ0) = Op(T 3pq+1)

Hββ(θ0) = − 2
∆

∫ T

0

σβσ
′
β

σ2
(Xt)dt+Op(∆−1/2T 3pq+1)

as T →∞ and ∆→ 0.
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Assumption 3.2

There exist positive sequences wα(T ) and wβ(T ) such that
wα(T ), wβ(T )→∞,

w−1
α (T )

∫ T

0

µαµ
′
α

σ2
(Xt)dtw−1

α (T )→d Mα,

w−1
β (T )

∫ T

0

σβσ
′
β

σ2
(Xt)dtw−1

β (T )→d Mβ

for some Mα,Mβ > 0 a.s. and

(wα ⊗ wα)−1(T )
∫ T

0

µα⊗α
σ

(Xt)dWt →p 0

as T →∞.
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Assumption 3.3

If we let

f(x, θ) = µ(x)
(µα⊗α⊗α

σ2

)
(x, θ)−

(
µµα⊗α⊗α + µα⊗α⊗µα

σ2

)
(x, θ)

g(x, θ) = σ(x)
(µα⊗α⊗α

σ2

)
(x, θ),

there exists ε > 0 such that

T ε(wα ⊗ wα ⊗ wα)−1 sup
θ∈N

∣∣∣∣ ∫ T

0

f(Xt, θ)dt
∣∣∣∣→p 0

T ε(wα ⊗ wα ⊗ wα)−1 sup
θ∈N

∣∣∣∣ ∫ T

0

g(Xt, θ)dWt

∣∣∣∣→p 0

as T →∞, where N is as defined as in AD3.
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Remarks

Given our continuous time asymptotics, it is well expected that
Assumptions 3.2 and 3.3 hold for a wide class of diffusion models
including nonstationary, as well as stationary, processes.

Assumption 3.2 establish AD1 and AD2. Assumption 3.3 establish
AD3. Therefore, the asymptotics of the MLE’s follow readily from
those of S(θ0) and H(θ0), which we obtain in Lemmas 3.1 and 3.2.
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Primary Asymptotics

We have

α̂− α ∼p
(∫ T

0

µαµ
′
α

σ2
(Xt)dt

)−1 ∫ T

0

µα
σ

(Xt)dWt

β̂ − β ∼p

√
∆
2

(∫ T

0

σβσ
′
β

σ2
(Xt)dt

)−1 ∫ T

0

σβ
σ

(Xt)dVt,

where V is Brownian motion independent of W . Therefore, in
particular, α̂ and β̂ become uncorrelated as long as T is large and
∆ is small, since V and (X,W ) are independent.
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Primary Asymptotics

We have

α̂− α ∼p
(∫ T

0

µαµ
′
α

σ2
(Xt)dt

)−1 ∫ T

0

µα
σ

(Xt)dWt

β̂ − β ∼p

√
∆
2

(∫ T

0

σβσ
′
β

σ2
(Xt)dt

)−1 ∫ T

0

σβ
σ

(Xt)dVt,

where V is Brownian motion independent of W . Therefore, in
particular, α̂ and β̂ become uncorrelated as long as T is large and
∆ is small, since V and (X,W ) are independent.
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Primary Asymptotics for α̂

It follows from

α̂− α ∼p
(∫ T

0

µαµ
′
α

σ2
(Xt)dt

)−1 ∫ T

0

µα
σ

(Xt)dWt

that we have

I Consistency of α̂ requires T →∞
I Distribution of α̂ is generally non-normal unless T →∞
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Primary Asymptotics for β̂

It follows from

β̂ − β ∼p

√
∆
2

(∫ T

0

σβσ
′
β

σ2
(Xt)dt

)−1 ∫ T

0

σβ
σ

(Xt)dVt

that we have

I Consistency of β̂ holds if either T →∞ or ∆→ 0

I Distribution of β̂ is mixed normal as long as ∆→ 0 fast
enough relative to T →∞

55 / 71 Joon Y. Park Asymptotic Theory of MLE for Diffusion Model



Basics and Background
Maximum Likelihood Estimation

Continuous Time Asymptotics
Asymptotic Theory of MLE

Simulation Results

Primary Asymptotics
Limit Distributions

Limit Distributions: Positive Recurrent Case

For positive recurrent processes with integrability, we have

√
T (α̂− α)→d N

(
0, π
[
µαµ

′
α

σ2

]−1)
√
T

∆
(β̂ − β)→d N

(
0,

1
2
π

[
σβσ

′
β

σ2

]−1)
,

where π(x) = m(x)/m(D) is the time-invariant stationary
distribution of (Xt). The limit distributions are normal as in the
standard stationary model.
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Limit Distributions: Positive Recurrent Case

