Brendan McCabe, Gael Martin and David Harris

Brendan McCabe, Gael Martin and David Harris

• Focus on **low** count time series

Brendan McCabe, Gael Martin and David Harris

• Focus on **low** count time series

$$\bullet \Rightarrow X_t = \{0, 1, 2...\}; \quad t = 1, 2, ..., T$$

Brendan McCabe, Gael Martin and David Harris

Focus on low count time series

•
$$\Rightarrow X_t = \{0, 1, 2...\}; t = 1, 2, ..., T$$

• Particular interest in X_t as :

Brendan McCabe, Gael Martin and David Harris

- Focus on low count time series
- $\Rightarrow X_t = \{0, 1, 2...\}; t = 1, 2, ..., T$
- Particular interest in X_t as :
 - a queue

Brendan McCabe, Gael Martin and David Harris

- Focus on low count time series
- $\bullet \Rightarrow X_t = \{0, 1, 2...\}; \quad t = 1, 2, ..., T$
- Particular interest in X_t as :
 - a queue
 - a stock (inventory)

Brendan McCabe, Gael Martin and David Harris

- Focus on low count time series
- $\Rightarrow X_t = \{0, 1, 2...\}; t = 1, 2, ..., T$
- Particular interest in X_t as :
 - a queue
 - a stock (inventory)
 - a birth and death process

Brendan McCabe, Gael Martin and David Harris

- Focus on low count time series
- $\bullet \Rightarrow X_t = \{0, 1, 2...\}; \quad t = 1, 2, ..., T$
- Particular interest in X_t as :
 - a queue
 - a stock (inventory)
 - a birth and death process
 - a branching process

- 0

Brendan McCabe, Gael Martin and David Harris

- Focus on low count time series
- $\Rightarrow X_t = \{0, 1, 2...\}; \quad t = 1, 2, ..., T$
- Particular interest in X_t as :
 - a queue
 - a stock (inventory)
 - a birth and death process
 - a branching process
- Wish to produce 'optimal' probabilistic forecasts of X_t

April 23, 2010 1 / 18

• Enormous number of applications.....

- Enormous number of applications.....
- ⇒ wide applicability

- Enormous number of applications.....
- ⇒ wide applicability
- E.g. no. of 'iceberg' stock market order book entries

() April 23, 2010 2 / 18

- Enormous number of applications.....
- ⇒ wide applicability
- E.g. no. of 'iceberg' stock market order book entries
- ⇒ Only a portion of the volume of the order

April 23, 2010

- Enormous number of applications.....
- ⇒ wide applicability
- E.g. no. of 'iceberg' stock market order book entries
- ullet \Rightarrow Only a portion of the volume of the order
- or the 'tip of the iceberg', is revealed in the order book

April 23, 2010

- Enormous number of applications.....
- ⇒ wide applicability
- E.g. no. of 'iceberg' stock market order book entries
- ⇒ Only a portion of the volume of the order
- or the 'tip of the iceberg', is revealed in the order book
- ◆ ⇒ 'hidden liquidity'

- Enormous number of applications.....
- ⇒ wide applicability
- E.g. no. of 'iceberg' stock market order book entries
- ⇒ Only a portion of the volume of the order
- or the 'tip of the iceberg', is revealed in the order book
- ◆ ⇒ 'hidden liquidity'
- ⇒ affects trading behaviour (Frey and Sandas, 2008)

() April 23, 2010 2 / 18

3 / 18

Continous approximation

Continous approximation

Continous approximation

- Continous approximation X
- Models and methods for discrete data

- Continous approximation X
- Models and methods for discrete data
- Want predictions that are consistent with the discrete sample space

- Continous approximation X
- Models and methods for discrete data
- Want predictions that are consistent with the discrete sample space
- \Rightarrow focus on estimating the **predictive distribution** of X_{t+m}

April 23, 2010

- Continous approximation X
- Models and methods for discrete data
- Want predictions that are consistent with the discrete sample space
- \Rightarrow focus on estimating the **predictive distribution** of X_{t+m}
- Defined only on the (non-negative) integer support

- Continous approximation X
- Models and methods for discrete data
- Want predictions that are consistent with the discrete sample space
- \Rightarrow focus on estimating the **predictive distribution** of X_{t+m}
- Defined only on the (non-negative) integer support
- Quantities of interest are:

- Continous approximation X
- Models and methods for discrete data
- Want predictions that are consistent with the discrete sample space
- \Rightarrow focus on estimating the **predictive distribution** of X_{t+m}
- Defined only on the (non-negative) integer support
- Quantities of interest are:

- Continous approximation X
- Models and methods for discrete data
- Want predictions that are consistent with the discrete sample space
- \Rightarrow focus on estimating the **predictive distribution** of X_{t+m}
- Defined only on the (non-negative) integer support
- Quantities of interest are:

$$f_i = P[X_{T+m} = i | \mathbf{x}], i = 0, 1, 2, ...$$

April 23, 2010 3 / 18

- Continous approximation X
- Models and methods for discrete data
- Want predictions that are consistent with the discrete sample space
- \Rightarrow focus on estimating the **predictive distribution** of X_{t+m}
- Defined only on the (non-negative) integer support
- Quantities of interest are:

$$f_i = P[X_{T+m} = i | \mathbf{x}], i = 0, 1, 2, ...$$

 $\widehat{f}_i = \widehat{P}[X_{T+m} = i | \mathbf{x}], i = 0, 1, 2, ...$

April 23, 2010 3 / 18

- Continous approximation X
- Models and methods for discrete data
- Want predictions that are consistent with the discrete sample space
- \Rightarrow focus on estimating the **predictive distribution** of X_{t+m}
- Defined only on the (non-negative) integer support
- Quantities of interest are:

$$f_i = P[X_{T+m} = i | \mathbf{x}], i = 0, 1, 2, ...$$

 $\widehat{f}_i = \widehat{P}[X_{T+m} = i | \mathbf{x}], i = 0, 1, 2, ...$

April 23, 2010 3 / 18

• Our aim:

