Small Jumps in Noisy High Frequency Data: A Local to Continuity Theory

Jia Li Department of Economics & Bendheim Center for Finance Princeton University

April 24, 2010

Jia Li Department of Economics & Bendhein

Local to Continuity

- Intuition: Jumps "appear" to be small in a noisy environment.
- Econometric formalization of this view: local asymptotic model.
- Study the asymptotics of the pre-averaging estimator in the local model.

The price or log price

$$X_{t} = X_{0} + \underbrace{\int_{0}^{t} b_{s} ds}_{\text{drift}} + \underbrace{\int_{0}^{t} \sigma_{s} dW_{s}}_{\text{Brownian}} + \underbrace{\delta \mathbf{1}_{\{|\delta| \le 1\}} * (\mu - \nu)_{t} + \delta \mathbf{1}_{\{|\delta| > 1\}} * \mu_{t}}_{\text{Jumps}}.$$

$$\mu : \text{ jump measure, } \nu : \text{ compensator, } \delta : \text{ jump size}$$

- Data are discretely sampled: $X_0, X_{\Delta}, X_{2\Delta}, ..., \Delta \rightarrow 0$
- High frequency data is noisy: Z = X + noise.

• The true price at stage *n*:

• The observed process $Z^n = X^n + noise$.

- Asymptotics for the preaverging estimator in the local-to-continuity model
- Convergences in $\mathbb P$ and in law (stably).
- Asymptotics depend on the rate at which $c_n \rightarrow 0$.

1 Nearly continuous case: (jump size \searrow 0 fast)

- Same rate of convergence as in the continuous case
- Non-central limiting law

Small jump case: (jump size ∖0 slow)

Weak identification problem in the estimation of (small) jumps

 \bullet Noise-robust estimation (LLN) and inference (CLT) for

$$\begin{cases} \int_0^t \sigma_s^p \, ds & \text{when } X \text{ is continuous} \\ \sum_{s \le t} |\Delta X_s|^p & \text{when } X \text{ jumps.} \end{cases}$$
, for even p .

The design

- Shrink noise by smoothing
- Bias correction
- The pre-averaging estimator $\bar{V}\left(g,k_{n},p
 ight)$
 - g : smoothing kernel
 - k_n : smoothing window

•
$$p$$
: as in $\int_0^t \sigma_s^p ds$ or $\sum_{s \le t} |\Delta X_s|^p$

Motivating the local model: An numerical example

- To fix idea, let p = 4.
- Under the standard asymptotics (Jacod, Podolskij and Vetter 2009),
 - When X is continuous

$$\bar{V}\left(g,k_{n}
ight)\stackrel{\mathbb{P}}{
ightarrow}C_{1}\left(g
ight)\int_{0}^{T}\left|\sigma_{s}\right|^{4}ds,$$

• When X jumps

$$\Delta_n^{1/2} \bar{V}(g, k_n) \xrightarrow{\mathbb{P}} C_2(g) \sum_{s \leq T} \left| \Delta X_s \right|^4.$$

• Heuristically, combine the above

$$\bar{V}\left(g,k_{n}\right)\approx\underbrace{C_{1}\left(g\right)\int_{0}^{T}\left|\sigma_{s}\right|^{4}ds}_{\text{negligible asymptotically}}+\underbrace{\Delta_{n}^{-1/2}}_{\rightarrow\infty}C_{2}\left(g\right)\sum_{s\leq T}\left|\Delta X_{s}\right|^{4}.$$

 $\bullet\ Left{\longrightarrow}Right:\ no\ jump\ {\rightarrow}\ 1\ very\ large\ jump$

Image: A math a math

Jump Size	Standard Preaveraging (benchmark model)				
$(imes \sigma \Delta^{1/2}$, $\Delta=5{ m sec})$					
10	39183%				
20	2502%				
30	515%				
50	75%				
100	7%				

Table: Relative bias for estimating $\sum_{s < T} |\Delta X_s|^4$.

э

- Assumptions
- Theorems
- Applications

Image: A mathematical states of the state

Assumptions

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

- X is an Ito semimartingale with regular (i.e. càdlàg or càglàd) and locally bounded coefficients.
- σ is also an Ito semiartingale with regular and locally bounded coefficients.
- Conditional on X, noise is, IID, mean 0, and locally bounded.

$$\begin{array}{lll} X_t & = & X_0 + \int_0^t b_s \, ds + \int_0^t \sigma_s dW_s \\ & & + \delta \mathbf{1}_{\{|\delta| \le 1\}} * (\mu - \nu)_t + \delta \mathbf{1}_{\{|\delta| > 1\}} * \mu_t. \end{array}$$

a) The process (b_t) is optional and locally bounded;

b) The process (σ_t) is càdlàg (i.e., right-continuous with left limits) and adapted;

c) The function δ is predictable, and there is a bounded function γ in $\mathbb{L}^2(E, \mathcal{E}, \lambda)$ such that the process $\sup_{z \in E} (|\delta(\omega^{(0)}, t, z)| \wedge 1) / \gamma(z)$ is locally bounded;

d) We have almost surely $\int_0^t \sigma_s^2 ds > 0$ for all t > 0.