For positive recurrent processes with integrability, we have

√
T (α̂− α)→d N

(
0,E

[
µαµ

′
α

σ2
(Xt)

]−1)
√
T

∆
(β̂ − β)→d N

(
0,

1
2

E
[
σβσ

′
β

σ2
(Xt)

]−1)
,

where π(x) = m(x)/m(D) is the time-invariant stationary
distribution of (Xt). The limit distributions are normal as in the
standard stationary model.
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OU Process: dXt = (α1 + α2Xt)dt+ βdWt

Primary Asymptotics(
α̂1 − α1

α̂2 − α2

)
∼p β

(∫ T

0

(
1 Xt

Xt X2
t

)
dt

)−1∫ T

0

(
1
Xt

)
dWt

β̂ − β ∼p

√
∆
2
β
VT
T

Limit Distributions

√
T

(
α̂1 − α1

α̂2 − α2

)
→d N

(
0,

[
β2 − 2α2

1
α2

−2α1

−2α1 −2α2

])
√
T/∆(β̂ − β)→d N(0, β2/2)
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CEV Process: dXt = (α1 + α2Xt)dt+ β1X
β2

t

Primary Asymptotics(
α̂1 − α1

α̂2 − α2

)
∼p β1

(∫ T

0

(
X−2β2
t X−2β2+1

t

X−2β2+1
t X−2β2+2

t

)
dt

)−1∫ T

0

(
X−β2
t

X−β2+1
t

)
dWt(

β̂1 − β1

β̂2 − β2

)
∼p
√

∆

2
β1

(∫ T

0

(
1 β1 logXt

β1 logXt β2
1 log2Xt

)
dt

)−1∫ T

0

(
1

β1 logXt

)
dVt

Limit Distributions

√
T

(
α̂1 − α1

α̂2 − α2

)
→d N

(
0, β2

1

[
E
(

X−2β2
t X−2β2+1

t

X−2β2+1
t X−2β2+2

t

)]−1
)

√
T

∆

(
β̂1 − β1

β̂2 − β2

)
→d N

(
0,
β2

1

2

[
E
(

1 β1 log(Xt)
β1 log(Xt) β2

1 log2(Xt)

)]−1
)
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Limit Distributions: NR/IN Case

For null recurrent processes with integrability, we have√
T 1/(r+2)(α̂− α)→d MN

(
0,
[
Km

(
µαµ

′
α

σ2

)
A1/(r+2)

]−1)
√
T 1/(r+2)

∆
(β̂ − β)→d MN

(
0,

1
2

[
Km

(
σβσ

′
β

σ2

)
A1/(r+2)

]−1)
independently, where K is a constant depending upon µ and σ,
and A1/(r+2) is the Mittag-Leffler process with index 1/(r + 2) at
time 1. The convergence rate in T is√

T 1/(r+2) �
√
T with r > −1

and becomes slower than the positive recurrent case.
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Limit Distributions: NR/IN Case

For null recurrent processes with integrability, we have√
T 1/(r+2)(α̂− α)→d MN
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µαµ

′
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σ2

)
A1/(r+2)

]−1)
√
T 1/(r+2)

∆
(β̂ − β)→d MN
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0,

1
2

[
Km

(
σβσ

′
β

σ2

)
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]−1)
independently, where K is a constant depending upon µ and σ,
and A1/(r+2) is the Mittag-Leffler process with index 1/(r + 2) at
time 1. The convergence rate in T is√

T 1/(r+2) �
√
T with r > −1

and becomes slower than the positive recurrent case.
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Limit Distributions: NR/AH Case

For null recurrent processes with asymptotic homogeneity, we have

√
Tκ′

(
να, T

1/(r+2))(α̂− α)→d

(∫ 1

0

hh′(να, X
r
t )dt

)−1 ∫ 1

0

h(να, X
r
t )dWt√

T

∆
κ′
(
τβ , T

1/(r+2))(β̂ − β)→d
1√
2

(∫ 1

0

hh′(τβ , X
r
t )dt

)−1 ∫ 1

0

h(τβ , X
r
t )dVt

jointly with να = (µα/σ) ◦ s−1 and τα = (σβ/σ) ◦ s−1, where κ is
asymptotic order and h is limit homogeneous function.
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Remarks

The limit distribution of β̂ is always mixed normal since Xr is
independent of V

The limit distribution of α̂ is mixed normal if r 6= 0, in which case
Xr is independent of W . In this case, α̂ and β̂ become
asymptotically independent.