- Our aim:
 - Define broad class of count model

-0

- Our aim:
 - Define broad class of count model
 - appropriate for particular data types

- Our aim:
 - Define broad class of count model
 - appropriate for particular data types
 - ullet $\Rightarrow \left\{\widehat{f}_i
 ight\}$ via non-parametric MLE

- Our aim:
 - Define **broad** class of count model
 - appropriate for particular data types

 - \Rightarrow $\left\{\widehat{f_i}\right\}$ via non-parametric MLE \Rightarrow $\left\{\widehat{f_i}\right\}$ **optimal** for any dgp (within class)

Our aim:

- Define **broad** class of count model
- appropriate for particular data types
- ullet $\Rightarrow \left\{\widehat{f}_i\right\}$ via non-parametric MLE
- $\Rightarrow \left\{\widehat{f}_i\right\}$ **optimal** for any dgp (within class) $\Rightarrow \left\{\widehat{f}_i\right\}$ appropriate choice

- Our aim:
 - Define broad class of count model
 - appropriate for particular data types
 - $\Rightarrow \left\{ \widehat{f}_{i} \right\}$ via non-parametric MLE
 - $\Rightarrow \{\widehat{f}_i\}$ optimal for any dgp (within class)
 - $\bullet \Rightarrow \left\{ \widehat{f}_{i} \right\}$ appropriate choice
- Contrast with existing forecasting-evaluation literature:

- Our aim:
 - Define broad class of count model
 - appropriate for particular data types
 - ullet $\Rightarrow \left\{\widehat{f}_i\right\}$ via non-parametric MLE
 - $\Rightarrow \{\widehat{f}_i\}$ optimal for any dgp (within class)
 - ullet \Rightarrow $\left\{\widehat{f}_i\right\}$ appropriate choice
- Contrast with existing forecasting-evaluation literature:
 - predictions treated as 'primitives'

- Our aim:
 - Define broad class of count model
 - appropriate for particular data types
 - ullet $\Rightarrow \left\{\widehat{f}_i\right\}$ via non-parametric MLE
 - $\Rightarrow \{\widehat{f}_i\}$ optimal for any dgp (within class)
 - $\bullet \Rightarrow \left\{ \widehat{f}_{i} \right\}$ appropriate choice
- Contrast with existing forecasting-evaluation literature:
 - predictions treated as 'primitives'
 - model and inferential procedure (if any) not relevant

- Our aim:
 - Define broad class of count model
 - appropriate for particular data types
 - ullet $\Rightarrow \left\{\widehat{f_i}\right\}$ via non-parametric MLE
 - $\Rightarrow \{\widehat{f}_i\}$ optimal for any dgp (within class)
 - ullet \Rightarrow $\left\{\widehat{f}_i\right\}$ appropriate choice
- Contrast with existing forecasting-evaluation literature:
 - predictions treated as 'primitives'
 - model and inferential procedure (if any) not relevant
 - predictions only assessed via out-of-sample performance

(

- Our aim:
 - Define broad class of count model
 - appropriate for particular data types
 - ullet \Rightarrow $\left\{\widehat{f_i}\right\}$ via non-parametric MLE
 - $\Rightarrow \{\widehat{f}_i\}$ optimal for any dgp (within class)
 - ullet \Rightarrow $\left\{\widehat{f}_i\right\}$ appropriate choice
- Contrast with existing forecasting-evaluation literature:
 - predictions treated as 'primitives'
 - model and inferential procedure (if any) not relevant
 - predictions only assessed via out-of-sample performance
- Could combine both approaches.....

() April 23, 2010 4 / 18

• Integer-valued autoregressive models of Al-Osh and Alzaid (1987), McKenzie (1988), Du and Li (1991):

• Integer-valued autoregressive models of Al-Osh and Alzaid (1987), McKenzie (1988), Du and Li (1991):

 $X_{t} = \underbrace{\alpha_{1} \circ X_{t-1}}_{t-1} + ... + \underbrace{\alpha_{k} \circ X_{t-k}}_{t-k} + ... + \underbrace{\alpha_{p} \circ X_{t-p}}_{t-p} + \underbrace{\varepsilon_{t}}_{t-p}$

April 23, 2010

• Integer-valued autoregressive models of Al-Osh and Alzaid (1987), McKenzie (1988), Du and Li (1991):

 $X_{t} = \underbrace{\alpha_{1} \circ X_{t-1}}_{} + ... + \underbrace{\alpha_{k} \circ X_{t-k}}_{} + ... + \underbrace{\alpha_{p} \circ X_{t-p}}_{} + \underbrace{\varepsilon_{t}}_{}$

• ε_t *iid* on $\{0, 1, 2, ...\}$

() April 23, 2010

• Integer-valued autoregressive models of Al-Osh and Alzaid (1987), McKenzie (1988), Du and Li (1991):

 $X_{t} = \underbrace{\alpha_{1} \circ X_{t-1}}_{t-1} + ... + \underbrace{\alpha_{k} \circ X_{t-k}}_{t-k} + ... + \underbrace{\alpha_{p} \circ X_{t-p}}_{t-p} + \underbrace{\varepsilon_{t}}_{t-p}$