We have Assumption 1 and σ_t is also an Itô semimartingale which can be written as

$$\sigma_t = \sigma_0 + \int_0^t \tilde{b}_s ds + \int_0^t \tilde{\sigma}_s dW_s + M_t + \sum_{s \leq t} \Delta \sigma_s \, \mathbb{1}_{\{|\Delta \sigma_s| > v\}},$$

where M is a local martingale orthogonal to W and with bounded jumps and $\langle M, M \rangle_t = \int_0^t a_s ds$, and the compensator of $\sum_{s \le t} \mathbf{1}_{\{|\Delta \sigma_s| > v\}}$ is $\int_0^t a'_s ds$, and where \tilde{b}_t , a_t , and a'_t are optional locally bounded processes, and $\tilde{\sigma}_t$ is optional and càdlàg, as well as b_t . Furthermore, we suppose that the processes \tilde{b}_t , a_t , a'_t are locally bounded, whereas the processes b_t and $\tilde{\sigma}_t$ are left-continuous with right limits. For each q > 0 there is a sequence of $(\mathcal{F}_t^{(0)})$ -stopping times $(T_{q,n})_{n \ge 1}$ increasing to ∞ , such that $\int Q_t(\omega^{(0)}, dz) |z|^q \le n$ whenever $t < T_{q,n}(\omega^{(0)})$. We write

$$\beta(q)_t(\omega^{(0)}) = \int Q_t(\omega^{(0)}, dz) z^q, \qquad \alpha_t = \sqrt{\beta(2)_t},$$

and we assume that the processes α and $\beta(3)$ are càdlàg, and that

$$\beta(1) \equiv 0.$$

Theorems

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Theorem

Let $p \ge 2$ be an even integer. Let $c_n = \Delta_n^{\frac{1}{4} - \frac{1}{4p}}$. Assume that jump process has finite variation. The standardized process

$$ilde{V}\left(g,p
ight)_{t}^{n}=rac{1}{\Delta_{n}^{1/4}}\left(\Delta_{n}^{1-p/4}ar{V}\left(Z,g,p
ight)_{t}^{n}-C_{1}\left(g
ight)\int_{0}^{t}\left|\sigma_{s}
ight|^{p}ds
ight),$$

converges stably in law (in functional sense) to the process

$$M_t + C_2(g) \sum_{s \leq t} |\Delta X_s|^p$$
,

where M_t is an \mathcal{F} -conditional centered Gaussian martingale with known variance.

Theorem

Let
$$p \geq 4$$
. Let $c_n = \Delta_n^{\frac{1}{4} - \frac{1}{2p}}$. We have

$$\Delta_n^{1 - \frac{p}{4}} \bar{V} \left(Z^n, g, p \right)_t^n \xrightarrow{\mathbb{P}} C_1 \left(g \right) \int_0^t \sigma_s^p \, ds + C_2 \left(g \right) \sum_{s \leq t} |\Delta X_s|^p \, .$$

The small jump case: CLT

Theorem

Let
$$p \ge 4$$
. Let $c_n = \Delta_n^{\frac{1}{4} - \frac{1}{2p}}$. The variables

$$\Delta_{n}^{-\frac{1}{2p}}\left(\Delta_{n}^{1-\frac{p}{4}}\bar{V}\left(Z^{n},g,p\right)_{t}^{n}-C_{1}\left(g\right)\int_{0}^{t}\sigma_{s}^{p}\,ds-C_{2}\left(g\right)\sum_{s\leq t}\left|\Delta X_{s}\right|^{p}\right)$$

converge stably in law to a \mathcal{F} -conditional centered Gaussian variable with \mathcal{F} -conditional variance

$$\sum_{s \le t} |\Delta X_s|^{2(p-1)} \left(\underbrace{C_{-}\sigma_{s-}^2 + C_{+}\sigma_s^2}_{\text{Due to vol}} + \underbrace{C_{-}'\alpha_{s-}^2 + C_{+}'\alpha_s^2}_{\text{Due to noise}} \right)$$

Remark: joint convergence available for multiple g's.

