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Enormous number of applications.....

) wide applicability
E.g. no. of �iceberg�stock market order book entries
) Only a portion of the volume of the order
or the �tip of the iceberg�, is revealed in the order
book
) �hidden liquidity�
) a¤ects trading behaviour (Frey and Sandas,
2008)
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Probabilistic forecasts

Continous approximation X
Models and methods for discrete data

Want predictions that are consistent with the
discrete sample space

) focus on estimating the predictive distribution
of Xt+m
De�ned only on the (non-negative) integer support
Quantities of interest are:

fi = P [XT+m = i jx] , i = 0, 1, 2, . . .bfi = bP [XT+m = i jx] , i = 0, 1, 2, . . .
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Optimal forecasts within model class

Our aim:

De�ne broad class of count model
appropriate for particular data types
)
nbfio via non-parametric MLE

)
nbfio optimal for any dgp (within class)

)
nbfio appropriate choice

Contrast with existing forecasting-evaluation
literature:

predictions treated as �primitives�
model and inferential procedure (if any) not relevant
predictions only assessed via out-of-sample performance

Could combine both approaches.....
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INAR(p)

Integer-valued autoregressive models of Al-Osh
and Alzaid (1987), McKenzie (1988), Du and Li (1991):

Xt= α1 � Xt�1| {z }+..+ αk � Xt�k| {z }+..+ αp � Xt�p| {z }+ εt|{z}
εt iid on f0, 1, 2, ...g
αk � Xt�k on f0, 1, 2, ...g; k = 1, 2, . . . , p

αk � Xt�k =
Xt�k
∑
i=1

Bi ,k

with B1,k , B2,k , . . . ,BXt�k ,k iid Bernoulli:
P(Bi ,k = 1) = αk
���binomial thinning
) INAR(p) a branching process with immigration
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INAR(1)

When p = 1, Xt behaves like a queue:

Xt = α1 � Xt�1| {z }
survivors

+ εt|{z}
arrivals

or a birth and death process
εt = the births
α1 � Xt�1 = the survivors (non-deaths)
INAR(p) a broad class
Many references in paper.......
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Nonparametric prediction in the INAR(p)
model

εt iid with distribution G
G = fgrg is an in�nite sequence of probabilities on
the set Z = f0, 1, 2, ...g
MLE imposes parametric structure on fgrg ; e.g.
G = Poisson
) MLE of ffig
Non-parametric MLE (NPMLE) imposes no
structure on fgrg
(other than 0 � gr � 1,∑∞

r=0 gr = 1)
) NPMLE of ffig
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Nonparametric prediction in the INAR(p)
model

MLE of ffig optimal only under correct
distributional assumption
NPMLE of ffig shown to be optimal under any
distributional assumption for εt
Need to show:

1. Optimality of NPMLE of θ = (α1, ..., αp, fgrg)
2. �Smoothness�of map between θ and ffig )
Optimality of NPMLE of ffig
fgrg (and hence θ) and ffig are of in�nite
dimension
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Implementation of NPMLE

Consider Xt = α1 � Xt�1+ εt
Conditional on x1 :

log L(θ) =
T

∑
t=2

log fPr(Xt = xt jXt�1 = xt�1)g

=
T

∑
t=2

log

(
xt

∑
r=max(0,∆xt )

pBxt�rgr

)
pBxt�r = Bin(α � Xt�1 = xt � r jXt�1 = xt�1)

Conditional binomials mixed over arrivals
Estimate fgrg and α1 via (constrained) ML
) NPMLE: θ̂ = (bα1, fĝrg)
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Optimality of NPMLE

Formally: maximizing an empirical likelihood
fĝrg contains only a �nite number of non-zero
values in �nite samples
) fĝrg (and bθ) in�nite as T ! ∞
Asymptotic theory needs to accommodate this
Drost et al (2008) )
asy. Gaussianity and (non-parametric) asy.
e¢ ciency of θ̂

) θ̂ optimal in this sense
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Optimality of forecasts

θ ) ffi(θ)g

)
nbfi(θ̂)o asy. Gaussian and (non-parametric) asy.

e¢ cient
Involves showing that the map is (Frechet)
di¤erentiable; i.e. that the derivative Ḟ is a
bounded, linear operator with

F (θ + h)� F (θ)� Ḟ (h)



`1
= o (khkH)
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bounded, linear operator with

F (θ + h)� F (θ)� Ḟ (h)
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Optimality of forecasts

Theorems 1 and 2, plus proofs

) linear operations on (asy) Gaussian variables are
Gaussian
�delta�rule ) NPMLE of ffig asy. Gaussian and
(non-parametric) asy. e¢ cient
Also performs well in �nite samples
Especially in tail (� rare occurrences of high counts)
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Measurement of sampling error

How to measure sampling variation in fbfig?
Need to impose ∑

i

bfi = 1
Use subsampling method to:

1 Take draws from (an approximation to) the sampling
distribution of fbfig ) fbfs ,ig, s = 1, 2, ..,Ns ; (Each
sub-sampled distribution is proper: ∑

i

bfs ,i = 1)
2 Calculate the "distance" between the single empirical
estimate,fbfig, and its subsampled counterpart using a
metric: e.g. d =

p
T ∑K

i=0

���f̂i � bfs ,i ���
3 Ranking (in ascending order) of metric d) ranking of
the subsampled distributions

Subsample estimator of sampling distribution of fbfig
consistent
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1 Take draws from (an approximation to) the sampling
distribution of fbfig ) fbfs ,ig, s = 1, 2, ..,Ns ; (Each
sub-sampled distribution is proper: ∑

i

bfs ,i = 1)
2 Calculate the "distance" between the single empirical
estimate,fbfig, and its subsampled counterpart using a
metric: e.g. d =
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�Iceberg�orders

Stock: Deutsche Telekom (traded on the Deutsche
Borse, 2004)

�Iceberg�asks in the order book (up to and including
the �fth best order only)
Counted every 10 minutes
Over any 10 minute time period t, the number of
iceberg orders, Xt , is the sum of:

and the number of orders remaining from the previous
ten minute period, waiting for execution:

α1 � Xt�1
the number of new iceberg orders placed in the book (or
�arrivals�): εt

) INAR(1)
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Prediction of �iceberg�orders

Use T = 500 sample to predict XT+1 :

Plot empirical bfi = Prob(XT+1 = i jx);
i = 0, 1, 2, ....
Plot 5 extreme subsampled fbfig0s
at 95th percentiles of metric and two distributons
either side
What do extreme distributional estimates look like?
How di¤erent could our probabilitistic predictions
be?
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Prob(XT+1 � 1) = 78%

) high prob. of some hidden liquidity
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Extreme estimates?

93rd - 97th) Prob(XT+1 � 1) lower
) sampling variability shifts prob. mass across support
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Enough for 20 minutes........
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