- ε_t iid on $\{0, 1, 2, ...\}$
- $\alpha_k \circ X_{t-k}$ on $\{0, 1, 2, ...\}$; k = 1, 2, ..., p

() April 23, 2010

$\mathsf{INAR}(\mathsf{p})$

 Integer-valued autoregressive models of Al-Osh and Alzaid (1987), McKenzie (1988), Du and Li (1991):

$$X_{t} = \underbrace{\alpha_{1} \circ X_{t-1}}_{t-1} + ... + \underbrace{\alpha_{k} \circ X_{t-k}}_{t-k} + ... + \underbrace{\alpha_{p} \circ X_{t-p}}_{t-p} + \underbrace{\varepsilon_{t}}_{t-p}$$

- ε_t iid on $\{0, 1, 2, ...\}$
- $\alpha_k \circ X_{t-k}$ on $\{0, 1, 2, ...\}$; k = 1, 2, ..., p
- $\bullet \ \alpha_k \circ X_{t-k} = \sum_{i=1}^{n-k} B_{i,k}$

←□▶ ←□▶ ←□▶ ←□▶ □ ♥♀○

April 23, 2010 5 / 18

 Integer-valued autoregressive models of Al-Osh and Alzaid (1987), McKenzie (1988), Du and Li (1991):

$$X_{t} = \underbrace{\alpha_{1} \circ X_{t-1}}_{t-1} + ... + \underbrace{\alpha_{k} \circ X_{t-k}}_{t-k} + ... + \underbrace{\alpha_{p} \circ X_{t-p}}_{t-p} + \underbrace{\varepsilon_{t}}_{t-p}$$

- ε_t iid on $\{0, 1, 2, ...\}$
- $\alpha_k \circ X_{t-k}$ on $\{0, 1, 2, ...\}$; k = 1, 2, ..., p
- $\bullet \ \alpha_k \circ X_{t-k} = \sum_{i=1}^{N_{t-k}} B_{i,k}$
- with $B_{1,k}$, $B_{2,k}$, ..., $B_{X_{t-k},k}$ iid Bernoulli:

□ ▶ ∢□ ▶ ∢ ≣ ▶ √ ■ ♥ 9 Q ○

() April 23, 2010

- Integer-valued autoregressive models of Al-Osh and Alzaid (1987), McKenzie (1988), Du and Li (1991):
- $X_{t} = \underbrace{\alpha_{1} \circ X_{t-1}}_{t-1} + ... + \underbrace{\alpha_{k} \circ X_{t-k}}_{t-k} + ... + \underbrace{\alpha_{p} \circ X_{t-p}}_{t-p} + \underbrace{\varepsilon_{t}}_{t-p}$
- ε_t iid on $\{0, 1, 2, ...\}$
- $\alpha_k \circ X_{t-k}$ on $\{0, 1, 2, ...\}$; k = 1, 2, ..., p
- $\bullet \ \alpha_k \circ X_{t-k} = \sum_{i=1}^{n-k} B_{i,k}$
- with $B_{1,k}$, $B_{2,k}$, ..., $B_{X_{t-k},k}$ iid Bernoulli:
- $P(B_{i,k} = 1) = \alpha_k$

 Integer-valued autoregressive models of Al-Osh and Alzaid (1987), McKenzie (1988), Du and Li (1991):

$$X_{t} = \underbrace{\alpha_{1} \circ X_{t-1}}_{t-1} + ... + \underbrace{\alpha_{k} \circ X_{t-k}}_{t-k} + ... + \underbrace{\alpha_{p} \circ X_{t-p}}_{t-p} + \underbrace{\varepsilon_{t}}_{t-p}$$

- ε_t iid on $\{0, 1, 2, ...\}$
- $\alpha_k \circ X_{t-k}$ on $\{0, 1, 2, ...\}$; k = 1, 2, ..., p
- $\bullet \ \alpha_k \circ X_{t-k} = \sum_{i=1}^{n-k} B_{i,k}$
- with $B_{1,k}$, $B_{2,k}$, ..., $B_{X_{t-k},k}$ iid Bernoulli:
- $P(B_{i,k}=1)=\alpha_k$
- 'o' binomial thinning

4□ > 4□ > 4□ > 4□ > 4□ > 4□

- Integer-valued autoregressive models of Al-Osh and Alzaid (1987), McKenzie (1988), Du and Li (1991):
- $X_{t} = \underbrace{\alpha_{1} \circ X_{t-1}}_{t} + ... + \underbrace{\alpha_{k} \circ X_{t-k}}_{t} + ... + \underbrace{\alpha_{p} \circ X_{t-p}}_{t} + \underbrace{\varepsilon_{t}}_{t}$
- ε_t iid on $\{0, 1, 2, ...\}$
- $\alpha_k \circ X_{t-k}$ on $\{0, 1, 2, ...\}$; k = 1, 2, ..., p
- $\bullet \ \alpha_k \circ X_{t-k} = \sum_{i=1}^{n-k} B_{i,k}$
- with $B_{1,k}$, $B_{2,k}$, ..., $B_{X_{t-k},k}$ iid Bernoulli:
- $P(B_{i,k} = 1) = \alpha_k$
- 'o' binomial thinning
- $\bullet \Rightarrow INAR(p)$ a branching process with immigration

April 23, 2010 5 / 18

• When p = 1, X_t behaves like a **queue**:

$$X_t = \underbrace{\alpha_1 \circ X_{t-1}}_{survivors} + \underbrace{\varepsilon_t}_{arrivals}$$

April 23, 2010 6 / 18

• When p = 1, X_t behaves like a **queue**:

$$X_t = \underbrace{\alpha_1 \circ X_{t-1}}_{\textit{survivors}} + \underbrace{\varepsilon_t}_{\textit{arrivals}}$$

