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Brendan McCabe, Gael Martin and David Harris

@ Focus on low count time series
o = X, = {012 } t=1,2,..., T
@ Particular interest in X; as :

a queue

a stock (inventory)

a birth and death process
a branching process

@ Wish to produce ‘optimal’ probabilistic forecasts of
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Enormous number of applications.....

= wide applicability

E.g. no. of ‘iceberg’ stock market order book entries
= Only a portion of the volume of the order

or the ‘tip of the iceberg’, is revealed in the order
book

= ‘hidden liquidity’
=> affects trading behaviour (Frey and Sandas,
2008)
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@ Our aim:

@ Define broad class of count model
@ appropriate for particular data types

@ = < f; ¢ via non-parametric MLE
° = {/f;} optimal for any dgp (within class)
° = {?,} appropriate choice
@ Contrast with existing forecasting-evaluation

literature:

e predictions treated as ‘primitives’
e model and inferential procedure (if any) not relevant
@ predictions only assessed via out-of-sample performance

@ Could combine both approaches.....
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and Alzaid (1987), McKenzie (1988), Du and Li (1991):

Xt:w Xt—}++ Xg O Xt—k —+..+ DCP O Xt_B+ Et

——

e iid on {0,1,2, ...}
agoXi—gon{0,1,2,...}; k=1,2,..., p

Xe—k
o Xe—k = Y, Bik
=1
with By, Bag ..., Bx, . iid Bernoulli

P(B,',k = ].) = Xk
‘o' binomial thinning
= INAR(p) a branching process with immigration
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Xe=wu10Xi 1+ &
——

survivors arrivals

@ or a birth and death process

@ ¢; = the births

@ a7 0 X;_1 = the survivors (non-deaths)
e INAR(p) a broad class

@ Many references in paper.......
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@ MLE of {f;} optimal only under correct
distributional assumption

@ NPMLE of {f;} shown to be optimal under any
distributional assumption for &;

@ Need to show:

1. Optimality of NPMLE of 60 = (a1, ..., &p, {&-})
2. ‘Smoothness’ of map between 6 and {f;} =
Optimality of NPMLE of {f;}

o {g:} (and hence 0) and {f;} are of infinite
dimension

April 23, 2010
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t=2
T Xt
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t=2 r=max(0,Ax;)
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@ Conditional binomials mixed over arrivals

e Estimate {g,} and a; via (constrained) ML
o = NPMLE: 8 = (a1, {&})
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Optimality of NPMLE

e Formally: maximizing an empirical likelihood

e {2} contains only a finite number of non-zero
values in finite samples

— {&} (and B) infinite as T — oo
Asymptotic theory needs to accommodate this
Drost et al (2008) =

asy. Gaussianity and (non-parametric) asy.
efficiency of 6

o =0 optimal in this sense
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Optimality of forecasts

o 0= {f(0)}
° = {?,(9)} asy. Gaussian and (non-parametric) asy.
efficient

@ Involves showing that the map is (Frechet)
differentiable; i.e. that the derivative F is a
bounded, linear operator with

[F(6+h)—F(0) = F(h)|=o(lhly)
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Optimality of forecasts

@ Theorems 1 and 2, plus proofs

@ = linear operations on (asy) Gaussian variables are
Gaussian

@ ‘delta’ rule == NPMLE of {f;} asy. Gaussian and
(non-parametric) asy. efficient

@ Also performs well in finite samples
@ Especially in tail (= rare occurrences of high counts)
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@ How to measure sampling variation in {£}?
@ Need to impose ) =1

]
@ Use subsampling method to:

@ Take draws from (an approximation to) the sampling
distribution of {#} = {f..;}, s = 1,2, .., Ns; (Each
sub-sampled distribution is proper: Z?s,,- =1)
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Measurement of sampling error

@ How to measure sampling variation in {£}?
@ Need to impose ) =1

@ Use subsampling method to:

@ Take draws from (an approximation to) the sampling
distribution of {f;} = {fs;}, s=1,2,.., Ns; (Each
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!
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Measurement of sampling error

@ How to measure sampling variation in {£}?
@ Need to impose ) =1

]
@ Use subsampling method to:
@ Take draws from (an approximation to) the sampling
distribution of {#} = {f..;}, s = 1,2, .., Ns; (Each
sub-sampled distribution is proper: Z?s,,- =1)

!
@ Calculate the "distance" between the single empirical
estimate,{f;}, and its subsampled counterpart using a

metric: e.g. d = \/TZ,K:O ‘f‘, —/fs,,-‘
© Ranking (in ascending order) of metric d= ranking of
the subsampled distributions

o Subsample estimator of sampling distribution of {£;}

consistent
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‘|ceberg’ orders

@ Stock: Deutsche Telekom (traded on the Deutsche
Borse, 2004)

@ ‘lceberg’ asks in the order book (up to and including
the fifth best order only)

@ Counted every 10 minutes

@ Over any 10 minute time period t, the number of
iceberg orders, X;, is the sum of:

@ and the number of orders remaining from the previous
ten minute period, waiting for execution: a3 o X;_1

e the number of new iceberg orders placed in the book (or
‘arrivals'): &

o = INAR(1)
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Prediction of ‘iceberg’ orders

Use T = 500 sample to predict X7 :
Plot empirical f; = Prob(X741 = i|x);
1=0,12,...

Plot 5 extreme subsampled {£}'s

at 95th percentiles of metric and two distributons
either side
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Prediction of ‘iceberg’ orders

Use T = 500 sample to predict X7 :
Plot empirical f; = Prob(X741 = i|x);
1=0,12,...

Plot 5 extreme subsampled {£}'s

at 95th percentiles of metric and two distributons
either side

What do extreme distributional estimates look like?

How different could our probabilitistic predictions
be?

April 23, 2010 15 / 18



Forecast Distribution

DEUT ICEBERG ORDERS

Estimated 1 —Step—Ahead Forecast Distribution for Last 10—Minutes of Day;
T = 500

NPMLE

Prob(Xr41 > 1) = 78%
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Forecast Distribution

DEUT ICEBERG ORDERS

Estimated 1 —Step—Ahead Forecast Distribution for Last 10—Minutes of Day;

T = 500

NPMLE

X(T+1)

Prob(Xr41 > 1) = 78%
=> high prob. of some hidden liquidity

0
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@ Extreme estimates?

DEUT ICEBERG ORDERS
Estimated One—Step—Ahead Forecast Distribution for Last 10—Minutes of Day plus

Sub—sampled Dists Ranked at (and Near) the 95th Percentile; T = 500

NPMLE

957 — 2

957 — 1

957 Percentile
957 + 1 B
957 + 2

Forecast Distribution
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@ Extreme estimates?

DEUT ICEBERG ORDERS
Estimated One—Step—Ahead Forecast Distribution for Last 10—Minutes of Day plus

Sub—sampled Dists Ranked at (and Near) the 95th Percentile; T = 500

0.50

—— NPMLE
— — 957 — 2 b
——=- 957 — 1

c— - 957 Percentile

Forecast Distribution

X(T+1)

e 93rd - 97th = Prob(X711 > 1) lower
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@ Extreme estimates?

DEUT ICEBERG ORDERS
Estimated One—Step—Ahead Forecast Distribution for Last 10—Minutes of Day plus

Sub—sampled Dists Ranked at (and Near) the 95th Percentile; T = 500

0.50

Forecast Distribution

X(T+1)

e 93rd - 97th = Prob(X74+1 > 1) lower

e = sampling variability shifts prob. -mass across support
0 April 23, 2010 17 / 18




Enough for 20 minutes
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