The limit distribution of α̂ is essentially non-Gaussian and of
unit-root type, if r = 0.
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BOU: dXt = (α1 + α2Xt)dt+ βdWt with α1 = α2 = 0

Primary Asymptotics: Same as OU Process

Limit Distributions(√
T 0

0 T

)(
α̂1 − α1

α̂2 − α2

)
→d β

(∫ 1

0

(
1 βWt

βWt β2W 2
t

)
dt

)−1∫ 1

0

(
1

βWt

)
dWt√

T/∆(β̂ − β)→d N(0, β2/2)

In particular,

T (α̂2 − α2)→d

(∫ 1

0

W 2
t dt

)−1 ∫ 1

0

WtdWt,

i.e., the Dickey-Fuller distribution which appears in the
asymptotics of unit root tests.
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NLD: dXt =
(
α1 + α2X

−1
t

)
dt+

√
β1 + β2XtdWt

Primary Asymptotics

(
α̂1 − α1

α̂2 − α2

)
∼p

(∫ T

0

(
1

β1+β2Xt
1

Xt(β1+β2Xt)
1

Xt(β1+β2Xt)
1

X2
t (β1+β2Xt)

)
dt

)−1∫ T

0

(
1√

β1+β2Xt
1

Xt
√
β1+β2Xt

)
dWt

(
β̂1 − β1

β̂2 − β2

)
∼p
√

∆

2

∫ T

0

 1
4(β1+β2Xt)2

Xt
4(β1+β2Xt)2

Xt
4(β1+β2Xt)2

X2
t

4(β1+β2Xt)2

 dt

−1∫ T

0

(
1

2(β1+β2Xt)
Xt

2(β1+β2Xt)

)
dVt

Limit Distributions

T
1
2−

α1
β2

(
α̂1 − α1

α̂2 − α2

)
→d MN

(
0,
[
Km(fαf

′
α)A1−2α1/β2

]−1
)

T
1
2−

α1
β2

√
∆

(β̂1 − β1)→d MN
(

0,
[
2Km(f2

β1
)A1−2α1/β2

]−1
)

√
T

∆
(β̂2 − β2)→d MN

(
0,

[
2

∫ 1

0
f̄2
β2

(X̄s
t )dt

]−1)
for some functions fα, fβ1 and f̄β2 depending upon α and β
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Simulation Model

For simulations, we consider the CEV model

dXt = (α1 + α2Xt)dt+ β1X
β2
t dWt

with parameter values α1 = 0.0072, α2 = −0.09, β1 = 0.8 and
β2 = 1.5, the estimated values for short rates in Äıt-Sahalia
(1999). The basic setup is

T = 10 years and ∆ = 1 day

unless specified otherwise. The simulations are based on 5,000
iterations.
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Bias Correction

10 Years/Daily

Original Corrected
α1 α2 α1 α2

Bias 0.04084 -0.55473 -0.00061 0.00264
(%) (567.2) (614.6) (8.4) (2.9)
SD 0.03551 0.44569 0.03590 0.45166

RMSE 0.05412 0.71159 0.03591 0.45167

50 Years/Daily

Original Corrected
α1 α2 α1 α2

Bias 0.00646 -0.10253 0.00004 -0.00080
(%) (89.8) (113.9) (0.6) (0.9)
SD 0.00776 0.12585 0.00762 0.12177

RMSE 0.01010 0.16233 0.00762 0.12177
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Size Correction

10 Years/Daily

Original Corrected
α1 α2 α1 α2

1% 0.070 0.066 0.008 0.007
5% 0.202 0.189 0.052 0.052

10% 0.312 0.296 0.103 0.105

50 Years/Daily

Original Corrected
α1 α2 α1 α2

1% 0.029 0.028 0.012 0.013
5% 0.101 0.092 0.056 0.051

10% 0.177 0.166 0.105 0.099
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