• or a birth and death process

• When p = 1, X_t behaves like a **queue**:

$$X_t = \underbrace{\alpha_1 \circ X_{t-1}}_{\textit{survivors}} + \underbrace{\varepsilon_t}_{\textit{arrivals}}$$

- or a birth and death process
- ε_t = the births

• When p = 1, X_t behaves like a **queue**:

$$X_t = \underbrace{\alpha_1 \circ X_{t-1}}_{\textit{survivors}} + \underbrace{\varepsilon_t}_{\textit{arrivals}}$$

- or a birth and death process
- ε_t = the births
- $\alpha_1 \circ X_{t-1} =$ the survivors (non-deaths)

April 23, 2010

• When p = 1, X_t behaves like a **queue**:

$$X_t = \underbrace{\alpha_1 \circ X_{t-1}}_{\textit{survivors}} + \underbrace{\varepsilon_t}_{\textit{arrivals}}$$

- or a birth and death process
- ε_t = the births
- $\alpha_1 \circ X_{t-1} =$ the survivors (non-deaths)
- INAR(p) a broad class

• When p = 1, X_t behaves like a **queue**:

$$X_t = \underbrace{\alpha_1 \circ X_{t-1}}_{\textit{survivors}} + \underbrace{\varepsilon_t}_{\textit{arrivals}}$$

- or a birth and death process
- ε_t = the births
- $\alpha_1 \circ X_{t-1} =$ the survivors (non-deaths)
- INAR(p) a broad class
- Many references in paper......

←□▶ ←□▶ ←□▶ ←□▶ □ ♥♀○

• ε_t iid with distribution G

(,

- ε_t iid with distribution G
- $G = \{g_r\}$ is an infinite sequence of probabilities on the set $\mathbb{Z} = \{0, 1, 2, ...\}$

- ε_t iid with distribution G
- $G = \{g_r\}$ is an infinite sequence of probabilities on the set $\mathbb{Z} = \{0, 1, 2, ...\}$
- MLE imposes parametric structure on $\{g_r\}$;

- ε_t iid with distribution G
- $G = \{g_r\}$ is an infinite sequence of probabilities on the set $\mathbb{Z} = \{0, 1, 2, ...\}$
- MLE imposes parametric structure on $\{g_r\}$;

- ε_t iid with distribution G
- $G = \{g_r\}$ is an infinite sequence of probabilities on the set $\mathbb{Z} = \{0, 1, 2, ...\}$
- MLE imposes parametric structure on $\{g_r\}$; e.g. G = Poisson

April 23, 2010

- ε_t iid with distribution G
- $G = \{g_r\}$ is an infinite sequence of probabilities on the set $\mathbb{Z} = \{0, 1, 2, ...\}$
- MLE imposes parametric structure on $\{g_r\}$; e.g. G = Poisson
- \Rightarrow MLE of $\{f_i\}$

April 23, 2010

- ε_t iid with distribution G
- $G = \{g_r\}$ is an infinite sequence of probabilities on the set $\mathbb{Z} = \{0, 1, 2, ...\}$
- MLE imposes parametric structure on $\{g_r\}$; e.g. G = Poisson
- \Rightarrow MLE of $\{f_i\}$
- Non-parametric MLE (NPMLE) imposes no structure on $\{g_r\}$

April 23, 2010 7 / 1

- ε_t iid with distribution G
- $G = \{g_r\}$ is an infinite sequence of probabilities on the set $\mathbb{Z} = \{0, 1, 2, ...\}$
- MLE imposes parametric structure on $\{g_r\}$; e.g. G = Poisson
- \Rightarrow MLE of $\{f_i\}$
- Non-parametric MLE (NPMLE) imposes no structure on $\{g_r\}$
- (other than $0 \le g_r \le 1$, $\sum_{r=0}^{\infty} g_r = 1$)

◆ロト ◆団ト ◆豆ト ◆豆ト 豆 めらび

- ε_t iid with distribution G
- $G = \{g_r\}$ is an infinite sequence of probabilities on the set $\mathbb{Z} = \{0, 1, 2, ...\}$
- MLE imposes parametric structure on $\{g_r\}$; e.g. G = Poisson
- \Rightarrow MLE of $\{f_i\}$
- Non-parametric MLE (NPMLE) imposes no structure on $\{g_r\}$
- (other than $0 \le g_r \le 1$, $\sum_{r=0}^{\infty} g_r = 1$)
- \Rightarrow NPMLE of $\{f_i\}$

8 / 18

• MLE of $\{f_i\}$ optimal only under **correct** distributional assumption

- MLE of $\{f_i\}$ optimal only under **correct** distributional assumption
- NPMLE of $\{f_i\}$ shown to be **optimal** under **any** distributional assumption for ε_t

- MLE of $\{f_i\}$ optimal only under **correct** distributional assumption
- NPMLE of $\{f_i\}$ shown to be **optimal** under **any** distributional assumption for ε_t
- Need to show:

- MLE of $\{f_i\}$ optimal only under **correct** distributional assumption
- NPMLE of $\{f_i\}$ shown to be **optimal** under **any** distributional assumption for ε_t
- Need to show:
- 1. Optimality of NPMLE of $\theta = (\alpha_1, ..., \alpha_p, \{g_r\})$

April 23, 2010,

- MLE of $\{f_i\}$ optimal only under **correct** distributional assumption
- NPMLE of $\{f_i\}$ shown to be **optimal** under **any** distributional assumption for ε_t
- Need to show:
- 1. Optimality of NPMLE of $\theta = (\alpha_1, ..., \alpha_p, \{g_r\})$
- 2. 'Smoothness' of map between θ and $\{f_i\} \Rightarrow$ Optimality of NPMLE of $\{f_i\}$