Applications

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

- Aït-Sahalia, Jacod and Li (2010) proposes a noise-robust jump test based on the pre-averaging method
- Compute local power under the continuous null
- Provide a guideline for choosing smoothing parameters (to maximize local power)

Application 2: The small jump asymptotics

- Estimate $\sum_{s\leq t} \left| \Delta X_s
 ight|^p$, for $p\geq 4$ even integer
- The preaveraging estimator $\bar{V}(g, k_n, p)$ is biased.
- Bias correction using multiple weighting functions
- The "small jump" LLN

$$\bar{V} \left(Z^{n}, g \right)_{t}^{n} \xrightarrow{\mathbb{P}} C_{1} \left(g \right) \int_{0}^{t} \sigma_{s}^{p} ds + C_{2} \left(g \right) \sum_{s \leq t} \left| \Delta X_{s} \right|^{p},$$

$$\bar{V} \left(Z^{n}, h \right)_{t}^{n} \xrightarrow{\mathbb{P}} C_{1} \left(h \right) \int_{0}^{t} \sigma_{s}^{p} ds + C_{2} \left(h \right) \sum_{s \leq t} \left| \Delta X_{s} \right|^{p}.$$

• Solving the 2×2 system,

$$\begin{pmatrix} C_{1}(g) & C_{2}(g) \\ C_{1}(h) & C_{2}(h) \end{pmatrix}^{-1} \begin{pmatrix} \bar{V}(Z^{n},g)_{t}^{n} \\ \bar{V}(Z^{n},h)_{t}^{n} \end{pmatrix} \xrightarrow{\mathbb{P}} \begin{pmatrix} \int_{0}^{t} \sigma_{s}^{p} ds \\ \sum_{s \leq t} |\Delta X_{s}|^{p} \end{pmatrix}$$

Jump Size	Corrected Preaveraging				Standard Preaveraging				
$\left(\times \sigma \Delta^{1/2}\right)$	(motivated by local model)			(motivated by non-local model)					
$\Delta=5~{ m sec}$	Number of Jumps				Number of Jumps				
	1	3	5	10	-	1	3	5	10
20	-9%	-3%	-1%	-1%		2502%	894%	567%	327%
30	-3%	-1%	-2%	-1%		515%	195%	132%	85%
50	-2%	-2%	-1%	-1%		75%	33%	25%	19%
100	-1%	-1%	-1%	-1%		7%	5%	4%	4%

Table: Relative bias for estimating $\sum_{s < T} |\Delta X_s|^4$.

Generalization

$$\bar{V} (Z^{n}, g_{1})_{t}^{n} \xrightarrow{\mathbb{P}} C_{1} (g_{1}) \int_{0}^{t} \sigma_{s}^{p} ds + C_{2} (g_{1}) \sum_{s \leq t} |\Delta X_{s}|^{p},$$

$$\bar{V} (Z^{n}, g_{2})_{t}^{n} \xrightarrow{\mathbb{P}} C_{1} (g_{2}) \int_{0}^{t} \sigma_{s}^{p} ds + C_{2} (g_{2}) \sum_{s \leq t} |\Delta X_{s}|^{p},$$

$$\cdots$$

$$\bar{V} (Z^{n}, g_{2})_{t}^{n} \xrightarrow{\mathbb{P}} C_{2} (g_{2}) \int_{0}^{t} \sigma_{s}^{p} ds + C_{2} (g_{2}) \sum_{s \leq t} |\Delta X_{s}|^{p},$$

$$\bar{V}(Z^{n},g_{m})_{t}^{n} \xrightarrow{\mathbb{P}} C_{1}(g_{m}) \int_{0} \sigma_{s}^{p} ds + C_{2}(g_{m}) \sum_{s \leq t} |\Delta X_{s}|^{p}$$

- Overidentified system \Rightarrow OLS/GLS/Minimum Distance.
- CLT available from joint convergence of $\left(\bar{V}\left(Z^{n},g_{j}
 ight)_{t}^{n}
 ight)_{1\leq j\leq m}$

• It is useful to introduce local asymptotics to study the behavior of the preaveraging estimators.

Thanks!

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Relative importance of continuous and jump components

• Simulation:

.

$$Z_t = \sigma W_t + \text{Jump Size } * 1 \{t \ge \tau\} + \text{Noise}_t$$

Noise_t $\stackrel{iid}{\sim}$ scale factor $\times t_{2.5}$ (very heavy tail)

• Relative magnitude: continuous part V.S. jump part

Jump Size	Corrected Preaveraging				Standard Preaveraging				
$(\times \sigma \Delta^{1/2})$	(motivated by local model)			(mc	(motivated by non-local model)				
$\Delta = 5 \text{ sec}$	Number of Jumps					Number of Jumps			
	1	3	5	10	1	3	5	10	
10	-121%	-49%	-41%	-19%	39183%	13283%	8121%	4230%	
20	-9%	-3%	-1%	-1%	2502%	894%	567%	327%	
30	-3%	-1%	-2%	-1%	515%	195%	132%	85%	
50	-2%	-2%	-1%	-1%	75%	33%	25%	19%	
100	-1%	-1%	-1%	-1%	7%	5%	4%	4%	

Table: Relative bias for estimating $\sum_{s < T} |\Delta X_s|^4$.