April 23, 2010 8 /

- MLE of $\{f_i\}$ optimal only under **correct** distributional assumption
- NPMLE of $\{f_i\}$ shown to be **optimal** under **any** distributional assumption for ε_t
- Need to show:
- 1. Optimality of NPMLE of $\theta = (\alpha_1, ..., \alpha_p, \{g_r\})$
- 2. 'Smoothness' of map between θ and $\{f_i\} \Rightarrow$ Optimality of NPMLE of $\{f_i\}$
 - $\{g_r\}$ (and hence θ) and $\{f_i\}$ are of **infinite** dimension

() April 23, 2010 8 / 18

9 / 18

• Consider $X_t = \alpha_1 \circ X_{t-1} + \varepsilon_t$

- Consider $X_t = \alpha_1 \circ X_{t-1} + \varepsilon_t$
- Conditional on x_1 :

$$\begin{split} \log L(\theta) &= \sum_{t=2}^{T} \log \left\{ \Pr(X_{t} = x_{t} | X_{t-1} = x_{t-1}) \right\} \\ &= \sum_{t=2}^{T} \log \left\{ \sum_{r=\max(0,\Delta x_{t})}^{x_{t}} p_{x_{t}-r}^{B} g_{r} \right\} \\ p_{x_{t}-r}^{B} &= Bin(\alpha \circ X_{t-1} = x_{t} - r | X_{t-1} = x_{t-1}) \end{split}$$

April 23, 2010 9 / 18

- Consider $X_t = \alpha_1 \circ X_{t-1} + \varepsilon_t$
- Conditional on x_1 :

$$\begin{split} \log L(\theta) &= \sum_{t=2}^{T} \log \left\{ \Pr(X_{t} = x_{t} | X_{t-1} = x_{t-1}) \right\} \\ &= \sum_{t=2}^{T} \log \left\{ \sum_{r=\max(0,\Delta x_{t})}^{x_{t}} p_{x_{t}-r}^{B} g_{r} \right\} \\ p_{x_{t}-r}^{B} &= Bin(\alpha \circ X_{t-1} = x_{t} - r | X_{t-1} = x_{t-1}) \end{split}$$

Conditional binomials mixed over arrivals

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q (C)

April 23, 2010 9

- Consider $X_t = \alpha_1 \circ X_{t-1} + \varepsilon_t$
- Conditional on x_1 :

$$\begin{split} \log L(\theta) &= \sum_{t=2}^{T} \log \left\{ \Pr(X_{t} = x_{t} | X_{t-1} = x_{t-1}) \right\} \\ &= \sum_{t=2}^{T} \log \left\{ \sum_{r=\max(0,\Delta x_{t})}^{x_{t}} p_{x_{t}-r}^{B} g_{r} \right\} \\ p_{x_{t}-r}^{B} &= Bin(\alpha \circ X_{t-1} = x_{t} - r | X_{t-1} = x_{t-1}) \end{split}$$

- Conditional binomials mixed over arrivals
- Estimate $\{g_r\}$ and α_1 via (constrained) ML

4□ > 4□ > 4 = > 4 = > □
9

() April 23, 2010

- Consider $X_t = \alpha_1 \circ X_{t-1} + \varepsilon_t$
- Conditional on x_1 :

$$\begin{split} \log L(\theta) &= \sum_{t=2}^{T} \log \left\{ \Pr(X_{t} = x_{t} | X_{t-1} = x_{t-1}) \right\} \\ &= \sum_{t=2}^{T} \log \left\{ \sum_{r=\max(0, \Delta x_{t})}^{x_{t}} p_{x_{t}-r}^{B} g_{r} \right\} \\ p_{x_{t}-r}^{B} &= Bin(\alpha \circ X_{t-1} = x_{t} - r | X_{t-1} = x_{t-1}) \end{split}$$

- Conditional binomials mixed over arrivals
- Estimate $\{g_r\}$ and α_1 via (constrained) ML
- \Rightarrow NPMLE: $\hat{\theta} = (\widehat{\alpha}_1, \{\hat{g}_r\})$

• Formally: maximizing an empirical likelihood

- Formally: maximizing an empirical likelihood
- $\{\hat{g}_r\}$ contains only a finite number of non-zero values in finite samples

- Formally: maximizing an empirical likelihood
- $\{\hat{g}_r\}$ contains only a finite number of non-zero values in finite samples
- \Rightarrow $\{\hat{g}_r\}$ (and $\widehat{ heta}$) infinite as $T \to \infty$

- Formally: maximizing an empirical likelihood
- $\{\hat{g}_r\}$ contains only a finite number of non-zero values in finite samples
- \Rightarrow $\{\hat{g}_r\}$ (and $\widehat{\theta}$) infinite as $T \to \infty$
- Asymptotic theory needs to accommodate this

- Formally: maximizing an empirical likelihood
- $\{\hat{g}_r\}$ contains only a finite number of non-zero values in finite samples
- \Rightarrow $\{\hat{g}_r\}$ (and $\widehat{\theta}$) infinite as $T \to \infty$
- Asymptotic theory needs to accommodate this
- Drost et al $(2008) \Rightarrow$

- Formally: maximizing an empirical likelihood
- $\{\hat{g}_r\}$ contains only a finite number of non-zero values in finite samples
- ullet \Rightarrow $\{\hat{g}_r\}$ (and $\widehat{ heta}$) infinite as $T o \infty$
- Asymptotic theory needs to accommodate this
- Drost et al $(2008) \Rightarrow$
- ullet asy. Gaussianity and (non-parametric) asy. efficiency of $\hat{ heta}$

(ロ) (리) (본) (본) (본) (인)

- Formally: maximizing an empirical likelihood
- $\{\hat{g}_r\}$ contains only a finite number of non-zero values in finite samples
- \Rightarrow $\{\hat{g}_r\}$ (and $\widehat{\theta}$) infinite as $T \to \infty$
- Asymptotic theory needs to accommodate this
- Drost et al $(2008) \Rightarrow$
- ullet asy. Gaussianity and (non-parametric) asy. efficiency of $\hat{ heta}$
- ullet \Rightarrow $\hat{ heta}$ optimal in this sense

•
$$\theta \Rightarrow \{f_i(\theta)\}$$

- $\theta \Rightarrow \{f_i(\theta)\}$
- \Rightarrow $\{\widehat{f}_i(\widehat{\theta})\}$ asy. Gaussian and (non-parametric) asy. efficient

- $\theta \Rightarrow \{f_i(\theta)\}$
- \Rightarrow $\{\hat{f}_i(\hat{\theta})\}$ asy. Gaussian and (non-parametric) asy. efficient
- Involves showing that the map is (Frechet) differentiable; i.e. that the derivative \dot{F} is a **bounded, linear** operator with

$$\left\|F\left(\theta+h\right)-F\left(\theta\right)-\dot{F}\left(h\right)\right\|_{\ell^{1}}=o\left(\left\|h\right\|_{\mathbb{H}}\right)$$

• Theorems 1 and 2, plus proofs

()

12 / 18

- Theorems 1 and 2, plus proofs
- ⇒ linear operations on (asy) Gaussian variables are Gaussian

- Theorems 1 and 2, plus proofs
- ⇒ linear operations on (asy) Gaussian variables are Gaussian
- 'delta' rule \Rightarrow NPMLE of $\{f_i\}$ asy. Gaussian and (non-parametric) asy. efficient

- Theorems 1 and 2, plus proofs
- ⇒ linear operations on (asy) Gaussian variables are Gaussian
- 'delta' rule \Rightarrow NPMLE of $\{f_i\}$ asy. Gaussian and (non-parametric) asy. efficient
- Also performs well in finite samples

April 23, 2010 12

- Theorems 1 and 2, plus proofs
- ⇒ linear operations on (asy) Gaussian variables are Gaussian
- 'delta' rule \Rightarrow NPMLE of $\{f_i\}$ asy. Gaussian and (non-parametric) asy. efficient
- Also performs well in finite samples
- Especially in tail (≡ rare occurrences of high counts)

April 23, 2010 12 / 15

13 / 18

• How to measure sampling variation in $\{\hat{f}_i\}$?

-0

- How to measure sampling variation in $\{\hat{f}_i\}$?
- ullet Need to impose $\sum\limits_i \widehat{f_i} = 1$

- How to measure sampling variation in $\{\hat{f}_i\}$?
- Need to impose $\sum\limits_{i}\widehat{f_{i}}=1$
- Use **subsampling** method to:

- How to measure sampling variation in $\{\hat{f}_i\}$?
- Need to impose $\sum\limits_{i}\widehat{f}_{i}=1$
- Use **subsampling** method to:
 - **1** Take draws from (an approximation to) the sampling distribution of $\{\widehat{f}_i\}$

- How to measure sampling variation in $\{\hat{f}_i\}$?
- Need to impose $\sum\limits_{i}\widehat{f}_{i}=1$
- Use **subsampling** method to:
 - **1** Take draws from (an approximation to) the sampling distribution of $\{\widehat{f}_i\}$

- How to measure sampling variation in $\{\hat{f}_i\}$?
- Need to impose $\sum\limits_{i}\widehat{f}_{i}=1$
- Use subsampling method to:
 - 1 Take draws from (an approximation to) the sampling distribution of $\{\hat{f}_i\} \Rightarrow \{\hat{f}_{s,i}\}, s = 1, 2, ..., N_s;$

- How to measure sampling variation in $\{\hat{f}_i\}$?
- Need to impose $\sum\limits_{i}\widehat{f}_{i}=1$
- Use subsampling method to:
 - Take draws from (an approximation to) the sampling distribution of $\{\hat{f}_i\} \Rightarrow \{\hat{f}_{s,i}\}$, $s=1,2,...,N_s$; (Each sub-sampled distribution is proper: $\sum_i \hat{f}_{s,i} = 1$)

)

April 23, 2010 13

- How to measure sampling variation in $\{\hat{f}_i\}$?
- Need to impose $\sum\limits_{i}\widehat{f}_{i}=1$
- Use **subsampling** method to:
 - Take draws from (an approximation to) the sampling distribution of $\{\widehat{f}_i\} \Rightarrow \{\widehat{f}_{s,i}\}$, $s=1,2,...,N_s$; (Each sub-sampled distribution is proper: $\sum_i \widehat{f}_{s,i} = 1$)
 - Calculate the "distance" between the single **empirical estimate**, $\{\hat{f}_i\}$, and its subsampled counterpart using a metric: e.g. $d = \sqrt{T} \sum_{i=0}^{K} \left| \hat{f}_i \hat{f}_{s,i} \right|$

April 23, 2010 13 / 15

- How to measure sampling variation in $\{\hat{f}_i\}$?
- Need to impose $\sum\limits_{i}\widehat{f}_{i}=1$
- Use **subsampling** method to:
 - Take draws from (an approximation to) the sampling distribution of $\{\widehat{f}_i\} \Rightarrow \{\widehat{f}_{s,i}\}$, $s=1,2,...,N_s$; (Each sub-sampled distribution is proper: $\sum_i \widehat{f}_{s,i} = 1$)
 - Calculate the "distance" between the single **empirical estimate**, $\{\hat{f}_i\}$, and its subsampled counterpart using a metric: e.g. $d = \sqrt{T} \sum_{i=0}^{K} \left| \hat{f}_i \hat{f}_{s,i} \right|$

April 23, 2010 13 / 15

- How to measure sampling variation in $\{\hat{f}_i\}$?
- Need to impose $\sum\limits_{i}\widehat{f_{i}}=1$
- Use **subsampling** method to:
 - Take draws from (an approximation to) the sampling distribution of $\{\widehat{f}_i\} \Rightarrow \{\widehat{f}_{s,i}\}$, $s=1,2,...,N_s$; (Each sub-sampled distribution is proper: $\sum_i \widehat{f}_{s,i} = 1$)
 - Calculate the "distance" between the single **empirical estimate**, $\{\hat{f}_i\}$, and its subsampled counterpart using a metric: e.g. $d = \sqrt{T} \sum_{i=0}^{K} \left| \hat{f}_i \hat{f}_{s,i} \right|$
 - Ranking (in ascending order) of metric d

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

April 23, 2010 13 / :

- How to measure sampling variation in $\{\hat{f}_i\}$?
- Need to impose $\sum\limits_{i}\widehat{f_{i}}=1$
- Use **subsampling** method to:
 - Take draws from (an approximation to) the sampling distribution of $\{\widehat{f}_i\} \Rightarrow \{\widehat{f}_{s,i}\}$, $s=1,2,...,N_s$; (Each sub-sampled distribution is proper: $\sum_i \widehat{f}_{s,i} = 1$)
 - Calculate the "distance" between the single **empirical estimate**, $\{\hat{f}_i\}$, and its subsampled counterpart using a metric: e.g. $d = \sqrt{T} \sum_{i=0}^{K} \left| \hat{f}_i \hat{f}_{s,i} \right|$
 - Ranking (in ascending order) of metric d

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

April 23, 2010 13 / :

- How to measure sampling variation in $\{\hat{f}_i\}$?
- Need to impose $\sum\limits_{i}\widehat{f_{i}}=1$
- Use **subsampling** method to:
 - Take draws from (an approximation to) the sampling distribution of $\{\widehat{f}_i\} \Rightarrow \{\widehat{f}_{s,i}\}$, $s=1,2,...,N_s$; (Each sub-sampled distribution is proper: $\sum_i \widehat{f}_{s,i} = 1$)
 - Calculate the "distance" between the single **empirical estimate**, $\{\hat{f}_i\}$, and its subsampled counterpart using a metric: e.g. $d = \sqrt{T} \sum_{i=0}^{K} \left| \hat{f}_i \hat{f}_{s,i} \right|$
 - Ranking (in ascending order) of metric d⇒ ranking of the subsampled distributions

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

April 23, 2010 13 / 1:

- How to measure sampling variation in $\{\hat{f}_i\}$?
- Need to impose $\sum\limits_{i}\widehat{f_{i}}=1$
- Use **subsampling** method to:
 - Take draws from (an approximation to) the sampling distribution of $\{\widehat{f}_i\} \Rightarrow \{\widehat{f}_{s,i}\}$, $s=1,2,...,N_s$; (Each sub-sampled distribution is proper: $\sum_i \widehat{f}_{s,i} = 1$)
 - Calculate the "distance" between the single **empirical estimate**, $\{\hat{f}_i\}$, and its subsampled counterpart using a metric: e.g. $d = \sqrt{T} \sum_{i=0}^{K} \left| \hat{f}_i \hat{f}_{s,i} \right|$
 - **1** Ranking (in ascending order) of **metric** $d \Rightarrow$ ranking of the subsampled distributions
 - Subsample estimator of sampling distribution of $\{\hat{f}_i\}$ consistent

April 23, 2010 13 / 18

 Stock: Deutsche Telekom (traded on the Deutsche Borse, 2004)

- Stock: Deutsche Telekom (traded on the Deutsche Borse, 2004)
- 'lceberg' asks in the order book (up to and including the fifth best order only)

- Stock: Deutsche Telekom (traded on the Deutsche Borse, 2004)
- 'lceberg' asks in the order book (up to and including the fifth best order only)
- Counted every 10 minutes

- Stock: Deutsche Telekom (traded on the Deutsche Borse, 2004)
- 'Iceberg' asks in the order book (up to and including the fifth best order only)
- Counted every 10 minutes
- Over any 10 minute time period t, the number of iceberg orders, X_t , is the sum of:

- Stock: Deutsche Telekom (traded on the Deutsche Borse, 2004)
- 'lceberg' asks in the order book (up to and including the fifth best order only)
- Counted every 10 minutes
- Over any 10 minute time period t, the number of iceberg orders, X_t , is the sum of:
 - and the number of orders remaining from the previous ten minute period, waiting for execution:

C

- Stock: Deutsche Telekom (traded on the Deutsche Borse, 2004)
- 'lceberg' asks in the order book (up to and including the fifth best order only)
- Counted every 10 minutes
- Over any 10 minute time period t, the number of iceberg orders, X_t , is the sum of:
 - and the number of orders remaining from the previous ten minute period, waiting for execution:

C

- Stock: Deutsche Telekom (traded on the Deutsche Borse, 2004)
- 'lceberg' asks in the order book (up to and including the fifth best order only)
- Counted every 10 minutes
- Over any 10 minute time period t, the number of iceberg orders, X_t , is the sum of:
 - and the number of orders remaining from the previous ten minute period, waiting for execution: $\alpha_1 \circ X_{t-1}$

April 23, 2010

- Stock: Deutsche Telekom (traded on the Deutsche Borse, 2004)
- 'lceberg' asks in the order book (up to and including the fifth best order only)
- Counted every 10 minutes
- Over any 10 minute time period t, the number of iceberg orders, X_t , is the sum of:
 - and the number of orders remaining from the previous ten minute period, waiting for execution: $\alpha_1 \circ X_{t-1}$
 - the number of new iceberg orders placed in the book (or 'arrivals'):

() April 23, 2010 14 / 18

- Stock: Deutsche Telekom (traded on the Deutsche Borse, 2004)
- 'lceberg' asks in the order book (up to and including the fifth best order only)
- Counted every 10 minutes
- Over any 10 minute time period t, the number of iceberg orders, X_t , is the sum of:
 - and the number of orders remaining from the previous ten minute period, waiting for execution: $\alpha_1 \circ X_{t-1}$
 - the number of new iceberg orders placed in the book (or 'arrivals'):

() April 23, 2010 14 / 18

- Stock: Deutsche Telekom (traded on the Deutsche Borse, 2004)
- 'lceberg' asks in the order book (up to and including the fifth best order only)
- Counted every 10 minutes
- Over any 10 minute time period t, the number of iceberg orders, X_t , is the sum of:
 - and the number of orders remaining from the previous ten minute period, waiting for execution: $\alpha_1 \circ X_{t-1}$
 - the number of new iceberg orders placed in the book (or 'arrivals'): ε_t

) April 23, 2010 14 /

- Stock: Deutsche Telekom (traded on the Deutsche Borse, 2004)
- 'lceberg' asks in the order book (up to and including the fifth best order only)
- Counted every 10 minutes
- Over any 10 minute time period t, the number of iceberg orders, X_t , is the sum of:
 - and the number of orders remaining from the previous ten minute period, waiting for execution: $\alpha_1 \circ X_{t-1}$
 - the number of new iceberg orders placed in the book (or 'arrivals'): ε_t
- $\bullet \Rightarrow INAR(1)$

() April 23, 2010

• Use T = 500 sample to predict X_{T+1} :

- Use T = 500 sample to predict X_{T+1} :
- Plot **empirical** $\widehat{f}_i = \text{Prob}(X_{T+1} = i | \mathbf{x});$ i = 0, 1, 2,

- Use T = 500 sample to predict X_{T+1} :
- Plot **empirical** $\widehat{f}_i = \text{Prob}(X_{T+1} = i | \mathbf{x});$ i = 0, 1, 2,
- Plot 5 **extreme** subsampled $\{\widehat{f}_i\}'s$

- Use T = 500 sample to predict X_{T+1} :
- Plot **empirical** $\widehat{f}_i = \text{Prob}(X_{T+1} = i | \mathbf{x});$ i = 0, 1, 2,
- Plot 5 **extreme** subsampled $\{\widehat{f}_i\}'s$
- at 95th percentiles of metric and two distributons either side

April 23, 2010 15 / 1

- Use T = 500 sample to predict X_{T+1} :
- Plot **empirical** $\widehat{f}_i = \text{Prob}(X_{T+1} = i | \mathbf{x});$ i = 0, 1, 2,
- Plot 5 **extreme** subsampled $\{\hat{f}_i\}'s$
- at 95th percentiles of metric and two distributons either side
- What do extreme distributional estimates look like?

() April 23, 2010 15 / 18

- Use T = 500 sample to predict X_{T+1} :
- Plot **empirical** $\widehat{f}_i = \text{Prob}(X_{T+1} = i | \mathbf{x});$ i = 0, 1, 2,
- Plot 5 **extreme** subsampled $\{\widehat{f}_i\}'s$
- at 95th percentiles of metric and two distributons either side
- What do extreme distributional estimates look like?
- How different could our probabilitistic predictions be?

◆□▶ ◆□▶ ◆□▶ ◆■▶ ■ りへで

April 23, 2010 15

DEUT ICEBERG ORDERS

Estimated 1—Step—Ahead Forecast Distribution for Last 10—Minutes of Day; T=500

• $Prob(X_{T+1} \ge 1) = 78\%$

◆□▶ ◆□▶ ◆■▶ ◆■ ● 夕○○

DEUT ICEBERG ORDERS

Estimated 1—Step—Ahead Forecast Distribution for Last 10—Minutes of Day; T=500

- $Prob(X_{T+1} \ge 1) = 78\%$
- \Rightarrow high prob. of some hidden liquidity

• Extreme estimates?

DEUT ICEBERG ORDERS

Estimated One-Step-Ahead Forecast Distribution for Last 10-Minutes of Day plus

17 / 18

• Extreme estimates?

DEUT ICEBERG ORDERS

Estimated One-Step-Ahead Forecast Distribution for Last 10-Minutes of Day plus

• 93rd - $97th \Rightarrow Prob(X_{T+1} \ge 1)$ lower

◄□▶
◄□▶
◄□▶
◄□▶
◄□▶
₹
₹
₽
♥
Q
♥

• Extreme estimates?

DEUT ICEBERG ORDERS

Estimated One-Step-Ahead Forecast Distribution for Last 10-Minutes of Day plus

- 93rd $97th \Rightarrow Prob(X_{T+1} \ge 1)$ lower
- ⇒ sampling variability shifts prob. mass across support ...

April 23, 2010 17 / 18

Enough for 20 minutes......

(